
International Journal of Control, Automation, and Systems (2009) 7(3):447-457
DOI 10.1007/s12555-009-0314-5

http://www.springer.com/12555

Central Pattern Generator Parameter Search for a Biped Walking Robot

Using Nonparametric Estimation Based Particle Swarm Optimization

Jeong-Jung Kim, Jun-Woo Lee, and Ju-Jang Lee

Abstract: A parameter search for a Central Pattern Generator (CPG) for biped walking is difficult

because there is no methodology to set the parameters and the search space is broad. These

characteristics of the parameter search result in numerous fitness evaluations. In this paper,

nonparametric estimation based Particle Swarm Optimization (NEPSO) is suggested to effectively

search the parameters of CPG. The NEPSO uses a concept experience repository to store a previous

position and the fitness of particles in a PSO and estimated best position to accelerate a convergence

speed. The proposed method is compared with PSO variants in numerical experiments and is tested in

a three dimensional dynamic simulator for bipedal walking. The NEPSO effectively finds CPG

parameters that produce a gait of a biped robot. Moreover, NEPSO has a fast convergence property

which reduces the evaluation of fitness in a real environment.

Keywords: Biped robot, central pattern generator, particle swarm optimization.

1. INTRODUCTION

In the past two decades, there has been growing

interest in a biped robot because it has unique advantages

compared to other types of robots. The first advantage of

a biped robot arises from its mobility. Biped robots can

reach places that are inaccessible to wheeled robots, such

as over rough terrain, and are a better fit for home and

working environments designed for humans. A Second

advantage of a biped robot arises from its human-like

shape, which is more natural to humans than other types

of robots. As such, biped type robots could be used in the

future as personal assistants, home assistants, and even

as entertainment devices [1].

A major research issue related to biped robots is that

of stable walking. One successful realization of a

walking biped robot is based on ZMP [2-4]. It is a well

defined methodology that guarantees a robot’s stability,

is easy to implement and can be applied to dynamic

walking. However, it requires precise models of the

robot and the environment it is designed to perfom in, as

well as an extra online control to deal with external

perturbation.

In contrast to a model based bipedal walking robot, a

biological inspiration based biped walking robot is

matter of concern these days. Animals can adapt their

locomotion according to specific environments. The

locomotion of animals is generated by the Central

Pattern Generator (CPG). A mathematical model of the

CPG can be applied to generate target torque or joint

angle in a robot system.

The CPG model has been widely used in robotic

systems such as the snake robot [7], biped locomotion

[8-15], quadruped locomotion [16], and arm movement

[17,18] because the oscillators have desirable properties

such as adaptation to the environment through

entrainment.

CPG based bipedal walking does not require

information for a robot model in an environment and can

smoothly change a gait with little computation burden.

However, there is no methodology and there are too

many parameters to set for CPG. Therefore, evolutionary

computation methods such as Genetic Algorithms (GAs)

[11-13], multi-objective Genetic Algorithms [14], and

Genetic Programming (GP) [15] are often used to

optimize the parameters.

However, when the global optimization method is

applied to find CPG parameters, the method evaluates

the fitness of application to a robot and numerous fitness

evaluations are needed. As such, convergence is an

important factor in the selection of a method for

preventing a robot from numerous iterations of the

method.

Particle Swarm Optimization (PSO) is a population

based stochastic optimization method proposed by

Kennedy and Eberhart in 1995 and is inspired by social

behavior such as flocks of birds or schools of fish [19].

The main advantages of PSO are simple to understand,

easy to implement and quick in convergence compared

to other global optimization methods such as Genetic

Algorithms (GA) and Simulated Annealing (SA) [20].

PSO has been successfully applied in continuous nonlin-

© ICROS, KIEE and Springer 2009

 Manuscript received March 10, 2008; revised July 23, 2008
and October 2, 2008; accepted December 15, 2008.
Recommended by Editorial Board member Euntai Kim under the
direction of Editor Jae-Bok Song.
 Jeong-Jung Kim and Ju-Jang Lee are with Division of
Electrical Engineering, School of Electrical Engineering &
Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu,
Daejeon 350-701, Korea (e-mails: rightcore@kaist.ac.kr, jjlee@
ee.kaist.ac.kr).
 Jun-Woo Lee is with Robotics Program, KAIST, 373-1
Guseong-dong, Yuseong-gu, Daejeon 350-701, Korea (e-mail:
good791@kaist.ac.kr).

Jeong-Jung Kim, Jun-Woo Lee, and Ju-Jang Lee

448

ear function optimization [19], reactive power and

voltage control [21], parameter tuning of a controller for

a power system [22], PID controller design [23], and

feeder reconfiguration [24].

In this paper, nonparametric estimation based PSO

(NEPSO) is proposed to search for the parameters of

CPG needed for bipedal walking. The method gathers

position value and fitness of the particles scattered to

each particle and stores it to an experience repository.

Consequently, information stored in the experience

repository is used for selecting an estimated best position

to accelerate the convergence of each particle. The

nonparametric estimation method is used to estimate

fitness of randomly selected positions in a search space.

The NEPSO is suitable for an application requiring a

long fitness evaluation time in total computation time.

This paper is organized as follows. In Section 2, a

model of a biped robot, the property of the CPG and the

arrangement of the CPG for the robot are described. In

Section 3, various PSO methods are described. In

Section 4, our proposed nonparametric estimation based

PSO is introduced. The results of numerical experiments

and the CPG parameter search in a 3D dynamic

simulator are shown in Section 5, and conclusions and

further works are given in Section 6.

2. MODEL OF THE BIPED ROBOT AND

CENTRAL PATTERN GENERATOR

In this section, a model of a biped robot and the

Central Pattern Generator (CPG) used in this paper are

introduced. An arrangement of CPGs for the biped robot

is also presented.

2.1. Model of biped robot

The biped robot considered in this paper has only a

lower body and consists of a left leg, a right leg and a

waist. Each leg has five degrees of freedom (DOF) as

shown in Fig. 1. Two DOFs, one DOF and two DOFs are

allocated for each hip joint, knee joint and ankle joint

respectively.

The parameters 1
,l

2
,l

3
l and

4
l denote the

length of links; and ff and bf denote the length of a

sole; and
1s

f and
2s

f denote the width of a sole. To

simplify the dynamic parameter of the robot, each of the

robot’s links is considered a point mass (i.e., the total

mass of each link is located at its center) and each link

has m1, m2, m2 and m4 respectively. Those parameters are

summarized in Table 1 and are used for making a robot

simulator.

2.2. Central pattern generator

An animal can adapt its locomotion according to a

specific environment. The locomotion of the animal is

generated by the Central Pattern Generator (CPG).

Mathematical models of a CPG are suggested by many

researchers and the model proposed by Matsuoka is one

of the more popular [6]. The neural oscillator model is

used for modeling a CPG that can generate a desired

joint angle reference. Every joint of the robot is driven

by a neural oscillator that consists of two simulated

neurons in mutual inhibition as shown in Fig. 2.

The state variables are determined by (1)- (5).

1 1 1 1 2

1

[] [] ,
n

j j

j

x x v x h g cτ β ω
+ +

=

= − − − − +∑� (1)

2 1 1 1
[] ,xτ ν ν

+
= − +� (2)

1 2 2 2 1

1

[] [] ,
n

j j

j

x x v x h g cτ β ω
+ +

=

= − − − − +∑� (3)

2 2 2 2
[] ,xτ ν ν

+
= − +� (4)

1 2
[] [] ,y x x

+ +
= + (5)

where
1
,x

2
,x

3
,x

4
x are internal states,

1
,τ

2
,τ

,c ,β ,ω jh are constant parameters and jg and

Table 1. The parameters of each rigid body.

Parameters Value

l1 45.4mm

l1 116.1mm

l3 99.7mm

l4 66.75mm

lf 51.23mm

lb 42.03mm

ls1 40.4mm

ls2 52.4mm

m1 0.13kg

m2 0.42kg

m3 0.75kg

m4 1.36kg

Fig. 1. The model of the biped robot.

Fig. 2. A neural oscillator model.

Central Pattern Generator Parameter Search for a Biped Walking Robot Using Nonparametric Estimation Based…

449

y are input and output signals, respectively. Time

constant
1
τ and

2
τ determine the output shape and its

frequency, and tonic excitation c modulates the

amplitude of output. The input jg is scaled by a weight

jh and applied to the oscillator. A frequency of the CPG

is changed according to parameter
1
τ and

2
τ and an

amplitude of the CPG is changed according to parameter

.c However, various motions with just two properties of

the CPG are not generated. A phase difference of the

CPG is realized with a network of neural oscillators [18].

The network of neural oscillators is shown in Fig. 3 and

the CPG equation (1) and (2) are changed to (6) and (7)

respectively.

1 1 1 1 2 2

2

[] ([]

(1)[]) ,

c a

c b

x x v x h x

h x c

τ β ω γ

γ

+ +

+

= − − − −

+ − +

�

 (6)

1 2 2 2 1 2

2

[] ([]

(1)[]) .

c b

c a

x x v x h x

h x c

τ β ω γ

γ

+ +

+

= − − − −

+ − +

�

 (7)

A phase of the CPG is changed according to parameter
.γ

2.3. CPG arrangement for biped robot

Based on the three kinds of properties of the CPG in

the previous section, the CPGs are arranged for the biped

robot model as shown in Fig. 4 and their parameters are

summarized in Tables 2 and 3.

Both legs have the same parameter value symmetri-

cally. The target values of the joints are determined by

the output of the CPGs. The output of the CPGs are used

as target angles for each joint motor to make the robot

walk. A control torque of each joint is calculated by the

difference between target angle and the current angle of

the motor as shown in (8).

() ,p t vk kτ θ θ θ= − +
� (8)

where
p

k and
v
k are position and velocity gains,

respectively,
t

θ is target angle calculated from (5), and

θ and θ� are the current angle and current angular

velocity of each joint.

3. PARTICLE SWARM OPTIMIZATION

3.1. Particle swarm optimization

Particle Swarm Optimization uses the concept called

particle and swarm. The particles correspond to an

animal, bird, and insect in a herd, flock, and swarm

respectively. Each particle has its own position and

velocity and is randomly initialized in a search space.

When the particle number in the swarm is N and each

particle is a D dimensional vector at an iteration t, the

positions and the velocity of each particle is represented

Fig. 3. A network of neural oscillator.

Fig. 4. The CPG arrangement for the biped robot.

Table 2. The parameters of CPG.

Parts Parameters Range

1τ 0.02 ~ 0.8

c 0.0 ~3/2π Center

u01 0.0~1.0

c 0.0~3/10 π

left u01 -1.0~1.0 Hip

right u01 -1.0~1.0

c 0.0 ~3/2π

left u01 -1.0~1.0

right u01 -1.0~1.0
Hip2

offset u01 -1/2π ~1/2π

c 0.0 ~1/2π

left u01 -1.0~1.0

right u01 -1.0~1.0
Knee

offset u01 -1/2π~0.0

c 0.0 ~3/10π

left u01 -1.0~1.0 Ankle1

right u01 -1.0~1.0

c 0.0 ~3/2π

left u01 -1.0~1.0

right u01 -1.0~1.0
Ankle2

offset u01 -1/2π ~1/2π

Table 3. The parameters of CPG for phase shift.

Parameters Range

Center to left hip1 phase γ

Center to right hip1 phase γ

Hip1 to hip2 phase phase γ

Hip1 to knee phase phase γ

Hip1 to ankle1 phase phase γ

Hip1 to ankle2 phase phase γ

0.0~1.0

0.0~1.0

0.0~1.0

0.0~1.0

0.0~1.0

0.0~1.0

Jeong-Jung Kim, Jun-Woo Lee, and Ju-Jang Lee

450

as (9) and (10), respectively.

1 2 1
() { (), (),..., (), ()},D D D D

N N
X t x t x t x t x t

−
=

�

� � � �

 (9)

1 2 1
() { (), (),..., (), ()},D D D D

N N
V t v t v t v t v t

−
=

�

� � � �

 (10)

where ()
n
x t
�

 and ()
n
v t
�

are represented in (11) and (12)

respectively.

1 2 1() { (), (),..., (), ()},D D
x t x t x t x t x t

−

=

�

 (11)

1 2 1() { (), (),..., (), ()}.D D
v t v t v t v t v t

−

=

�

 (12)

As an iteration progresses, the particles cooperate and

finally reach a solution by preserving and sharing their

previous best positions. The particles store their best

experience during the optimization process and the

velocity and the position of each particle is updated by

(13) and (14), respectively.

1

2

(1) () (())

(()),

best

best

V t V t p X t

l X t

ϕ

ϕ

+ = + −

+ −

� � �

�

� �
 (13)

(1) () (1),X t X t V t+ = + +

� � �

 (14)

where ()V t
�

 is a velocity and ()X t
�

 is a position of the

particle at t iteration. bestp
�

 is a previous best position

and bestl
�

 is a local best position of each particle

obtained so far.
1

ϕ and
2

ϕ are determined as

1 1
(0,)rand cϕ = and

2 2
(0,)rand cϕ = and

1
c is a

cognition learning factor and
2
c is a social learning

factor. The position change procedure of a particle in the

PSO is shown in Fig. 5.

3.2. Particle swarm optimization variants

The original velocity change equation of the PSO (13)

is extended to an inertia weighted version and bestg
�

version which consequently are (15) and (16), respec-

tively.

1

2

(1) () (())

(()),

best

best

V t V t p X t

l X t

α ϕ

ϕ

+ = + −

+ −

� � �

�

� �
 (15)

1

2

(1) () (())

(()),

best

best

V t V t p X t

g X t

ϕ

ϕ

+ = + −

+ −

� � �

�

�

�

 (16)

where α is the inertia coefficient and bestg
�

 is the best

position in the whole swarm. The PSO variant based on

(15) is introduced to balance the global search and local

search and PSO variant based on (16) is introduced to

accelerate the converge speed [25,26].

Krohling [27] suggested the velocity equation based

on the Gausssian distribution random number generator

in PSO and known as the Gaussian Swarm. It does not

require a PSO cognition learning factor c1 and social

learning factor c2 and converges faster than canonical

PSO. The velocity change equation of the Gaussian

Swarm is (17)

(1) | | (())

| | (()),

best

best

V t randn p X t

randn g X t

+ = −

+ −

� �

�

�

�

 (17)

where | |randn is positive random numbers generated

according to the absolute value of the Gaussian

probability distribution, i.e., [(0,1)].abs N

4. NONPARAMETRIC ESTIMATION BASED

PARTICLE SWARM OPTIMIZATION

In this section, nonparametric estimation based

Particle Swarm Optimization (NEPSO) is introduced.

The method is based on an experience repository and an

estimated best position to realize fast convergence.

4.1. Experience repository

In PSO, particles cooperate and finally reach a solution

by preserving and sharing their previous best positions.

In conventional PSO, only the best experience of each

particlee and the global experience of the swarm is used

to update the velocity of each particle. There remains a

chance to use other information to improve the velocity

update equation. In this paper we suggest a method that

uses the more prior and wide information of the particles

than the canonical PSO. PSO is inspired by social

behavior, but information in the canonical PSO is

scattered to each particle. The place where the

experience of particles is stored is defined and named the

experience repository.

In the experience repository, not only the experience

of whole particles but also experiences of particles at

prior iterations are included. The positions of particles

and their fitness values are used as information for each

particle. This information is added to the experience

repository until the number of particles in the experience

repository reaches M, which is the size of the experience

repository. The large size of an experience repository can

contain more information about the particles. An

example of the experience repository is shown in Fig. 6.

In Fig. 6 the size of the experience repository M is 100.

If the size of the swarm in the PSO is 10, the repository

can contain the experience of particles during 10

iterations.

Fig. 5. The position change procedure of a particle in

PSO.

Central Pattern Generator Parameter Search for a Biped Walking Robot Using Nonparametric Estimation Based…

451

4.2. Estimated best position

The information stored in the repository is used to

update the velocity of each particle. A modification of

the original velocity (18) is suggested to improve the

convergence of the optimization process of the PSO.

Equation (18) is used until the current size of an

experience repository reaches the maximum size of the

experience repository M.

(1) | | (())

| | (()),

best

best

V t randn g X t

randn e X t

+ = −

+ −

� �

�

�

�

 (18)

where | |randn is positive random numbers generated

according to the absolute value of the Gaussian

probability distribution and beste

�

 is an estimated best

position. Suggested equation (18) is based on the

Gaussian Swarm version of the velocity update equation

(17) and the beste

�

 term is added to it. beste

�

 represents

the estimated best position in the experience repository.

The estimated best position is selected from the

experience repository. A procedure for the selection of

the estimated best position in the experience repository is

shown in Fig. 7. First, K number of positions within the

search space range are sampled as in (19) and their

fitness values are estimated as in (20). Finally, the best

position is selected among the sampled positions that

have the best estimated fitness value as in (21).

' ' ' '

1 2
{ , ,..., },Kx x x x=

�

 (19)

' ' ' '

1 2
() { (), (),..., ()},k Kg x g x g x g x=

�

 (20)

'

* '' argmin (), or
k

kx
x g x=

�

'

* '' argmax ().
k

kx
x g x=

�

 (21)

A nonparametric estimation method is used to estimate

fitness. The nonparametric estimation uses less assump-

tion than a parametric estimation. The nonparametric

estimation is divided into nonparametric density

estimation and nonparametric regression. The latter is

used in NEPSO to estimate the fitness of the position. In

parametric regression, we assume that close x have

close ()g x values and we find the neighborhood of x

and average the r values in the neighborhood to

calculate ˆ()g x [28]. There are many kinds of methods

for defining the neighborhood and averaging in the

neighborhood. In the NEPSO, a kernel smooth is used to

define the neighborhood and average in the neighbor

because it produces smooth curves compared to the mean

smoother and the running line smoother. The kernel

smoother is defined as (22) and gives less weight to

further points.

()

ˆ() ,

()

tM
t

t

tM

t

x x
H r

h
g x

x x
H

h

−

=

−

∑

∑

 (22)

where
21

() exp[].
22

u
H u

π

= − An example of a kernel

smoother is shown in Fig. 8. Based on 12 data points, the

remaining range is estimated by nonparametric

estimation. An example of selecting an estimated best

position is shown in Fig. 9. Cross dots represent the

experience of the particle in the repository and the round

dots are sampled positions of particles and their

estimated fitness. Among the K sampled positions, beste

�

is selected that has the best estimated fitness value.

4.3. Effect of sampling and estimating fitness

In NEPSO, K positions are sampled and their fitness

estimated. The estimated best value is not an exact

fitness value, but represents a tendency of the

neighborhood. The neighborhood with a good fitness

value produces a good estimated fitness value, and a bad

fitness value produces a bad estimated fitness value. As

such, the selected best position reflects the tendency of

the neighborhood and accelerates convergence by adding

this term to the Gaussian Swarm velocity equation as in

(18).

Fig. 6. The experience repository.

Fig. 7. The procedure of selecting estimated best posi-

tion.

Jeong-Jung Kim, Jun-Woo Lee, and Ju-Jang Lee

452

The sampling and estimating of best value can be

compared with a tournament selection in a Genetic

Algorithm (GA). In the tournament selection,

chromosomes are selected randomly and chosen from a

previous generation. However, sampling from the

experience repository in NEPSO is based on more

previous experience and estimated value which is not an

exact value. Estimating a fitness covers the range that

particles have not been experienced based on the

neighbor experience.

4.4. Optimization procedure of NEPSO

The optimization procedure of the NEPSO is

summarized in Fig. 10. Updating velocities and position

in the canonical PSO procedure are extended to

‘Updating experience repository’, ‘Selecting estimated

best position’, and ‘Updating the velocities and

population’. The procedure is repeated until the

maximum iteration.

5. SIMULATION

In this section, the proposed method is verified by

numerical experiment and a CPG parameter search for

the biped walking robot in a 3D dynamic simulator. The

simulation environment is summarized in Table 4.

5.1. Numerical experiments

Four nonlinear functions are used for numerical

experiments to verify the suggested method. The first

function is the Rosenbrock function which has 2

dimensional search space described by (23):

2 2 2

1 0 1 0
() 100() (1) ,

[2.048,2.048].
i

f x x x x

x

= − + −

∈ −

�

 (23)

The minimum value of (23) is
1
(1) 0.f = The second

function is the sphere function with 3 dimensional search

space described by (24):

2
2

2

0

() ,

[100,100].

i

i

i

f x x

x

=

=

∈ −

∑
�

 (24)

The minimum value of (24) is
2
(0) 0.f = The third

function is the Griewank function which has 10

dimensional search space described by:

99
2

3

0 0

1
() cos() 1,

400 1

[400,400].

i

i

i i

i

x
f x x

i

x

= =

= − +

+

∈ −

∑ ∏
�

 (25)

The minimum value of (25) is
3
(0) 0.f = The fourth

function is Rastrigin function which has 10 dimensional

search space described by:

Fig. 8. A example of kernel smoother.

Fig. 9. A example of selecting estimated best position.

Fig. 10. The NEPSO optimization procedure.

Table 4. The simulation environment.

CPU Clock Memory Operating System

3.2Ghz 1GB Windows XP

Central Pattern Generator Parameter Search for a Biped Walking Robot Using Nonparametric Estimation Based…

453

9
2

4

0

() { 10cos(2) 10},

[5.12,5.12].

i i

i

i

f x x x

x

π

=

= − +

∈ −

∑
�

 (26)

The minimum value of (26) is
4
(0) 0.f = The

canonical PSO (14), PSO variant 1 based on (15), PSO

variant 2 based on (16), and PSO variant 3 based on (17)

are compared with NEPSO (18) and their parameters are

summarized in Table 5.

A total of 50 runs for each method are conducted and

the mean best fitness are summarized in Tables 6-9. In

test function 1, none of the methods converged to the

solution, but NEPSO found the nearest solution. In test

function 2, NEPSO and PSO variant 3 found the solution.

In test functions 3 and 4, none of the methods converged

to the solution, but NEPSO found the nearest solution.

NEPSO requires additional computation time compared

to PSO variants.

The results of the test functions are shown in Figs. 11-

14. Except for the results in Fig. 11, the convergence

speed of NEPSO is faster than other methods.

Table 8. The optimization result for Function 3.

Method Mean best ftiness Average time

Canonical PSO 23.71134 5599.437 µs

PSO Variant 1 1.499977 5379.258 µs

PSO Variant 2 12.95996 5596.306 µs

PSO Variant 3 0.2501918 5791.531 µs

NEPSO 0.1551262 19864.479 µs

Table 9. The optimization result for Function 4.

Method Mean best ftiness Average time

Canonical PSO 87.73664 5178.031 µs

PSO Variant 1 50.39771 5233.759 µs

PSO Variant 2 19.4308 5609.016 µs

PSO Variant 3 0.73671 6163.525 µs

NEPSO 0.15512 9850.999 µs

Fig. 11. Convergence performances of various PSOs on

Function 1.

Fig. 12. Convergence performances of various PSOs on

Function 2.

Table 5. The parameter for numerical experiments.

Method Parameters Value

Canonical PSO

Swarm size

Max generation

Cognition learning factor c1

Social learning factor c2

30

50

1.7

1.7

PSO Variant 1

Swarm size

Max generation

Cognition learning factor c1

Social learning factor c2
Inertia coefficient α

30

50

1.7

1.7

1.66

PSO Variant 2

Swarm size

Max generation

Cognition learning factor c1

Social learning factor c2

30

50

1.7

1.7

PSO Variant 3
Swarm size

Max generation

30

50

NEPSO

Swarm size

Max generation

Sampling number K

Repository size M

30

50

10

300

Table 6. The optimization result for Function 1.

Method Mean best ftiness Average time

Canonical PSO 0.03089038 2047.673 µs

PSO Variant 1 0.00272978 2061.309 µs

PSO Variant 2 0.00962446 2174.429 µs

PSO Variant 3 0.00356192 2219.701 µs

NEPSO 0.00233984 3685.628 µs

Table 7. The optimization result for Function 2.

Method Mean best ftiness Average time

Canonical PSO 67.96129 2576.482 µs

PSO Variant 1 0.00278472 2655.964 µs

PSO Variant 2 1.77326 2561.613 µs

PSO Variant 3 0.0 2810.248 µs

NEPSO 0.0 7223.532 µs

Jeong-Jung Kim, Jun-Woo Lee, and Ju-Jang Lee

454

5.2. CPG parameter search in 3D dynamic simulator

A simulation is conducted to verify the proposed

method using a 3D simulator made with the Open

Dynamics Engine (ODE) [29]. The ODE is an open

source rigid body dynamics engine and a realistic

simulator can be implemented using this engine. The

configuration of the biped robot and its parameters in the

simulator are shown in Section 2.

Each parameter in PSO is evaluated in the simulator

and the evaluation procedure is shown in Fig. 15. It takes

about 300ms to evaluate the fitness per iteration in the

simulator. A proper set of CPG parameters should be

found to make the robot walk. Two fitness functions are

designed and one of them is selected as shown in Fig. 16.

The first fitness functions are used for the falling of the

biped robot and defined as (27).

1

2 max 3

min(, ,)

,

x x x

f

fitness torso leftfoot rightfoot

S T

ω

ω ω

= ×

+ × + ×

 (27)

where ,
x

torso ,
x

leftfoot and
x

rightfoot are distances

from the initial position to the final position of the torso,

position of the left foot, and position of the right foot in

the x axis, respectively. And
max

S and fT are max

step and a final time that the robot has been kept in the

predefined stabley in the y axis direction respectively.

1
,ω

2
ω and

3
ω are the weighting factors. (27) tries to

maximize the distance from the initial position to the

final position. For the experiment, the weighting factors

1
,ω

2
ω and

3
ω are set to 2, 5, and 1 respectively.

stabley is set to 0.27 m. Second fitness functions are

used for maximizing the distance from the initial position

to the final position within a predefined time
pre

T and

defined as (28).

4 5 max

6
| |,

add x

z

fitness C torso S

torso

ω ω

ω

= + × + ×

− ×

 (28)

where
x

torso and
z

torso are distances from the initial

Fig. 13. Convergence performances of various PSOs on

Function 3.

Fig. 14. Convergence performances of various PSOs on

Function 4.

Fig. 15. The evaluation procedure.

Fig. 16. The procedure of selecting fitness function.

Central Pattern Generator Parameter Search for a Biped Walking Robot Using Nonparametric Estimation Based…

455

position to the final position of the torso in the x axis and

the initial position to the final position of the torso in the

z axis. addC is an additional value that distinguishes the

state between (27) and (28).
4
,ω

5
ω and

6
ω are

weighting factors. (28) tries to maximize the distance

from the initial position to the final position in the x axis

and minimizes the distance from the initial position to

the final position in the z axis. For the experiment, the

weighting factors
4
,ω

5
ω and

6
ω are set to 20, 20

and 5 respectively. addC is set to 20. The parameters

for PSOs and NEPSO are summarized in Table 10. The

optimization result for the CPG parameter search is

shown in Fig. 17 and summarized in Table 11. The

NEPSO was the only method that could use fitness

function 2 (28) and found the best fitness value as shown

in Table 11 and Fig. 17. The NEPSO uses previous

knowledge by storing the information of particles into

the experience repository. The knowledge is used to

estimate the fitness of the sampled particles. The

sampling and the estimation of a particle is not done in

the real environment but done in the experience

repository that is implemented in a computer. The

process accelerates the convergence of NEPSO and finds

the CPG parameters of a biped robot within a few

iterations. This is the reason that NEPSO outperformed

the other PSOs.

The CPG parameters found by NEPSO are

summarized in 12 and 13. Those parameters are for CPG

equation (1)-(5) and the CPGs produces the target joint

angle of the biped robot that makes the robot walk.

Table 11. The optimization result for CPG parameter

search.

Method Final ftiness

Canonical PSO 3.4929

PSO Variant 1 3.60935

PSO Variant 2 9.31041

PSO Variant 3 5.74939

NEPSO 47.91904

Table 12. The parameter of CPG found by NEPSO.

Parts Parameters Range

1τ 0.024135

c 0.000000 Center

u01 0.000000

c 0.011863

left u01 -0.878168 Hip

right u01 -0.030273

c 0.114678

left u01 0.079189

right u01 0.872256
Hip2

offset u01 0.066414

c 0.010830

left u01 -0.039831

right u01 0.020860
Knee

offset u01 0.146311

c 0.035207

left u01 -0.062312 Ankle1

right u01 0.279817

c 0.001000

left u01 0.068465

right u01 0.007761
Ankle2

offset u01 0.014332

Table 13. The parameter of CPG for phase shift found

by NEPSO.

Parameters Range

Center to left hip1 phase γ

Center to right hip1 phase γ

Hip1 to hip2 phase phase γ

Hip1 to knee phase phase γ

Hip1 to ankle1 phase phase γ

Hip1 to ankle2 phase phase γ

0.000435

0.000000

0.008514

0.000000

0.039735

0.000000

Table 10. The parameter for CPG parameter search.

Method Parameters Value

Canonical PSO

Swarm size

Max generation

Cognition learning factor c1

Social learning factor c2

50

50

1.7

1.7

PSO Variant 1

Swarm size

Max generation

Cognition learning factor c1

Social learning factor c2
Inertia coefficient α

50

50

1.7

1.7

1.66

PSO Variant 2

Swarm size

Max generation

Cognition learning factor c1

Social learning factor c2

50

50

1.7

1.7

PSO Variant 3
Swarm size

Max generation

30

50

NEPSO

Swarm size

Max generation

Sampling number K

Repository size M

50

50

10

500

Fig. 17. The parameter search result.

Jeong-Jung Kim, Jun-Woo Lee, and Ju-Jang Lee

456

6. CONCLUSIONS

In this paper, we have presented a central pattern

generator (CPG) parameter search for a biped walking

robot using nonparametric estimation based particle

swam optimization (NEPSO). The parameter search of

CPG is a difficult problem but NEPSO found the

parameters effectively by storing the previous knowledge

of particles and estimating the best positions.

NEPSO has a fast convergence property which

reduces evaluation of a fitness in a real environment and

requires additional computation time compared to PSO

variants. We expect that NEPSO can be applied to

various applications requiring a long evaluation time

compared to a calculation time.

REFERENCES

[1] K. Tanie, “Humanoid robot and its application

possibility,” Proc. of the IEEE Conference of

Multisensor Fusion Integration Intelligent Systems,

pp. 213-214. 2003.

[2] M. Vukobratović, B. Borovac, D. Surla, and D.

Stokić, Biped Locomotion-dynamics, Stability,

Control and Application, Springer-Verlag, 1990.

[3] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka,

“The development of Honda humanoid robot,”

Proc. of IEEE International Conference on

Robotics and Automation, pp. 1321-1326, 1998.

[4] S. Kagami, T. Kitagawa, K. Nishiwaki, T. Sugihara,

M. Inaba, and H. Inoue, “A fast dynamically

equilibrated walking trajectory generation method

of humanoid robot,” Autonomous Robots, vol. 12,

pp. 71-82, 2002.

[5] A. H. Cohen, “Control principle for locomotion

looking toward biology,” Proc. of the 2nd

International Symposium on Adaptive Motion of

Animals and Machines, pp. 41-51, 2003.

[6] K. Matsuoka, “Sustained oscillations generated by

mutually inhibiting neurons with adaptation,”

Biological Cybernetics, vol. 52, pp. 345-353, 1985.

[7] A. J. Ijspeert and A. Crespi, “Online trajectory

generation in an amphibious snake robot using a

lamprey like central pattern generator model,” Proc.

of IEEE International Conference on Robotics and

Automation, pp. 262-268, 2007.

[8] G. Taga, “A model of the neuro-musculo-skeletal

system for human locomotion I. emergence of basic

gait,” Biological Cybernetics, vol. 73, pp. 97-111,

1995.

[9] G. Endo, J. Nakanishi, J. Morimoto, and G. Cheng,

“An empirical exploration of a neural oscillator for

biped locomotion control,” Proc. of the IEEE

International Conference on Robotics and Automa-

tion, vol. 3, pp. 3036-3042, 2004.

[10] G. Endo, J. Nakanishi, J. Morimoto, and G. Cheng,

“Experimental studies of a neural oscillator for

biped locomotion with QRIO,” Proc. of the IEEE

International Conference on Robotics and Automa-

tion, pp. 596-602, 2005.

[11] T. Reil and P. Husbands, “Evolution of central

pattern generators for bipedal walking in a real-

time physics environment,” IEEE Trans. on

Evolutionary Computation, vol. 6, pp. 159-168,

2002.

[12] H. Inada and K. Ishii, “Behavior generation of

bipedal robot using central pattern generator

(CPG),” Proc. of the IEEE Conference on

Intelligent Robots and Systems, vol. 3, pp. 2179-

2184, 2003.

[13] K. Wolff, J. Pettersson, A. Heralic, and M. Wahde,

“Structural evolution of central pattern generators

for bipedal walking in 3D simulation,” Proc. of

IEEE International Conf. on Systems, Man and

Cybernetics, vol. 1, pp. 227-234, 2006.

[14] J. Shan, C. Junshi, and C. Jiapin “Design of central

pattern generator for humanoid robot walking based

on multi-objective GA,” Proc. of the IEEE Confer-

ence on Intelligent Robots and Systems, vol. 3, pp.

1930-1935, 2000.

[15] S. Ok and D. S. Kim, “Evolving bipedal locomo-

tion with genetic programming,” Lecture Notes in

Computer Science, vol. 3611, pp. 714-726, 2005.

[16] H. Kimura and Y. Fukuoka, “Biologically inspired

adaptive dynamic walking in outdoor environment

using a self-contained quadruped robot: Tekken2,”

Proc. of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, vol. 1, pp. 986-991,

2004.

[17] M. M. Williamson, “Neural control of rhythmic

arm movements,” Neural Networks, vol. 11, no. 7-8,

pp. 1379-1394, 1998.

[18] M. M. Williamson, Robot Arm Control Exploiting

Natural Dynamics, Thesis, Massachusetts Institute

of Technology, 1999.

[19] J. Kennedy and R.C Eberhart, “Particle swarm

optimization,” Proc. of IEEE International Confer-

ence on Neural Networks, vol. 4, pp. 1942-1948,

Nov. 1995.

[20] A. Abraham, H. Guo, and H. Liu, “Swarm intell-

igence: foundations, perspectives and applications,”

Studies in Computational Intelligence, Springer, vol.

26, pp. 3-25, Nov. 2006.

[21] Y. Fukuyama and H. Yoshida, “A particle swarm

optimization for reactive power and voltage control

in electric power systems,” Proc. of the IEEE

Congress on Evolutionary Computation, vol. 1, pp.

87-93, May 2001.

[22] T. Okada, T. Watanabe, and K. Yasuda, “Parameter

tuning of fixed structure controller for power

system stability enhancement,” Proc. of IEEE/PES

Transmission and Distribution Conference and

Exhibition, vol. 1, pp. 162-167, Oct. 2002.

[23] Y. Zheng, L. Ma, L. Zhang, and J. Qian, “Robust

PID controller design using particle swarm

optimizer,” Proc. of IEEE International Symposium

on Intelligence Control, pp. 974-979, 2003.

[24] W.-C. Wu and M.-S. Tsai, “Feeder reconfiguration

using binary coding particle swarm optimization,”

International Journal of Control, Automation, and

System, vol. 6, no. 4, pp. 488-494, 2008.

Central Pattern Generator Parameter Search for a Biped Walking Robot Using Nonparametric Estimation Based…

457

[25] Y. Shi and R. C. Eberhart, “A modified particle
swarm optimizer,” Proc. of the IEEE Congress on
Evolutionary Computation, pp. 69-73, 1998.

[26] J. Kennedy, “Small worlds and mega-minds: effects
of neighborhood topology on particle swarm
performance,” Proc. of the IEEE Congress on
Evolutionary Computation, pp. 1931-1938. 1999.

[27] R. A. Krohling, “Gaussian swarm: a novel particle
swarm optimization algorithm,” Proc. of IEEE
Conference on Cybernetics and Intelligent Systems,
vol. 1, pp. 372-376, Dec. 2004.

[28] E. Alpaydin, Introduction to Machine Learning,
MIT Press, 2004.

[29] R. Smith, Open Dynamics Engine, http://www.ode.
org, 2007.

Jeong-Jung Kim received the B.S.
degree in Electronics and Information
Engineering from Chonbuk National
University in 2006 and the M.S. degree
in Robotics from Korea Advanced
Institute of Science and Technology in
2008. He is currently working toward a
Ph.D. at the Korea Advanced Institute of
Science and Technology. His research

interests include biologically inspired robotics and machine
learning.

Jun-Woo Lee received the B.S. degree
in Electronics, Electrical and Communi-
cation Engineering from Pusan National
University in 2007. He is currently
working toward an M.S. in the Korea
Advanced Institute of Science and
Technology. His research interests
include swarm intelligence and machine
learning.

Ju-Jang Lee was born in Seoul, Korea,
in 1948. He received the B.S. and M.S.
degrees from Seoul National University,
Seoul, Korea, in 1973 and 1977,
respectively, and the Ph.D. degree in
Electrical Engineering from the
University of Wisconsin, in 1984. From
1977 to 1978, he was a Research
Engineer at the Korean Electric Research

and Testing Institute, Seoul. From 1978 to 1979, he was a
Design and Processing Engineer at G. T. E. Automatic Electric
Company, Waukesha, WI. For a brief period in 1983, he was
the Project Engineer for the Research and Development
Department of the Wisconsin Electric Power Company,
Milwaukee. He joined the Department of Electrical
Engineering, Korea Advanced Institute of Science and
Technology, Daejeon, in 1984, where he is currently a Professor.
In 1987, he was a Visiting Professor at the Robotics Laboratory
of the Imperial College Science and Technology, London, U.K.
From 1991 to 1992, he was a Visiting Scientist at the Robotics
Department of Carnegie Mellon University, Pittsburgh, PA. His
research interests are in the areas of intelligent control of
mobile robots, service robotics for the disabled, space robotics,
evolutionary computation, variable structure control, chaotic
control systems, electronic control units for automobiles, and
power system stabilizers. Dr. Lee is a member of the IEEE
Robotics and Automation Society, the IEEE Evolutionary
Computation Society, the IEEE Industrial Electronics Society,
IEEK, KITE, and KISS. He is also a former President of
ICROS in Korea and a Counselor of SICE in Japan. He is a
Fellow of SICE and ICROS. He is an Associate Editor of IEEE
Transactions on Industrial Electronics and IEEE Transactions
on Industrial Informatics.

