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Abstract: This paper is concerned with the problem of delay-dependent robust H∞ control for 

uncertain fuzzy Markovian jump systems with time delays. The purpose is to design a mode-dependent 

state-feedback fuzzy controller such that the closed-loop system is robustly stochastically stable and 

satisfies an H∞ performance level. By introducing slack matrix variables, a delay-dependent sufficient 

condition for the solvability of the problem is proposed in terms of linear matrix inequalities. An 

illustrative example is finally given to show the applicability and effectiveness of the proposed method. 
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1. INTRODUCTION 

 

Lots of practical dynamic systems are driven by 

discrete events such as random component failures or 

repairs, sudden environmental disturbances and changes 

in the interconnections of subsystems. Each discrete 

event changes the structure or parameters of the systems. 

These complex systems can be described as hybrid 

system models which consist of two kinds of state 

variables: continuous state variables and discrete event 

variables. Markovian jump systems belong to the 

category of stochastic hybrid systems and the discrete 

event variables are system modes governed by a discrete-

state Markovian process. Markovian jump systems have 

different system parameters under different system 

modes. Over the past decades, stability analysis and 

controller synthesis for Markovian jump linear systems 

have been extensively studied; see, e.g., [1-3] and the 

references therein. 

For Markovian jump nonlinear systems, however, very 

few results are available because nonlinear dynamics are 

extremely difficult to deal with. Recently, the innovative 

Takagi-Sugeno (T-S) fuzzy-model-based technique 

becomes quite popular. In a T-S model, a linear system is 

adopted as the consequent part of each fuzzy rule, which 

makes a nonlinear system be represented as a weighted 

sum of some simple linear subsystems. As a result, it 

provides an efficient approach to taking full advantages 

of the fruitful modern linear control theory to the 

nonlinear control. During the past decades, for T-S fuzzy 

models, many control methods have been studied and 

many control techniques using the linear matrix 

inequalities (LMIs) have been investigated in [4-10]. 

Since fuzzy control has been proved to be a powerful 

method for the control problem of complex nonlinear 

systems, the study of fuzzy Markovian jump systems has 

attracted much attention during the past years. For 

instance, the stabilization and 
∞

H  control for fuzzy 

Markovian jump systems have been studied in [11] and 

[12], respectively. Recently, the problems of stability 

analysis and controller design for fuzzy Markovian jump 

systems have been addressed in [13]  by introducing 

some slack variables to separate Lyapunov matrices from 

system matrices.  

It has been known that the existence of time delays 

often causes instability or poor performance of a control 

system. A great number of results on various control 

issues related to time-delay systems have been presented. 

For fuzzy systems with time delays, many results have 

also been reported in [14-18] and the references therein. 

Recently, much attention has been paid to Markovian 

jump linear systems with time delays. For example, the 

problems of delay-independent robust stabilization and 

∞
H  control were investigated in [19-21]. Delay-

depend-ent stabilization conditions were presented in 

[22-24]. 

In this paper, we consider the problem of robust 
∞

H  

control for a class of T-S fuzzy Markovian jump systems 

with time delays and parameter uncertainties. The 

parameter uncertainties are assumed to be time varying 

but norm bounded. The aim of this paper is to design a 
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mode-dependent fuzzy controller such that the resulting 

closed-loop system is robustly stochastically stable and 

satisfies a prescribed H∞ performance level for all 

admissible uncertainties. A delay-dependent sufficient 

condition for the solvability of the problem is given in 

terms of certain LMIs. Desired state-feedback gains can 

be obtained by solving these obtained LMIs. Finally, an 

illustrative example is presented to demonstrate the 

effectiveness of the design method. 

Notation: For real symmetric matrices X and Y, the 

notation ≤X Y  and <X Y  mean that the matrix 

−X Y  is positive-semidefinite and positive-definite, 

respectively. I is the identity matrix with appropriate 

dimensions. The superscript “T ” represents the transpose. 

* is used as an ellipsis for terms that are induced by 

symmetry. 
2
[0, )∞L  is the space of square-integrable 

vector functions over [0, ).∞  Matrices, if explicitly 

stated, are assumed to be compatible dimensions for 

algebra operations. 
 

2. SYSTEM DESCRIPTIONS 
 

The class of uncertain nonlinear time-delay systems 

with Markovian jump parameters under consideration 

can be described by the following T-S fuzzy Markovian 

jump systems with time delays: 

Plant Rule i : IF 
1
( )s t  is 

1i
µ  and 

2
( )s t  is 

2i
µ  

and … and ( )
g
s t  is igµ  THEN 

[ ]

[ ]

[ ]1 1

2

( ) ( ( )) ( ( ), ) ( )

( ( )) ( ( ), ) ( )

( ( )) ( ( ), ) ( )

( ( )) ( ),

i i

di di

i i

i

x t A r t A r t t x t

A r t A r t t x t

B r t B r t t u t

B r t t

τ

ω

= + ∆

+ + ∆ −

+ + ∆

+

�

 (1) 

[ ]

[ ]

[ ]1 1

2

( ) ( ( )) ( ( ), ) ( )

( ( )) ( ( ), ) ( )

( ( )) ( ( ), ) ( )

( ( )) ( ),

i i

di di

i i

i

z t C r t C r t t x t

C r t C r t t x t

D r t D r t t u t

D r t t

τ

ω

= + ∆

+ + ∆ −

+ + ∆

+

 (2) 

0
( ) ( ), [ , 0], (0) ,x t t t r rφ τ= ∈ − =  (3) 

where {1,2,..., },i S s∈ �  and s  is the number of IF-

Then rules; ijµ  is the fuzzy set; ( ) n

x t ∈�  is the 

system state; ( )∈�
m

u t  is the control input; ( )z t  

∈�
p  is the control output; ( )∈�

q
tω  is the 

exogenous disturbance signal in 
2
[0, );L ∞  

1
( ),s t  

2
( ),s t …, ( )

g
s t  are the premise variables; the scalar 

0>τ  is the unknown constant time delay; ( ( )),
i

A r t  

( ( )),diA r t  
1
( ( )),
i

B r t  
2
( ( )),
i

B r t  ( ( )),diC r t  
1
( ( )),iD r t  

and 
2
( ( ))
i

D r t  are appropriately dimensioned real-

valued matrix functions of the Markov process { }( ) ;r t  

in (3), ( )tφ  is the continuously differentiable initial 

function on [ ,τ− 0] and r0 is the initial mode; { ( )}r t  is 

a continuous-time discrete-state Markov process taking 

values in a finite set T ={1, 2, …, N}. The transition 

probabilities of the process { }( )r t  are given by 

Pr( ( ) | ( ) )

( ),

1 ( ), ,

kl

kl

kk

P r t l r t k

o k l

o k l

π

π

= + ∆ = =

∆ + ∆ ≠
= 

+ ∆ + ∆ =

 (4) 

where ∆ >0, 
0

lim ( ( ) / )
∆→

∆ ∆o =0, and klπ  is the 

transition probability rate from mode k to mode l 

satisfying 0,klπ ≥  ≠k l  and 
,

.kk kll T l k
π π

∈ ≠

= −∑  

For each possible ( ) ,r t k=  ,k T∈  any matrix as 

( ( ))Ω r t  will be denoted by .Ωk  The real-valued 

unknown matrices representing the time-varying 

parameter uncertainties are assumed to be of the form 

, , 1 ,

, , 1 ,

1
1 , 2 , 3 ,

2

( ) ( ) ( )

( ) ( ) ( )

( ) ,

i k di k i k

i k di k i k

k

k i k i k i k

k

A t A t B t

C t C t D t

E
F t H H H

E

∆ ∆ ∆ 
 ∆ ∆ ∆ 

 
 =    

 

 (5) 

where 1 , 2 1 , 2 ,, , ,k k i k i kE E H H  and 3 ,i kH  are known 

real constant matrices for any ∈k T  and ( )kF t  is an 

unknown time-varying Lebesgue measurable matrix 

function satisfying ( ) ( ) , .T

k kF t F t I k T≤ ∀ ∈  

The output of the dynamic fuzzy model in (1)-(3) can 

be represented by 

{

}

, ,

1

, ,

1 , 1 , 2 ,

( ) ( ( )) ( ) ( )

( ) ( )

( ) ( ) ( ) ,

s

i i k i k

i

di k di k

i k i k i k

x t h s t A A t x t

A A t x t

B B t u t B t

τ

ω

=

 = + ∆ 

 + + ∆ − 

 + + ∆ + 

∑�

 (6) 

{

}

, ,

1

, ,

1 , 1 , 2 ,

( ) ( ( )) ( ) ( )

( ) ( )

( ) ( ) ( ) ,

s

i i k i k

i

di k di k

i k i k i k

z t h s t C C t x t

C C t x t

D D t u t D t

τ

ω

=

 = + ∆ 

 + + ∆ − 

 + + ∆ + 

∑

 (7) 

where 

1

1

1 2

( ( ))
( ( )) ,

( ( ))

( ( )) ( ( )),

( ) ( ) ( ) ( ) ,

i
i s

jj

g

i ij j

j

g

s t
h s t

s t

s t s t

s t s t s t s t

ϖ

ϖ

ϖ µ

=

=

=

=

 =  

∑

∏

�

 

in which, ( ( ))ij js tµ  is the grade of membership of 

( )js t  in .ijµ  Then, it can be seen that, for ∈i S  and 

all ,t  
1

( ( )) 1,
=

=∑
s

ii
h s t  and ( ( )) 0.≥

i
h s t  
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Next, using the parallel distributed compensation 

technique, we obtain the following mode-dependent 

fuzzy controller for the system in (1)-(3): 

Controller Rule i : IF 
1
( )s t  is 

1i
µ  and 

2
( )s t  is 

2i
µ  and … ( )

g
s t  is ,igµ  THEN  

,

( ) ( ), , ,= − ∈ ∈i ku t K x t i S k T  

where 
,

×

∈�
m n

i kK  are matrices to be determined later. 

Then the overall state-feedback fuzzy controller is given 

by 

,

1

( ) ( ( )) ( ) ( ) ( ).
=

= − = −∑
s

i i k k

i

u t h s t K x t K h x t  (8) 

Any matrix as 
1

( ( ))
=

Ω∑
s

i ii
h s t  will be denoted by 

( )Ω h  to simplify the notation. Then, by the overall 

fuzzy controller, the closed-loop system is described by 

1

2

ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ( ) ( ) ( ) ( ),

k k k

dk k

x t A h B h K h x t

A h x t B h tτ ω

 = − 

+ − +

�

 (9) 

1

2

ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ( ) ( ) ( ) ( ),

k k k

dk k

z t C h D h K h x t

C h x t D h tτ ω

 = − 

+ − +
 (10) 

where 

1 1
ˆ ( ) ( ) ( ) ( ),= +k k k k kA h A h E F t H h  

1 2
ˆ ( ) ( ) ( ) ( ),= +dk dk k k kA h A h E F t H h  

1 1 1 3
ˆ ( ) ( ) ( ) ( ),= +k k k kB h B h E F t H h  

2 1
ˆ ( ) ( ) ( ) ( ),= +k k k k kC h C h E F t H h  

2 2
ˆ ( ) ( ) ( ) ( ),= +dk dk k k kC h C h E F t H h  

1 1 2 3
ˆ ( ) ( ) ( ) ( ).= +k k k k kD h D h E F t H h  

 

3. H∞ PERFORMANCE ANALYSIS 

 

The following theorem provides a condition for 
∞

H  

performance analysis of the open-loop system. 

Theorem 1: Consider the fuzzy Markovian jump 

time-delay system in (6), (7) with ( ) 0.u t ≡  Then, given 

a scalar 0,γ >  for any (0, ]∈τ τ  the fuzzy Markovian 

jump time-delay system in (6), (7) with u(t) ≡ 0 is robust-

ly stochastically stable and satisfies 
0

( ) ( )T
E z t z t dt

∞ 
  ∫  

2

0
( ) ( )T
t t dtγ ω ω

∞

≤ ∫  for any 
2

( ) [0, )∈ ∞t Lω  under the 

condition ( ) 0=x t  for all 0,<t  if there exist scalars 

0,>kα  0>kβ  and matrices 0,>Q  0,>Z  0,>kP  

,kY  ,kW  
,

,ij kU  1 ,i j s≤ < ≤  ,∈k T  such that for all 

,k T∈  the following LMIs hold:  

, , , ,

, 1 ,
T
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( )

( )

3 , 2 , 2 , 2 , 2 ,

2
2 , 2 , 2 , 2 ,

2
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τ
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N
T T
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l

P A A P P Q Y Yπ

=
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2 , , .Ψ = + −
T T

i k di k k k kA P Y W  

Proof: By (11) and (12), we have that, for each 
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Therefore, for each ,∈k T  
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Applying the Schur complements to (14), we have 
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Hence, for each ,∈k T  

0.Θ <k  

Then by applying the Schur complements to this 

inequality, we can see that there exists a scalar 0>σ  

such that, for any τ  satisfying 0 ,< ≤τ τ  
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h A h ZA h C h C h

h A h ZA h C h C h

Y

h

τ

τ

τ

τ

 Ψ + +

Ψ + +

Λ = 

 Γ

 

 
3

2 3

ˆ ( )
,

ˆ ˆ( ) 0 ( )

k

k

k k

h

W Z

h h

τ τ

∗ ∗ ∗ 


Ψ ∗ ∗ 
− ∗

Γ Γ 
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1

1

2

3

ˆ ˆˆ ( ) ( ) ( ) ,

ˆˆ ( ) ( ) ,

ˆ ˆˆ ( ) ( ) ( )

ˆ ˆ( ) ( ),

N
T T

k k k k k kl l k k

l

T T

k dk k k k

T T

k k k dk dk

T

dk dk

h P A h A h P P Q Y Y

h A h P Y W

h W W Q A h ZA h

C h C h

π

τ

=

Ψ = + + + − −

Ψ = + −

Ψ = + − +

+

∑

 

1 2 2 2

2 2 2

2

3 2 2 2 2

ˆ ˆˆ ( ) ( ) ( ) ( ) ( ) ( ),

ˆ ˆˆ ( ) ( ) ( ) ( ) ( ),

ˆ ( ) ( ) ( ) ( ) ( ).

T T T

k k k k k k k

T T

k k dk k dk

T T

k k k k k

h B h P B h ZA h D h C h

h B h ZA h D h C h

h B h ZB h I D h D h

τ

τ

τ γ

Γ = + +

Γ = +

Γ = − +

 

Next, denote ( ),= +tx x t θ  2 0,− ≤ ≤τ θ  and choose 

a mode-dependent Lyapunov–Krasovskii functional 

candidate, for each ,∈k T  as 

( )
3

1

, ( ) ( , ),
=

= =∑t i t

i

V x r t k V x k  (22) 

where 

1

0

2

3

( , ) ( ) ( ),

( , ) ( ) ( ) ,

( , ) ( ) ( ) .

T

t k

t T

t
t

t T

t
t

V x k x t P x t

V x k x Zx d d

V x k x Qx d

τ β

τ

α α α β

α α α

− +

−

=

=

=

∫ ∫

∫

� �  

The weak infinitesimal operator �  of the Markov 

process {( ( ), ( )), 0}x t r t t ≥  acting on the Lyapunov 

functional candidate is given by 

{ }
0

( , ( ))

1
lim [ ( , ( )) | , ( )] ( , ( )) .

t

t t t

V x r t

E V x r t x r t V x r t
+∆

∆→

= + ∆ −

∆

�

 

Then, we have that, when ,t τ>  

1

1

2

( , )

ˆ ˆ( ) ( ) ( ) ( )

ˆ2 ( ) ( ) ( ) 2 ( ) ( )

( ) 2 ( ) ( )

2 ( ) ( )

2 ( ) [ ( ) ( )]

2 ( ) [ ( ) ( )],

t

N
T T

k k k k kl l

l

T T

k k k dk

tT T

k
t

tT T

k
t

T T

k

T T

k

V x k

x t P A h A h P P x t

x t P B h t x t P A h

x t x t W x d

x t Y x d

x t Y x t x t

x t W x t x t

τ

τ

π

ω

τ τ α α

α α

τ

τ τ

=

−

−

 
= + + 

  

+ +

× − + −

+

− − −

− − − −

∑

∫

∫

�

�

�

 (23) 

2

2

2 2

( , )

ˆ ˆ[ ( ) ( ) ( ) ( )]

ˆ ˆ[ ( ) ( ) ( ) ( )]

( ) ( ) 2 ( ) ( )

[ ( ) ( ) ( ) ( )]

( ) ( ) ( ) ( ),

t

T

k dk

k dk

t T T T

k
t

k dk

T T

k k

V x k

A h x t A h x t Z

A h x t A h x t

x Zx d t B h Z

A h x t A h x t

t B h ZB h t

τ

τ τ

τ

α α α τω

τ

τω ω

−

= + −

× + −

− +

× + −

+

∫

�

� �
 (24) 

3

1
( , ) [ ( ) ( ) ( ) ( )] .

t
T T

t
t

V x k x t Qx t x t Qx t d
τ

τ τ α

τ −

= − − −∫�

 (25) 

Then it follows from (22)-(25) that 

2( ) ( ) ( ) ( ) ( , ( ))

1
( , ) ( ) ( , ) ,

T T

t

t
T

k
t

z t z t t t V x r t

t t d
τ

γ ω ω

ε α τ ε α α
τ −

− +

= Λ∫

�

 (26) 

where 

( , ) [ ( ) ( ) ( ) ( )] .T T T T
t x t x t x tε α τ α ω= − �  

It follows from (21) and (26) that 

2( ) ( ) ( ) ( ) ( , ( ))

( ) ( ).

T T

t

T

z t z t t t V x r t

x t x t

γ ω ω

σ

− +

≤ −

�
 (27) 

When ( ) 0,=tω  it can be deduced from (27) that 

( , ( )) ( ) ( ).≤ −�
T

t
V x r t x t x tσ  

By this and the result in [3], it is easy to see 

0
0

lim ,( , , )
T

T

T

E x t r dtφ
→∞

  < ∞
  ∫  

where 
0

( , , )x t rφ  represents the trajectory of the state 

( )x t  at time t. Therefore, the uncertain fuzzy Markovian 

jump system with time delays is robustly stochastically 

stable. 

Now, by using Dynkin’s formula, we have that under 

the condition ( ) 0=x t  for all 0,<t  

0
[ ( , ( ))] .( , ( ))

T

T t
E V x r T E V x r t dt

 =
  ∫ �  (28) 

Define 

{ }2

0
[ ( ) ( ) ( ) ( )] .

T
T T

T
J E z t z t t t dtγ ω ω= −∫  

Then, from (27), (28) we can deduce 

2

0

0

{ [ ( ) ( ) ( ) ( )

( , ( ))]} [ ( , ( ))]

1
[ ( , ) ( ) ( , ) ] 0,

T
T T

T

t T

T t
T

k
t

J E z t z t t t

V x r t E V x r T

E t t d dt
τ

γ ω ω

ε α τ ε α α
τ −

= −

+ −

≤ Λ <

∫

∫ ∫

�  

which implies 

2

00
( ) ( ) .( ) ( )

TT
E t t dtz t z t dt γ ω ω

∞∞  <
   ∫∫  

This completes the proof. � 

Remark 1: Theorem 1 provides a condition guaran-

teeing an H∞ performance level of a class of fuzzy 

Markovian jump systems in terms of LMIs. It should be 

pointed out that Theorem 1 can be easily extended to the 

time-varying delay case by using the method in the 

derivation of Theorem 1. 

Remark 2: In the proof of Theorem 1, the weak 

infinitesimal 
1
( , )�

t
V x k  remains unaffected when the 
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slack matrix variables Yk and Wk are introduced. 

Moreover, the slack matrix variables Uij,k are also 

introduced in order to obtain the relaxed LMIs. It is 

worth pointing out that these matrix variables are not 

required to be symmetric, which is different from [4]. 

Therefore, a more flexible LMI condition in (11), (12) is 

obtained and the potential conservatism is thus reduced. 

 

4. ROBUST H∞ CONTROL 

 

We are now in the position to present the main result 

on robust H∞ control for fuzzy Markovian jump systems 

with time delays. 

Theorem 2: Given a scalar 0.γ >  Then, for any 

(0, ],τ τ∈  the fuzzy Markovian jump system with time 

delay in (6), (7) is robustly stochastically stable and 

satisfies 2

0 0
( ) ( ) ( ) ( )T T

E z t z t dt t t dtγ ω ω
∞ ∞  ≤

  ∫ ∫  for 

any nonzero ( )tω  
2
[0, )∈ ∞L  under the condition 

( ) 0=x t  for all t < 0 via the fuzzy controller (8), if there 

exist scalars 0>kα  and matrices 0,R >  0,T >  kX  

>0, 
,

,i kM ,∈i S ,k T∈  and 
,

,ij kN 1 ,i j s≤ < ≤  ∈k T  

such that for each ∈k T  the following LMIs hold: 

, , , ,

, 1 ,Ξ +Ξ < + ≤ < ≤
T

ij k ji k ij k ij kN N i j s  (29) 

11,

12, 22,

1 , 2 , ,

0,

Ξ ∗ ∗ 
 

Ξ ∗ 
< 

 
 Ξ 

�

�

� � � �

�

k

T

k k

T T

s k s k ss k

N

N N

 (30) 

where 

,

,

,

1 ,

,

, 2 ,

, 1 , , ,

, 1 , , ,

*
,

3

0 0

0

0

0 0

T
ij k k k k

ij k

ij k k

ij k kk k

T
di k

T
ij k i k

i k k i k j k di k

i k k i k j k di k

T
k

L L

H I

X

RA R

T T T

B

A X B M A R

C X D M C R

α

α

π

τ τ τ

τ τ τ

 Ω +
 Ξ =

−  

 ϒ + ∗ ∗

 − ∗


− −
Ω =

 −


−


Γ

� � �

�

�

�

 

 2

2 ,

2 ,

,

0

0 0 0

i k

i k

k

I

B T

D I

γ

τ τ

∗ ∗ ∗ ∗ 
∗ ∗ ∗ ∗ 
∗ ∗ ∗ ∗


− ∗ ∗ ∗ 
− ∗ ∗ 
− ∗


−Φ 

 

1 , , , 1 , , , 1 , 2 ,
T T T

ij k i k k k i k i k j k j k i k kA X X A B M M B Xϒ = + − − −�

1 1 2
0 0 0 0 , =

 
�

T
T T T

k k k kL E E E  

, 1 , 3 , , 2 ,[ 0 0 0 0 0],ij k i k k i k j k i kH H X H M H R= −
�  

1 , 1 , 1

,

k k k k k k k k k

kN k k

X X X

X X

π π π

π

− +
Γ = 




�

�

 

1 1 1
( ).k k k Ndiag X X X X R

− +
Φ = � �  

In this case, desired state-feedback gains can be chosen 

as, for each ,k T∈  

1
, , .i k i k kK M X

−

=  

Proof: Following similar manipulations as in (22)-

(26), we can obtain that the uncertain closed-loop system 

(9), (10) is stochastically stable and satisfies 

2

0 0
( ) ( ) ( ) ( )T T

E z t z t dt t t dtλ ω ω
∞ ∞  ≤

  ∫ ∫  for any nonzero 

2
( ) [0, )∈ ∞t Lω  under the condition ( ) 0=x t  for all 

0,t <  if for each ∈k T  and all ( )kF t  satisfying 

( ) ( ) ≤T

k kF t F t I  the following matrix inequality holds: 

( )Λ =�
K
τ  

1

2 3

1 2

( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

 Ψ + + ∗

Ψ + + Ψ


 Γ Γ

� � � ��

� �� �

� �

T T

K k k k k

T T

K dk k dk k k

k k

k k

h A h ZA h C h C h

h A h ZA h C h C h h

Y W

τ

τ

τ τ

 

 

3

0

0

∗ ∗ 
∗ ∗  <
− ∗


Γ 
�

k

Zτ
, 

where 

1
ˆ ˆ( ) ( ) ( ) ( ),k k k kA h A h B h K h= −

�  

1

1

( ) ( ) ( ) ,
N

T T

k k k k k kl l k k

l

h P A h A h P P Q Y Yπ

=

Ψ = + + + − −∑� ��  

2
ˆ( ) ( ) ,T T

k dk k k kh A h P Y WΨ = + −�  

3
ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ),

T T

k k k dk dk

T

dk dk

h W W Q A h ZA h

C h C h

τΨ = + − +

+

�

1 2 2 2
( ) ( ) ( ) ( ) ( ),T T T

k k k k k k kB h P B h ZA h D h C hτΓ = + +� ��  

2 2 2
ˆ ˆ( ) ( ) ( ) ( ),T T

k k dk k dkB h ZA h D h C hτΓ = +�  

2

3 2 2 2 2
( ) ( ) ( ) ( ),T T

k k k k kB h ZB h I D h D hτ γΓ = − +�  

1
ˆ ˆ( ) ( ) ( ) ( ).k k k kC h C h D h K h= −

�  

By the Schur complements, we obtain that ( ) 0,k τΛ <�  

,k T∈  for any τ  satisfying 0 ,τ τ< ≤  if the follow-

ing matrix inequality holds: 
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1

2

2

2

2

2

( ) * * * * *

( ) * * * *

* * *

( ) 0 0 * *

ˆ ( ) *( ) ( ) 0

( ) 0ˆ( ) ( ) 0

k

T

k k k

k k

T

k k

kk dk

k
k dk

h

h W W Q

Y W Z

B h P I

ZB h ZZA h ZA h

D h IC h C h

τ τ τ

γ

τ ττ τ

 Ψ 
 Ψ + − 
 − 
 − 
 − 
 − 

�

�

�

�

 

 < 0. (31) 

Now let 

1 1
, ,

1

, , ,

, , .

k k i k i k k

k k k

X P M K X R Q

T Z Y P W Q

− −

−

= = =

= = = −

 

By pre- and post-multiplying (31) by ( , , ,kdiag X R T  

), ,I T I  and its transpose, respectively, and applying the 

Schur complements, we obtain that (31) holds if the 

following matrix inequality holds for each ,k T∈  

( ) ( ) ( ) ( ) ( ) 0,Ω + + <� � � � �T T T

k k k k k k kh L F t H h H h F t L  (32) 

where 

1 3 2

1 1

1

( ) [ ( ) ( ) ( ) ( )

0 0 0 0 0],

( ) ( ) ( ) ( ) ( )

( ) ( ) 2 ,

k k k k k k

T

k k k k k k k

T T

k k k

H h H h X H h M h H h R

h A h X X A h B h M h

M h B h X

= −

ϒ = + −

− −

�

�
 

1

2

1

1

( ) *

( ) 3

( ) ( ) 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

k kk k

T

dk k

T
k k

k k k k dk

k k k k dk

T

k

h X

RA h R X R

T T

h B h

A h X B h M h A h R

C h X D h M h C h R

π

τ τ

τ τ τ

 ϒ +


+ + −
 −
Ω =


−
 −
 Γ

�

�  

 2

2

2

* * * * *

* * * * *

* * * *

0.0 * * *

0 ( ) * *

0 ( ) 0 *

0 0 0 0

k

k

k

T

I

B h T

D h I

τ

γ

τ τ




−

<− 

− 
−


−Φ 

 

By using the similar manipulations as in (18), we obtain 

that (32) holds for all ( )kF t  satisfying ( ) ( ) ,T

k kF t F t I≤  

if the following matrix inequality holds for each ∈k T  

with scalars 0,kα >  

1( ) ( ) ( ) 0.−

Ω + + <� � � � �T T

k k k k k k kh L L H h H hα α  (33) 

Then by the Schur complements, we have that (33) holds 

for each ,k T∈  if the following matrix inequality holds, 

,

1 1

( ( )) ( ( )) 0.
s s

i j ij k

i j

h s t h s t

= =

Ξ <∑∑  (34) 

By using the relaxed technique in (13), for each ,k T∈  

we have that (34) holds for any τ  satisfying 0 ,τ τ< ≤  

if the LMIs in (29), (30) hold. Therefore, we have 

( ) 0.Λ <�
k τ  This completes the proof. � 

 

5. ILLUSTRATIVE EXAMPLE 

 

In this section, we apply the above design method to 

robust H∞ control of a computer simulated single link 

robot arm in [12]. We consider the following model of 

the single robot arm 

1 2
( ) ( ),=�x t x t  (35) 

2 1 2

( ) 1
( ) sin( ( )) ( ) ( )

0.1 ( ),

k

k k k

M gl D t
x t x t x t u t

J J J

tω

= − − +

+

�

 (36) 

1
( ) ( ) 0.2 ( ), 1, 2,3,= + =z t x t t kω  (37) 

where 
1
( ),x t  

2
( ),x t  ( ),u t  and ( )z t  are the angle of 

the arm, the angular velocity, the control input, and the 

control output, respectively; ( )tω  is the exogenous 

disturbance input with 
2

( ) [0, ).t Lω ∈ ∞  The mass kM  

and the inertia kJ  have three modes: 
1 1

1,M J= =  

2 2
5,M J= =  

3 3
10.M J= =  The transition rate of the 

operation modes is given by 

0.3 0.25 0.05

0.1 0.2 0.1 .

0.03 0.07 0.1

− 
 Π = − 
 − 

 

The values of the length ,l  the acceleration of gravity 

,g  and the damping ( )D t  are given as 0.5,=l  

9.81,=g  and ( ) [1.8, 2.2].D t ∈  We assume that 
2
( )x t  

is perturbed by time delays to illustrate the proposed 

design method on the Markovian nonlinear time-delay 

system. The delayed model is given as 

1 2 2
( ) ( ) (1 ) ( ),x t x t x tµ µ τ= + − −�  (38) 

2 1 2

2

( )
( ) sin( ( )) ( ) 0.1 ( )

(1 ) ( ) 1
( ) ( ),

k

k k

k k

M gl D t
x t x t x t t

J J

D t
x t u t

J J

µ
ω

µ
τ

= − − +

−
− − +

�

 (39) 

1
( ) ( ) 0.2 ( ), 1, 2,3,= + =z t x t t kω  (40) 

where [0,1]∈µ  is the constant representing the 

retarded coefficient. In this example, we assume 

0.7.µ =  Without time delays, the example was studied 

in [12] in which the proposed design method can not be 

applied to this time-delay system. 

Similar to [26], we set the fuzzy basis functions as 
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1 1

1

11 1

1

1 1

1

12 1

1

sin( ( )) ( )
, ( ) 0

( )(1 )( ( ))

1, ( ) 0,

( ) sin( ( ))
, ( ) 0

( )(1 )( ( ))

0, ( ) 0,

x t x t
x t

x th x t

x t

x t x t
x t

x th x t

x t

ρ

ρ

ρ

−
≠

−= 
 ≠

−
≠

−= 
 ≠

 

where 2
10 / .ρ π

−

=  Then, we represent the Markovian 

jump nonlinear time-delay system in (38)-(40) as the 

following T-S model, for 1,2,3,=k  

Plant Rule 1: IF 
1
( )x t  is 

1
,

i
µ  THEN 

 

, , , ,

1 , 1 , 2

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ),

( ) ( ) ( ),

i k i k di k di k

i k i k i

i i

x t A A t x t A A t x t

B B t u t B t

z t C x t D t

τ

ω

ω

   = + ∆ + + ∆ −   

 + + ∆ + 

= +

�

 

where 
11

µ  is about 0 rad, 
21

µ  is about π  rad or −π  

rad and  

1
1,1

2

( ) 0
( ) , ,

( ) 2

   
= =   − −  

x t
x t A

x t gl

µ

µ
 

1,2 1,3

0 0
, ,

0.4 0.2

   
= =   − − − −   

A A
gl gl

µ µ

µ µ
 

2,1 2,2

0 0
, ,

2 0.4

   
= =   − − − −   

A A
gl gl

µ µ

ρ µ ρ µ
 

2,1 2,2

0 0
, ,

2 0.4

   
= =   − − − −   

A A
gl gl

µ µ

ρ µ ρ µ
 

2,3

0
,

0.2

 
=  − − 

A
gl

µ

ρ µ
 

1,1 2,1

0 1
,

0 2(1 )

− 
= =  − − 

d dA A
µ

µ
 

1,2 2,2

0 1
,

0 0.4(1 )

− 
= =  − − 

d dA A
µ

µ
 

1,3 2,3

0 1
,

0 0.2(1 )

− 
= =  − − 

d dA A
µ

µ
 

11,1 12,1 11,2 12,2

0 0
, ,

1 0.2

   
= = = =   

   
B B B B  

11,3 12,3 21 22

0 0
, ,

0.1 0.1

   
= = = =   

   
B B B B  

1 2 21 22
[1 0], 0.2.= = = =C C D D  

The uncertain parameters 
,

( ),i kA t∆  
,

( ),di kA t∆  and 

1 , ( )∆ i kB t  satisfy (5) with 

1 1 ,

0 0 0 0
, ,

0 0.2 0

   
= =   
   

k i kE H
µ

 

2 , 3

0 0 0
, .

0 1 0

   
= =   −   

i kH H
µ

 

The purpose of this example is to develop a fuzzy 

controller such that the resulting closed-loop system is 

robustly stochastically stable and satisfies an 
∞

H  

performance level .γ  Based on Theorem 2, we obtain 

that, when the prescribed γ  is 0.3, the maximum 

allowable size of the delay τ  for the above robust 
∞

H  

control problem is 1.2. Then by using the Matlab LMI 

Control Toolbox to solve the LMIs in (29), (30) we 

obtain the parameters of the fuzzy controller as follows: 

[ ]1,1 1.8873 1.8151 ,= −K  

[ ]1,2 9.2868 15.2084 ,= −K  

[ ]1,3 18.0308 32.2445 ,= −K  

[ ]2,1 3.0021 1.8151 ,=K  

[ ]2,2 15.1601 15.2084 ,=K  

[ ]2,3 30.8630 32.2445 .=K  

Now, we set the initial conditions as 
0

1=r  and 

( ) [0.5 , 2] ,T
tφ π= −  [ 1.2,0].t∈ −  We further assume that 

( ) 2 0.2sin( ),D t t= +  
1

( ) , 0.
0.5 1.2

= ≥

+

t t

t

ω  

We now apply the designed fuzzy controller in the form 

of (8) to the Markovian nonlinear system in (38)-(40). 

The simulation is shown in Fig. 1. The result shows that 

the designed fuzzy controller can effectively stabilize the 

uncertain Markovian jump nonlinear time-delay system 

in (38)-(40) with an 
∞

H  performance level .γ  

Fig. 1. Operation mode and control results of the closed-

loop system. 
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6. CONCLUSION 

 

The problem of robust H∞ control for a class of fuzzy 

Markovian jump systems with time delays and norm-

bounded parameter uncertainties has been investigated. A 

delay-dependent sufficient condition for the solvability 

of the problem has been obtained in terms of LMIs. An 

illustrate example has shown the effectiveness of the 

proposed method. 
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