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Central Pattern Generator Parameter Search for a Biped Walking Robot 
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Abstract: A parameter search for a Central Pattern Generator (CPG) for biped walking is difficult 

because there is no methodology to set the parameters and the search space is broad. These 

characteristics of the parameter search result in numerous fitness evaluations. In this paper, 

nonparametric estimation based Particle Swarm Optimization (NEPSO) is suggested to effectively 

search the parameters of CPG. The NEPSO uses a concept experience repository to store a previous 

position and the fitness of particles in a PSO and estimated best position to accelerate a convergence 

speed. The proposed method is compared with PSO variants in numerical experiments and is tested in 

a three dimensional dynamic simulator for bipedal walking. The NEPSO effectively finds CPG 

parameters that produce a gait of a biped robot. Moreover, NEPSO has a fast convergence property 

which reduces the evaluation of fitness in a real environment. 
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1. INTRODUCTION 

 

In the past two decades, there has been growing 

interest in a biped robot because it has unique advantages 

compared to other types of robots. The first advantage of 

a biped robot arises from its mobility. Biped robots can 

reach places that are inaccessible to wheeled robots, such 

as over rough terrain, and are a better fit for home and 

working environments designed for humans. A Second 

advantage of a biped robot arises from its human-like 

shape, which is more natural to humans than other types 

of robots. As such, biped type robots could be used in the 

future as personal assistants, home assistants, and even 

as entertainment devices [1].  

A major research issue related to biped robots is that 

of stable walking. One successful realization of a 

walking biped robot is based on ZMP [2-4]. It is a well 

defined methodology that guarantees a robot’s stability, 

is easy to implement and can be applied to dynamic 

walking. However, it requires precise models of the 

robot and the environment it is designed to perfom in, as 

well as an extra online control to deal with external 

perturbation.  

In contrast to a model based bipedal walking robot, a 

biological inspiration based biped walking robot is 

matter of concern these days. Animals can adapt their 

locomotion according to specific environments. The 

locomotion of animals is generated by the Central 

Pattern Generator (CPG). A mathematical model of the 

CPG can be applied to generate target torque or joint 

angle in a robot system.  

The CPG model has been widely used in robotic 

systems such as the snake robot [7], biped locomotion 

[8-15], quadruped locomotion [16], and arm movement 

[17,18] because the oscillators have desirable properties 

such as adaptation to the environment through 

entrainment. 

CPG based bipedal walking does not require 

information for a robot model in an environment and can 

smoothly change a gait with little computation burden. 

However, there is no methodology and there are too 

many parameters to set for CPG. Therefore, evolutionary 

computation methods such as Genetic Algorithms (GAs) 

[11-13], multi-objective Genetic Algorithms [14], and 

Genetic Programming (GP) [15] are often used to 

optimize the parameters. 

However, when the global optimization method is 

applied to find CPG parameters, the method evaluates 

the fitness of application to a robot and numerous fitness 

evaluations are needed. As such, convergence is an 

important factor in the selection of a method for 

preventing a robot from numerous iterations of the 

method.  

Particle Swarm Optimization (PSO) is a population 

based stochastic optimization method proposed by 

Kennedy and Eberhart in 1995 and is inspired by social 

behavior such as flocks of birds or schools of fish [19]. 

The main advantages of PSO are simple to understand, 

easy to implement and quick in convergence compared 

to other global optimization methods such as Genetic 

Algorithms (GA) and Simulated Annealing (SA) [20]. 

PSO has been successfully applied in continuous nonlin-
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ear function optimization [19], reactive power and 

voltage control [21], parameter tuning of a controller for 

a power system [22], PID controller design [23], and 

feeder reconfiguration [24]. 

In this paper, nonparametric estimation based PSO 

(NEPSO) is proposed to search for the parameters of 

CPG needed for bipedal walking. The method gathers 

position value and fitness of the particles scattered to 

each particle and stores it to an experience repository. 

Consequently, information stored in the experience 

repository is used for selecting an estimated best position 

to accelerate the convergence of each particle. The 

nonparametric estimation method is used to estimate 

fitness of randomly selected positions in a search space. 

The NEPSO is suitable for an application requiring a 

long fitness evaluation time in total computation time.  

This paper is organized as follows. In Section 2, a 

model of a biped robot, the property of the CPG and the 

arrangement of the CPG for the robot are described. In 

Section 3, various PSO methods are described. In 

Section 4, our proposed nonparametric estimation based 

PSO is introduced. The results of numerical experiments 

and the CPG parameter search in a 3D dynamic 

simulator are shown in Section 5, and conclusions and 

further works are given in Section 6. 

 

2. MODEL OF THE BIPED ROBOT AND 

CENTRAL PATTERN GENERATOR 

 

In this section, a model of a biped robot and the 

Central Pattern Generator (CPG) used in this paper are 

introduced. An arrangement of CPGs for the biped robot 

is also presented. 

 

2.1. Model of biped robot 

The biped robot considered in this paper has only a 

lower body and consists of a left leg, a right leg and a 

waist. Each leg has five degrees of freedom (DOF) as 

shown in Fig. 1. Two DOFs, one DOF and two DOFs are 

allocated for each hip joint, knee joint and ankle joint 

respectively. 

The parameters 1
,l  

2
,l  

3
l  and 

4
l  denote the 

length of links; and ff  and bf  denote the length of a 

sole; and 
1s

f  and 
2s

f  denote the width of a sole. To 

simplify the dynamic parameter of the robot, each of the 

robot’s links is considered a point mass (i.e., the total 

mass of each link is located at its center) and each link 

has m1, m2, m2 and m4 respectively. Those parameters are 

summarized in Table 1 and are used for making a robot 

simulator. 
 

2.2. Central pattern generator 

An animal can adapt its locomotion according to a 

specific environment. The locomotion of the animal is 

generated by the Central Pattern Generator (CPG). 

Mathematical models of a CPG are suggested by many 

researchers and the model proposed by Matsuoka is one 

of the more popular [6]. The neural oscillator model is 

used for modeling a CPG that can generate a desired 

joint angle reference. Every joint of the robot is driven 

by a neural oscillator that consists of two simulated 

neurons in mutual inhibition as shown in Fig. 2. 

The state variables are determined by (1)- (5). 
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1
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where 
1
,x  

2
,x  

3
,x  

4
x  are internal states, 

1
,τ  

2
,τ  

,c  ,β  ,ω  jh  are constant parameters and jg  and 

Table 1. The parameters of each rigid body. 

Parameters Value 

l1 45.4mm 

l1 116.1mm 

l3 99.7mm 

l4 66.75mm 

lf 51.23mm 

lb 42.03mm 

ls1 40.4mm 

ls2 52.4mm 

m1 0.13kg 

m2 0.42kg 

m3 0.75kg 

m4 1.36kg 

 

 

Fig. 1. The model of the biped robot. 

 

 

Fig. 2. A neural oscillator model. 
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y  are input and output signals, respectively. Time 

constant 
1
τ  and 

2
τ  determine the output shape and its 

frequency, and tonic excitation c  modulates the 

amplitude of output. The input jg  is scaled by a weight 

jh  and applied to the oscillator. A frequency of the CPG 

is changed according to parameter 
1
τ  and 

2
τ  and an 

amplitude of the CPG is changed according to parameter 

.c  However, various motions with just two properties of 

the CPG are not generated. A phase difference of the 

CPG is realized with a network of neural oscillators [18]. 

The network of neural oscillators is shown in Fig. 3 and 

the CPG equation (1) and (2) are changed to (6) and (7) 

respectively. 
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2
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(1 )[ ] ) ,

c a

c b

x x v x h x

h x c

τ β ω γ
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 (7) 

A phase of the CPG is changed according to parameter 
.γ  

 

2.3. CPG arrangement for biped robot 

Based on the three kinds of properties of the CPG in 

the previous section, the CPGs are arranged for the biped 

robot model as shown in Fig. 4 and their parameters are 

summarized in Tables 2 and 3. 

Both legs have the same parameter value symmetri-

cally. The target values of the joints are determined by 

the output of the CPGs. The output of the CPGs are used 

as target angles for each joint motor to make the robot 

walk. A control torque of each joint is calculated by the 

difference between target angle and the current angle of 

the motor as shown in (8).  

( ) ,p t vk kτ θ θ θ= − +
�  (8) 

where 
p

k  and 
v
k  are position and velocity gains, 

respectively, 
t

θ  is target angle calculated from (5), and 

θ  and θ�  are the current angle and current angular 

velocity of each joint. 

 

3. PARTICLE SWARM OPTIMIZATION 

 

3.1. Particle swarm optimization 

Particle Swarm Optimization uses the concept called 

particle and swarm. The particles correspond to an 

animal, bird, and insect in a herd, flock, and swarm 

respectively. Each particle has its own position and 

velocity and is randomly initialized in a search space.  

When the particle number in the swarm is N and each 

particle is a D dimensional vector at an iteration t, the 

positions and the velocity of each particle is represented 

 

Fig. 3. A network of neural oscillator. 

 

 

 

Fig. 4. The CPG arrangement for the biped robot. 

Table 2. The parameters of CPG. 

Parts Parameters Range 

1τ  0.02 ~ 0.8 

c 0.0 ~3/2π Center 

u01 0.0~1.0 

c 0.0~3/10 π 

left u01 -1.0~1.0 Hip 

right u01 -1.0~1.0 

c 0.0 ~3/2π 

left u01 -1.0~1.0 

right u01 -1.0~1.0 
Hip2 

offset u01 -1/2π ~1/2π 

c 0.0 ~1/2π 

left u01 -1.0~1.0 

right u01 -1.0~1.0 
Knee 

offset u01 -1/2π~0.0 

c 0.0 ~3/10π 

left u01 -1.0~1.0 Ankle1 

right u01 -1.0~1.0 

c 0.0 ~3/2π 

left u01 -1.0~1.0 

right u01 -1.0~1.0 
Ankle2 

offset u01 -1/2π ~1/2π 

 

Table 3. The parameters of CPG for phase shift. 

Parameters Range 

Center to left hip1 phase γ 

Center to right hip1 phase γ 

Hip1 to hip2 phase phase γ 

Hip1 to knee phase phase γ 

Hip1 to ankle1 phase phase γ 

Hip1 to ankle2 phase phase γ 

0.0~1.0 

0.0~1.0 

0.0~1.0 

0.0~1.0 

0.0~1.0 

0.0~1.0 

 



Jeong-Jung Kim, Jun-Woo Lee, and Ju-Jang Lee 

 

 

450 

as (9) and (10), respectively. 
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where ( )
n
x t
�

 and ( )
n
v t
�

are represented in (11) and (12) 

respectively. 
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As an iteration progresses, the particles cooperate and 

finally reach a solution by preserving and sharing their 

previous best positions. The particles store their best 

experience during the optimization process and the 

velocity and the position of each particle is updated by 

(13) and (14), respectively. 

1

2
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where ( )V t
�

 is a velocity and ( )X t
�

 is a position of the 

particle at t iteration. bestp
�

 is a previous best position 

and bestl
�

 is a local best position of each particle 

obtained so far. 
1

ϕ  and 
2

ϕ  are determined as 

1 1
(0, )rand cϕ =  and 

2 2
(0, )rand cϕ =  and 

1
c  is a 

cognition learning factor and 
2
c  is a social learning 

factor. The position change procedure of a particle in the 

PSO is shown in Fig. 5. 

 

3.2. Particle swarm optimization variants 

The original velocity change equation of the PSO (13) 

is extended to an inertia weighted version and bestg
�

 

version which consequently are (15) and (16), respec-

tively. 
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where α  is the inertia coefficient and bestg
�

 is the best 

position in the whole swarm. The PSO variant based on 

(15) is introduced to balance the global search and local 

search and PSO variant based on (16) is introduced to 

accelerate the converge speed [25,26]. 

Krohling [27] suggested the velocity equation based 

on the Gausssian distribution random number generator 

in PSO and known as the Gaussian Swarm. It does not 

require a PSO cognition learning factor c1 and social 

learning factor c2 and converges faster than canonical 

PSO. The velocity change equation of the Gaussian 

Swarm is (17)  

( 1) | | ( ( ))

| | ( ( )),

best

best

V t randn p X t

randn g X t

+ = −

+ −

� �

�

�

�

 (17) 

where | |randn  is positive random numbers generated 

according to the absolute value of the Gaussian 

probability distribution, i.e., [ (0,1)].abs N  

 

4. NONPARAMETRIC ESTIMATION BASED 

PARTICLE SWARM OPTIMIZATION 

 

In this section, nonparametric estimation based 

Particle Swarm Optimization (NEPSO) is introduced. 

The method is based on an experience repository and an 

estimated best position to realize fast convergence. 

 

4.1. Experience repository 

In PSO, particles cooperate and finally reach a solution 

by preserving and sharing their previous best positions. 

In conventional PSO, only the best experience of each 

particlee and the global experience of the swarm is used 

to update the velocity of each particle. There remains a 

chance to use other information to improve the velocity 

update equation. In this paper we suggest a method that 

uses the more prior and wide information of the particles 

than the canonical PSO. PSO is inspired by social 

behavior, but information in the canonical PSO is 

scattered to each particle. The place where the 

experience of particles is stored is defined and named the 

experience repository.  

In the experience repository, not only the experience 

of whole particles but also experiences of particles at 

prior iterations are included. The positions of particles 

and their fitness values are used as information for each 

particle. This information is added to the experience 

repository until the number of particles in the experience 

repository reaches M, which is the size of the experience 

repository. The large size of an experience repository can 

contain more information about the particles. An 

example of the experience repository is shown in Fig. 6. 

In Fig. 6 the size of the experience repository M is 100. 

If the size of the swarm in the PSO is 10, the repository 

can contain the experience of particles during 10 

iterations.  

 

Fig. 5. The position change procedure of a particle in

PSO. 
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4.2. Estimated best position 

The information stored in the repository is used to 

update the velocity of each particle. A modification of 

the original velocity (18) is suggested to improve the 

convergence of the optimization process of the PSO. 

Equation (18) is used until the current size of an 

experience repository reaches the maximum size of the 

experience repository M. 

( 1) | | ( ( ))

| | ( ( )),

best

best

V t randn g X t

randn e X t

+ = −

+ −

� �

�

�

�

 (18) 

where | |randn  is positive random numbers generated 

according to the absolute value of the Gaussian 

probability distribution and beste

�

 is an estimated best 

position. Suggested equation (18) is based on the 

Gaussian Swarm version of the velocity update equation 

(17) and the beste

�

 term is added to it. beste

�

 represents 

the estimated best position in the experience repository. 

The estimated best position is selected from the 

experience repository. A procedure for the selection of 

the estimated best position in the experience repository is 

shown in Fig. 7. First, K number of positions within the 

search space range are sampled as in (19) and their 

fitness values are estimated as in (20). Finally, the best 

position is selected among the sampled positions that 

have the best estimated fitness value as in (21).  

' ' ' '

1 2
{ , ,..., },Kx x x x=

�

 (19) 

' ' ' '

1 2
( ) { ( ), ( ),..., ( )},k Kg x g x g x g x=

�

 (20) 

'

* '' argmin ( ), or
k

kx
x g x=

�

 

'

* '' argmax ( ).
k

kx
x g x=

�

 (21) 

A nonparametric estimation method is used to estimate 

fitness. The nonparametric estimation uses less assump-

tion than a parametric estimation. The nonparametric 

estimation is divided into nonparametric density 

estimation and nonparametric regression. The latter is 

used in NEPSO to estimate the fitness of the position. In 

parametric regression, we assume that close x  have 

close ( )g x  values and we find the neighborhood of x  

and average the r  values in the neighborhood to 

calculate ˆ( )g x  [28]. There are many kinds of methods 

for defining the neighborhood and averaging in the 

neighborhood. In the NEPSO, a kernel smooth is used to 

define the neighborhood and average in the neighbor 

because it produces smooth curves compared to the mean 

smoother and the running line smoother. The kernel 

smoother is defined as (22) and gives less weight to 

further points.  

( )

ˆ( ) ,

( )

tM
t

t

tM

t

x x
H r

h
g x

x x
H

h

−

=

−

∑

∑

 (22) 

where 
21

( ) exp[ ].
22

u
H u

π

= −  An example of a kernel 

smoother is shown in Fig. 8. Based on 12 data points, the 

remaining range is estimated by nonparametric 

estimation. An example of selecting an estimated best 

position is shown in Fig. 9. Cross dots represent the 

experience of the particle in the repository and the round 

dots are sampled positions of particles and their 

estimated fitness. Among the K sampled positions, beste

�

 

is selected that has the best estimated fitness value.  

 

4.3. Effect of sampling and estimating fitness 

In NEPSO, K positions are sampled and their fitness 

estimated. The estimated best value is not an exact 

fitness value, but represents a tendency of the 

neighborhood. The neighborhood with a good fitness 

value produces a good estimated fitness value, and a bad 

fitness value produces a bad estimated fitness value. As 

such, the selected best position reflects the tendency of 

the neighborhood and accelerates convergence by adding 

this term to the Gaussian Swarm velocity equation as in 

(18). 

 

Fig. 6. The experience repository. 

 

Fig. 7. The procedure of selecting estimated best posi-

tion. 
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The sampling and estimating of best value can be 

compared with a tournament selection in a Genetic 

Algorithm (GA). In the tournament selection, 

chromosomes are selected randomly and chosen from a 

previous generation. However, sampling from the 

experience repository in NEPSO is based on more 

previous experience and estimated value which is not an 

exact value. Estimating a fitness covers the range that 

particles have not been experienced based on the 

neighbor experience. 

 

4.4. Optimization procedure of NEPSO 

The optimization procedure of the NEPSO is 

summarized in Fig. 10. Updating velocities and position 

in the canonical PSO procedure are extended to 

‘Updating experience repository’, ‘Selecting estimated 

best position’, and ‘Updating the velocities and 

population’. The procedure is repeated until the 

maximum iteration. 

 

5. SIMULATION 

 

In this section, the proposed method is verified by 

numerical experiment and a CPG parameter search for 

the biped walking robot in a 3D dynamic simulator. The 

simulation environment is summarized in Table 4. 

 

5.1. Numerical experiments 

Four nonlinear functions are used for numerical 

experiments to verify the suggested method. The first 

function is the Rosenbrock function which has 2 

dimensional search space described by (23): 

2 2 2

1 0 1 0
( ) 100( ) (1 ) ,

[ 2.048,2.048].
i

f x x x x

x

= − + −

∈ −

�

 (23) 

The minimum value of (23) is 
1
(1) 0.f =  The second 

function is the sphere function with 3 dimensional search 

space described by (24):  

2
2

2

0

( ) ,

[ 100,100].

i

i

i

f x x

x

=

=

∈ −

∑
�

 (24) 

The minimum value of (24) is 
2
(0) 0.f =  The third 

function is the Griewank function which has 10 

dimensional search space described by: 

99
2

3

0 0

1
( ) cos( ) 1,

400 1

[ 400,400].

i

i

i i

i

x
f x x

i

x

= =

= − +

+

∈ −

∑ ∏
�

 (25) 

The minimum value of (25) is 
3
(0) 0.f =  The fourth 

function is Rastrigin function which has 10 dimensional 

search space described by:  

 

Fig. 8. A example of kernel smoother. 

 

 

Fig. 9. A example of selecting estimated best position. 

 

 

Fig. 10. The NEPSO optimization procedure. 

 

Table 4. The simulation environment. 

CPU Clock Memory Operating System 

3.2Ghz 1GB Windows XP 
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x

π
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The minimum value of (26) is 
4
(0) 0.f =  The 

canonical PSO (14), PSO variant 1 based on (15), PSO 

variant 2 based on (16), and PSO variant 3 based on (17) 

are compared with NEPSO (18) and their parameters are 

summarized in Table 5. 

A total of 50 runs for each method are conducted and 

the mean best fitness are summarized in Tables 6-9. In 

test function 1, none of the methods converged to the 

solution, but NEPSO found the nearest solution. In test 

function 2, NEPSO and PSO variant 3 found the solution. 

In test functions 3 and 4, none of the methods converged 

to the solution, but NEPSO found the nearest solution. 

NEPSO requires additional computation time compared 

to PSO variants. 

The results of the test functions are shown in Figs. 11-

14. Except for the results in Fig. 11, the convergence 

speed of NEPSO is faster than other methods. 

 

Table 8. The optimization result for Function 3. 

Method Mean best ftiness Average time

Canonical PSO 23.71134 5599.437 µs 

PSO Variant 1 1.499977 5379.258 µs 

PSO Variant 2 12.95996 5596.306 µs 

PSO Variant 3 0.2501918 5791.531 µs 

NEPSO 0.1551262 19864.479 µs

 

Table 9. The optimization result for Function 4. 

Method Mean best ftiness Average time

Canonical PSO 87.73664 5178.031 µs 

PSO Variant 1 50.39771 5233.759 µs 

PSO Variant 2 19.4308 5609.016 µs 

PSO Variant 3 0.73671 6163.525 µs 

NEPSO 0.15512 9850.999 µs 

 

 

Fig. 11. Convergence performances of various PSOs on 

Function 1. 

 

 

Fig. 12. Convergence performances of various PSOs on 

Function 2.

 

Table 5. The parameter for numerical experiments. 

Method Parameters Value

Canonical PSO 

Swarm size 

Max generation 

Cognition learning factor c1 

Social learning factor c2 

30 

50 

1.7 

1.7 

PSO Variant 1 

Swarm size 

Max generation 

Cognition learning factor c1 

Social learning factor c2 
Inertia coefficient α 

30 

50 

1.7 

1.7 

1.66 

PSO Variant 2 

Swarm size 

Max generation 

Cognition learning factor c1 

Social learning factor c2 

30 

50 

1.7 

1.7 

PSO Variant 3 
Swarm size 

Max generation 

30 

50 

NEPSO 

Swarm size 

Max generation 

Sampling number K 

Repository size M 

30 

50 

10 

300 

 

Table 6. The optimization result for Function 1. 

Method Mean best ftiness Average time 

Canonical PSO 0.03089038 2047.673 µs 

PSO Variant 1 0.00272978 2061.309 µs 

PSO Variant 2 0.00962446 2174.429 µs 

PSO Variant 3 0.00356192 2219.701 µs 

NEPSO 0.00233984 3685.628 µs 

 

Table 7. The optimization result for Function 2. 

Method Mean best ftiness Average time 

Canonical PSO 67.96129 2576.482 µs 

PSO Variant 1 0.00278472 2655.964 µs 

PSO Variant 2 1.77326 2561.613 µs 

PSO Variant 3 0.0 2810.248 µs 

NEPSO 0.0 7223.532 µs 
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5.2. CPG parameter search in 3D dynamic simulator 

A simulation is conducted to verify the proposed 

method using a 3D simulator made with the Open 

Dynamics Engine (ODE) [29]. The ODE is an open 

source rigid body dynamics engine and a realistic 

simulator can be implemented using this engine. The 

configuration of the biped robot and its parameters in the 

simulator are shown in Section 2. 

Each parameter in PSO is evaluated in the simulator 

and the evaluation procedure is shown in Fig. 15. It takes 

about 300ms to evaluate the fitness per iteration in the 

simulator. A proper set of CPG parameters should be 

found to make the robot walk. Two fitness functions are 

designed and one of them is selected as shown in Fig. 16. 

The first fitness functions are used for the falling of the 

biped robot and defined as (27). 

1

2 max 3

min( , , )

,

x x x

f

fitness torso leftfoot rightfoot

S T

ω

ω ω

= ×

+ × + ×

 (27) 

where ,
x

torso  ,
x

leftfoot  and 
x

rightfoot  are distances 

from the initial position to the final position of the torso, 

position of the left foot, and position of the right foot in 

the x axis, respectively. And 
max

S  and fT  are max 

step and a final time that the robot has been kept in the 

predefined stabley  in the y axis direction respectively. 

1
,ω  

2
ω  and 

3
ω  are the weighting factors. (27) tries to 

maximize the distance from the initial position to the 

final position. For the experiment, the weighting factors 

1
,ω  

2
ω  and 

3
ω  are set to 2, 5, and 1 respectively. 

stabley  is set to 0.27 m. Second fitness functions are 

used for maximizing the distance from the initial position 

to the final position within a predefined time 
pre

T  and 

defined as (28). 

4 5 max

6
| |,

add x

z

fitness C torso S

torso

ω ω

ω

= + × + ×

− ×

 (28) 

where 
x

torso  and 
z

torso  are distances from the initial 

 

Fig. 13. Convergence performances of various PSOs on

Function 3. 

 

 

Fig. 14. Convergence performances of various PSOs on

Function 4. 

 

Fig. 15. The evaluation procedure. 

 

Fig. 16. The procedure of selecting fitness function. 
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position to the final position of the torso in the x axis and 

the initial position to the final position of the torso in the 

z axis. addC  is an additional value that distinguishes the 

state between (27) and (28). 
4
,ω  

5
ω  and 

6
ω  are 

weighting factors. (28) tries to maximize the distance 

from the initial position to the final position in the x axis 

and minimizes the distance from the initial position to 

the final position in the z axis. For the experiment, the 

weighting factors 
4
,ω  

5
ω  and 

6
ω  are set to 20, 20 

and 5 respectively. addC  is set to 20. The parameters 

for PSOs and NEPSO are summarized in Table 10. The 

optimization result for the CPG parameter search is 

shown in Fig. 17 and summarized in Table 11. The 

NEPSO was the only method that could use fitness 

function 2 (28) and found the best fitness value as shown 

in Table 11 and Fig. 17. The NEPSO uses previous 

knowledge by storing the information of particles into 

the experience repository. The knowledge is used to 

estimate the fitness of the sampled particles. The 

sampling and the estimation of a particle is not done in 

the real environment but done in the experience 

repository that is implemented in a computer. The 

process accelerates the convergence of NEPSO and finds 

the CPG parameters of a biped robot within a few 

iterations. This is the reason that NEPSO outperformed 

the other PSOs. 

The CPG parameters found by NEPSO are 

summarized in 12 and 13. Those parameters are for CPG 

equation (1)-(5) and the CPGs produces the target joint 

angle of the biped robot that makes the robot walk. 

Table 11. The optimization result for CPG parameter 

search. 

Method Final ftiness 

Canonical PSO 3.4929 

PSO Variant 1 3.60935 

PSO Variant 2 9.31041 

PSO Variant 3 5.74939 

NEPSO 47.91904 

 

Table 12. The parameter of CPG found by NEPSO. 

Parts Parameters Range 

1τ  0.024135 

c 0.000000 Center 

u01 0.000000 

c 0.011863 

left u01 -0.878168 Hip 

right u01 -0.030273 

c 0.114678 

left u01 0.079189 

right u01 0.872256 
Hip2 

offset u01 0.066414 

c 0.010830 

left u01 -0.039831 

right u01 0.020860 
Knee 

offset u01 0.146311 

c 0.035207 

left u01 -0.062312 Ankle1 

right u01 0.279817 

c 0.001000 

left u01 0.068465 

right u01 0.007761 
Ankle2 

offset u01 0.014332 

 

Table 13. The parameter of CPG for phase shift found 

by NEPSO. 

Parameters Range 

Center to left hip1 phase γ 

Center to right hip1 phase γ 

Hip1 to hip2 phase phase γ 

Hip1 to knee phase phase γ 

Hip1 to ankle1 phase phase γ 

Hip1 to ankle2 phase phase γ 

0.000435 

0.000000 

0.008514 

0.000000 

0.039735 

0.000000 

 

Table 10. The parameter for CPG parameter search. 

Method Parameters Value

Canonical PSO 

Swarm size 

Max generation 

Cognition learning factor c1 

Social learning factor c2 

50 

50 

1.7 

1.7 

PSO Variant 1 

Swarm size 

Max generation 

Cognition learning factor c1 

Social learning factor c2 
Inertia coefficient α 

50 

50 

1.7 

1.7 

1.66 

PSO Variant 2 

Swarm size 

Max generation 

Cognition learning factor c1 

Social learning factor c2 

50 

50 

1.7 

1.7 

PSO Variant 3 
Swarm size 

Max generation 

30 

50 

NEPSO 

Swarm size 

Max generation 

Sampling number K 

Repository size M 

50 

50 

10 

500 

 

 

Fig. 17. The parameter search result. 
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6. CONCLUSIONS 

 

In this paper, we have presented a central pattern 

generator (CPG) parameter search for a biped walking 

robot using nonparametric estimation based particle 

swam optimization (NEPSO). The parameter search of 

CPG is a difficult problem but NEPSO found the 

parameters effectively by storing the previous knowledge 

of particles and estimating the best positions. 

NEPSO has a fast convergence property which 

reduces evaluation of a fitness in a real environment and 

requires additional computation time compared to PSO 

variants. We expect that NEPSO can be applied to 

various applications requiring a long evaluation time 

compared to a calculation time. 
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