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Abstract: This article investigates the problem of robust stability for neural networks with time-

varying delays and parameter uncertainties of linear fractional form. By introducing a new Lyapunov-

Krasovskii functional and a tighter inequality, delay-dependent stability criteria are established in term 

of linear matrix inequalities (LMIs). It is shown that the obtained criteria can provide less conservative 

results than some existing ones. Numerical examples are given to demonstrate the applicability of the 

proposed approach. 
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1. INTRODUCTION 

 

Over the past decades, neural networks have found 

their important applications in various areas such as 

pattern recognition, optimization solvers and fixed-point 

computation. It has been known that time delays are 

often encountered in neural networks.The existence of 

time delays is frequently a source of instability for neural 

networks. Therefore, increasing interest has been focused 

on stability analysis of neural networks with time delays 

[1-7,9-22]. Generally speaking, the so-far obtained 

stability results for delay neural networks can be 

classified into two types; that is, delay-independent 

stability [1,3-5,9] and delay-dependent stability [12-

16,18]; the former does not include any information on 

the size of delay while the latter employs such 

information. It is known that delay-dependent stability 

conditions are generally less conservative than delay 

independent ones especially when the size of the delay is 

small. Thus, much attention has been paid to the delay-

dependent type. Recently, a new Lyapunov functional 

involving many slack variables is constructed in [14]. 

Based on the Lyapunov functional, a less conservative 

delay-dependent stability condition for delay neural 

networks is established for the introduction of many 

slack variables. However, we notice that it is hard to 

further reduce the conservatism by using the same types 

of Lyapunov functional as in [14] and the obtained result 

in [14] is equivalent to Corollary 1 in [16] by following a 

similar line to [13], which shows that more variables in 

conditions do not necessarily make less conservative 

results. On the other hand, some useful terms are ignored 

in [16]. Although in [23]  consider some useful terms, 

there is still much useful information is ignored. 

In practical implementation of neural networks, the 

weight coefficients of the neurons depend oncertain 

resistance and capacitance values, which are called as 

uncertainties. It is important to ensure that the designed 

network be stable in thepresence of these uncertainties. 

The global robuststability of delayed neural networks 

based on theintervalised network parameters has been 

studied in [20,21]. A criterion for the robust stability 

ofdelayed neural networks based on norm-bounded 

uncertainty has been given in [19,25]. Shortly, anew type 

uncertainties with linear fractional formis considered in 

[23,24], which can include thenorm bounded 

uncertainties asa special case. Butup to our knowledge, 

the robust stability problemare been touched for delay 

neural networks with this type uncertainty. 

Motivated by the above discussions, in this paper, 

firstly, a new Lyapunov-Krasovskii functional is 

constructed, which involves fewer slack variables than 

those in [14].  Based on the Lyapunov functional, and a 

tighter inequality, new global asymptotic stability 

condition is established for delay neural networks. Then 

the asymptotic stability criterion is extended to uncertain 

neural networks with linear fractional uncertainties. All 

obtained results are described in term of LMI, which can 

be easily tested by using recently developed algorithms 

solving LMIs. Numerical examples are given to 

demonstrate the applicability of the proposed approach. 

Notation: Throughout this paper, a real symmetric 

matrix P > 0 denotes P being a positive definite. I is used 

to denote an identity matrix with proper dimension. 

Matrices, if not explicitly stated, are assumed to have 

compatible dimensions. The symmetric terms in a 

symmetric matrix are denoted by ∗ . 
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2. PROBLEM FORMULATION  
 

Consider the following uncertain neural networks with 

time-varying delays: 

( ) ( ) ( ) ( ) ( ( ))

( ) ( ( ( ))),

z t C C z t A A f z t

B B f z t d t

= − + ∆ + + ∆

+ + ∆ −

�

 (1) 

where 
1

( ) [ ( ), , ( )]T
n

z z z⋅ = ⋅ ⋅… is the state vector, ( ( ))f z ⋅  

1 1 2 2
[ ( ( )), ( ( )), , ( ( ))]T

n n
f z f z f z= ⋅ ⋅ ⋅… are the neuron 

activation function. A and B are the connection weight 

matrix and the delayed connection weight matrix. 

1
{ ,..., }

n
C diag c c=  is a diagonal matrix with 0.

i
c >  

The time delay ( )d t  is a time-varying continuous 

function that satisfies 

0 ( ) , ( ) ,d t h d t µ≤ ≤ ≤�  (2) 

where h  and µ  are constants. , ,C A B∆ ∆ ∆  are 

matrices with parametric uncertainties satisfying 

[ ] ( )[ ],C A BA B C H t N N N∆ ∆ ∆ = Λ  (3) 

where ,H ,CN A
N  and 

B
N  are given matrices. The 

class of parametric uncertainty ( )tΛ  that satisfies 

1( ) [ ( ) ] ( )t I F t J F t−

Λ = −  (4) 

is said to be admissible, where J is also a known matrix 

satisfying 

0
T

I JJ− >  (5) 

and ( )F t  is uncertain matrix satisfying 

( ) ( ) .T
F t F t I≤  (6) 

Remark 1: The uncertainty ( )tΛ  satisfying (4)-(6) is 

referred to as a linear fractional parametric uncertainty. It 

can be verified that the condition (5) guarantees that 

( )I F t J−  is invertible for all ( )F t  satisfying (6). 

Moreover, we note that when 0,J =  ( )tΛ  reduces to a 

norm-bounded parametric uncertainty which has been 

investigated in [18,19,25]. 

We assume that each neuron activation function 

( ), 1, 2, ,
i
f i n⋅ = …  satisfy the following condition: 

2 2 2( ) ( ) , 1,2, , .
i i i i i i i i
f z k z f z k z i n≤ ≤ = …  (7) 

 

3. MAIN RESULTS 

 

In the section, based on a new Lyapunov-Krasovskii 

functional and LMI technique, we have the following 

results. 

Theorem 1: Given scalars 0h ≥  and 0 .µ≤  Then, 

for any delay d(t) satisfying the condition (2), the origin 

of system (1) is robust stable if there exist a positive 

scalar ,ε  positive matrices 
1
, ( 1, 2,3),

i
P Q i =  R, 

positive diagonal matrices 
1 2

{ , , , },
n

diagλ λ λ λ= …  

1 11 12 1
{ , , , },

n
D diag d d d= …

2 21 22 2
{ , , , }

n
D diag d d d= …

and any matrices ( 2, ,5),
i
P i = …  such that the 

following LMIs hold: 

11 12 13 4 2 1

22 5

33 7

3

1 2

0 0

0

0

2

T T

T

T

P P A KD

P A

P

Q

D Q

λ

Γ Γ Γ − +

 ∗ Γ +

∗ ∗ Γ −

 ∗ ∗ ∗ −

 ∗ ∗ ∗ ∗ − +

∗ ∗ ∗ ∗ ∗

 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

 

  

2 3 4 2

5 5

2 6 7

66

0 0 0

0 0

0 0 0 0 0

0 0 0 0
0,

0 0 0

3 0 0 0

0 0

T T T T T

C

T T

T T

T

A

T

B

T

P B hP hP P H N

P B P H

KD hP hP

N

N

hR

hR

I J

I

ε

ε

ε

ε ε

ε

− − −




− − 



<

Γ


∗ − 
∗ ∗ −

∗ ∗ ∗ − −


∗ ∗ ∗ ∗ − 

 (8) 

11 12 13 4 2 1

22 5

33 7

3

1 2

0 0

0

0

2

T T

T

T

P P A KD

P A

P

Q

D Q

λ

Γ Γ Γ − +

 ∗ Γ +

∗ ∗ Γ −

 ∗ ∗ ∗ −

 ∗ ∗ ∗ ∗ − +

∗ ∗ ∗ ∗ ∗

 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

 

  

2 3 4 2

5 5

2 6 7

66

0 0 0

0 0

0 0 0 0 0

0 0 0 0
0,

0 0 0

0 0 0

3 0 0

T T T T T

C

T T

T T

T

A

T

B

T

P B hP hP P H N

P B P H

KD hP hP

N

N

hR

hR

I J

I

ε

ε

ε

ε ε

ε

− − −




− − 



<

Γ


∗ − 
∗ ∗ −

∗ ∗ ∗ − −


∗ ∗ ∗ ∗ − 

 (9) 
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where  

11 2 2 3 3 1 2
,

T T T
P C C P P P Q QΓ = − − + + + +

12 1 2 5
,

T T
P P C PΓ = − −   

13 3 6 4
,T TP P PΓ = − + +   

22 5 5
,

T
P P hRΓ = − − +   

33 6 6 7 7 1
(1 ) ,T T

P P P P QµΓ = − − + + − −   

66 2 2
(1 ) 2 ,Q DµΓ = − − −   

1 2
{ , , , }.

n
K diag k k k= …   

Proof: Choose a new Lyapunov-Krasovskii functional 

candidate for system (1) as: 

1 2 3 4
( ( )) ( ( )) ( ( )) ( ( )) ( ( )),V z t V z t V z t V z t V z t= + + +  

where 

1 0 0
( ( )) ( ) ( ),T

V z t t EP tξ ξ=  

2
0

1

( ( )) 2 ( ) ,
j

n
z

i j

i

V z t f s dsλ

=

= ∑ ∫  

0

3
( ( )) ( ) ( ) ,

t
T

h t
V z t z s Rz s dsd

θ
θ

− +

= ∫ ∫ � �  

4 1( )

2( )

3

( ( )) ( ) ( )

( ( )) ( ( ))

( ) ( )

t T

t d t

t T

t d t

t T

t h

V z t z s Q z s ds

f z s Q f z s ds

z s Q z s ds

−

−

−

=

+

+

∫

∫

∫

 

with 

0 0 0

0 0 0 0 ,

0 0 0 0

I

E

 
 =  
  

 

1

2 5

3 6

4 7

0 0

0
,

0

0

P

P P
P

P P

P P

 
 
 =
 
 
 

 

0

( )

( ) ( ) ,

( ( ))

z t

t z t

z t d t

ξ

 
 =  
 − 

�  

and 

1
0, 0, 0, 0 ( 1,2,3).T T

i
EP P E P R Q i= ≥ > > > =  

It is noted that 
0 0
( ) ( )T
t EP tξ ξ  is actually 

1
( ) ( ).T

z t P z t  

On the other hand, from the Leibniz-Newton formula and 

(1), the following equations are true 

1
: ( ) ( ) ( ) ( ) ( ( ))

( ) ( ( ( ))) 0,

C C z t z t A A f x t

B B f z t d t

α = − + ∆ − + + ∆

+ + ∆ − =

�
 (10) 

2 ( )
: ( ) ( ( )) ( ) 0,

t

t d t
z t z t d t z s dsα

−

= − − − =∫ �  (11) 

( )

3 : ( ( )) ( ) ( ) 0.
t d t

t h
z t d t z z h z s dsα

−

−

= − − − − =∫ �  (12) 

Similar to [23], the time derivative of 
1
( ( ))V z t  along 

the trajectories of system (1) with (10)-(12) is obtained 

as 

1 1

1

0 0

2

3

0 1

( ( )) 2 ( ) ( )

( )( )

0
2 ( ) 2 ( )

0

0

( )( ) ( ),

T

T T T T

T

V z t z t P z t

z tz t

t P t P

t t

α
ξ ξ

α

α

ξ ξ

=

  
  
  = =
  
  

   

= Γ + Γ

� �

��

 (13) 

where 

 

( )

( )

( ) ( ) ( ) ( ( )) ( ) ( ( ))

( ( ( ))) ( ( ) ) ( ( ) ) ,

T T T T T

t t d t
T T T

t d t t h

t z t z t z t d t z t h f z t

f z t d t z s ds z s ds

ξ

−

− −

= − −


−
∫ ∫

�

� �

1

111 112 113 4 2 2 3 4

122 5 5

133 7 6 7

0 0 0 0

0 0

0 0 0 0 0 ,

0 0 0 0

0 0 0

0 0

0

T T T T T

T T

T T T

P P A P B P P

P A P B

P P P

Γ =

 Γ Γ Γ − − −
 
 ∗ Γ
 

∗ ∗ Γ − − − 
 ∗ ∗ ∗
 
 ∗ ∗ ∗ ∗
 

∗ ∗ ∗ ∗ ∗ 
 ∗ ∗ ∗ ∗ ∗ ∗
 

∗ ∗ ∗ ∗ ∗ ∗ ∗  

0

01 5 2 2

5 5 5 5

( ) 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0
,

0 0 0 0

0 0 0

0 0

0

T T T

T T T

C P P A P B

P P P A P B

Γ =

 Γ − ∆ ∆ ∆
 
 ∗ − − ∆ ∆
 
∗ ∗ 

 ∗ ∗ ∗
 
∗ ∗ ∗ ∗ 

 ∗ ∗ ∗ ∗ ∗
 
∗ ∗ ∗ ∗ ∗ ∗ 

 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 

 

 

and 
 

111 2 2 3 3

112 1 2 5

113 3 6 4

122 5 5

133 6 6 7 7

01 2 2

,

,

,

,

,

( ) .

T T T

T T

T T

T

T T

T T

P C C P P P

P P C P

P P P

P P

P P P P

P C C P

Γ = − − + +

Γ = − −

Γ = − + +

Γ = − −

Γ = − − + +

Γ = − ∆ − ∆

 

From (3), it is noted that 

0
( ) ( ) ,T T T

S t N N t SΓ = Λ + Λ  (14) 
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where  
 

2 5
0 0 0 0 0 0 ,

0 0 0 0 0 ,

T
T T

C A B

S H P H P

N N N N

 =
 

 = −
 

 

2

1

( ( )) 2 ( ( )) ( ) 2 ( ( )) ( ),
n

T

i i i i

i

V z t f z t z t f z t z tλ λ

=

= =∑� � �  (15) 

and 
1 2

{ , , , }.
n

diagλ λ λ λ= …  It follows from Lemma in 

[8] that we have 

3

( )

( )

1 2 1 2

( ( )) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

3 3
( ) ( ) min{ , },

t
T T

t h

t d t
T T

t h

t T

t d t

T

V z t hz t Rz t z s Rz s ds

hz t Rz t z s Rz s ds

z s Rz s ds

W W W W
hz t Rz t

h h

−

−

−

−

= −

= −

−

+ +
≤ −

∫

∫

∫

� � � � �

� � � �

� �

� �

 (16) 

where 

( ) ( )

1

2 ( ) ( )

1
( ( ) ) ( ( ) ),

( )

1
( ( ) ) ( ( ) ).

( )

t d t t d tT

t h t h

t tT

t d t t d t

W z s ds R z s ds
h d t

W z s ds R z s ds
d t

− −

− −

− −

=

−

=

∫ ∫

∫ ∫

� �

� �

 

Moreover, it can be verifed that 

4 2
( ( )) ( ) ( )T

V z t t tξ ξ≤ Γ�  (17) 

with
2 1 3 1 3 2

{( ),0, (1 ) , , , (1 )diag Q Q Q Q Qµ µΓ = + − − − − −  

2
,0,0}Q  it is clear from (7) that 

 

2

2

( ) ( ( )) ( ( )) 0, 1,2,...,

( ( )) ( ( ( ))) ( ( ( ))) 0,

1,2,...,

i i i i i i

i i i i i i

k z t f z t f z t i n

k z t d t f z t d t f z t d t

i n

− ≥ =

− − − − ≥

=

  

 

they are equal to 
 

1 1
( ) ( ( )) ( ( )) ( ( )) 0T Tz t KD f z t f z t D f z t− ≥  

2

2

( ( )) ( ( ( )))

( ( ( ))) ( ( ( ))) 0

T

T

z t d t KD f z t d t

f z t d t D f z t d t

− −

− − − ≥

 

From (13), (15)-(17), we obtain 

1 2 3 4

0 1 3

1 2 1 2

1

2

( ( )) ( ( )) ( ( )) ( ( )) ( ( ))

( )( ) ( )

3 3
min{ , }

2 ( ( )) ( ) 2 ( ) ( ( ))

2 ( ( )) ( ( ( )))

T

T T

T

V z t V z t V z t V z t V z t

t t

W W W W

h h

f z t z t z t KD f z t

z t d t KD f z t d t

ξ ξ

= + + +

≤ Γ +Γ +Γ

+ +
−

+ Λ +

+ − −

� � � � �

�

 

1

2

0

1 2 1 2

2 ( ( )) ( ( ))

2 ( ( ( ))) ( ( ( )))

( )( ) ( )

3 3
min{ , },

T

T

T

f z t D f z t

f z t d t D f z t d t

t M t

W W W W

h h

ξ ξ

−

− − −

= + Γ

+ +
−

 

 

1 3 4
,M = Γ +Γ +Γ  

1

2

4

1

2

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
.

2 0 0 0

2 0 0

0 0

0

KD

hR

KD

D

D

 
 ∗ Λ 
 ∗ ∗
 
∗ ∗ ∗ Γ =
 ∗ ∗ ∗ ∗ −
 
∗ ∗ ∗ ∗ ∗ − 
 ∗ ∗ ∗ ∗ ∗ ∗
 
∗ ∗ ∗ ∗ ∗ ∗ ∗  

 

And 
0

Γ  is defined in (14). Then it follows from the 

Lyapunov-Krasovskii stability theorem that if the 

conditions given in (8), (9) are met, system (1)  is 

guaranteed to be stable. 

Remark 2: In the proof of Theorem 1, similar to [23] , 

some useful terms 
1 2
,W W  are considered. Compared 

with the result in [23], a tighter inequality is used to 

1 2
,W W , which will lead to a less conservative stabile 

criterion. 

When restricted to norm-bounded uncertainty case, i.e., 

0,J =  the following delay-dependent roust stability 

criterion is straightforward. 

Corollary 1: Given scalars 0h ≥  and 0 .µ≤  Then, 

for any delay ( )d t  satisfying 0 ( )d t h≤ ≤  and ( )d t�  

,µ≤  the origin of system (1) is robust stable if there 

exist a positive scalar ,ε  positive matrices 
1
, (1

i
P Q =  

1,2,3), ,R  positive diagonal matrices 
1 2

{ , ,diagλ λ λ=  

, },
n

λ…  
1 11 12 1

{ , , , },
n

D diag d d d= …  
2 21

{ ,D diag d=  

22 2
, , }

n
d d…  and any matrices ( 2, ,5)

i
P i = …  such that 

the following LMIs hold: 

 

11 12 13 4 15

22 5

33 7

3

55

ˆ

0 0

0

0

T

T

T

P

P A

P

Q

λ

∧

Γ Γ Γ − Γ

 ∗ Γ +

∗ ∗ Γ −

 ∗ ∗ ∗ −


∗ ∗ ∗ ∗ Γ

 ∗ ∗ ∗ ∗ ∗

 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

 ∗ ∗ ∗ ∗ ∗
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2 3 4 2

5 5

2 6 7

66

0 0

0

0 0 0 0

0,
0 0 0

0 0 0

3 0 0

0

T T T T T

C B

T T

T T

T

A B

P B N N hP hP P H

P B P H

KD hP hP

N N

hR

hR

I

ε

ε

ε

− − −




− − 


<


Γ 

∗ −

∗ ∗ −


∗ ∗ ∗ − 

 (18) 

 

11 12 13 4 15

22 5

33 7

3

55

ˆ

0 0

0

0

T

T

T

P

P A

P

Q

λ

∧

Γ Γ Γ − Γ

 ∗ Γ +

∗ ∗ Γ −

 ∗ ∗ ∗ −


∗ ∗ ∗ ∗ Γ

 ∗ ∗ ∗ ∗ ∗

 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

 ∗ ∗ ∗ ∗ ∗

 

2 3 4 2

5 5

2 6 7

66

0 0

0

0 0 0 0

0,
0 0 0

0 0 0

0 0

3 0

T T T T T

C B

T T

T T

T

A B

P B N N hP hP P H

P B P H

KD hP hP

N N

hR

hR

I

ε

ε

ε

− − −




− − 


<


Γ 

∗ − 
∗ ∗ −


∗ ∗ ∗ − 

 (19) 

 

where 
 

11 2 2 3 3 1 2
,

T T T T

C CP C C P P P Q Q N Nε

∧

Γ = − − + + + + +

15 2 1
,

T T

C AP A KD N NεΓ = + −  

55 1 2
2 ,

T

A A
D Q N Nε

∧

Γ = − + +  

66 2 2
(1 ) 2 ,T

B B
Q D N Nµ ε

∧

Γ = − − − + +  

 

and 
12 13 22 33
, , ,Γ Γ Γ Γ  are defined in (8), (9). 

Remark 2: Theorem 1 and Corollary 1 are delay-

dependent with respect to h  and µ , unlike [19] which 

are delay-independent conditions. It is known that delay-

dependent stability conditions are generally less 

conservative than delay-independent ones. Moreover, it 

is noted that robust stability criteria can be derived by 

solving LMI, which can be easily tested by using some 

existing software packages, for example, the Matlab LMI 

toolbox. 

When system (1) without uncertainties, the following 

result can be obtained by using 
1

0Γ =  in the proof of 

Theorem 1. 

Corollary 2: Given scalars 0h ≥  and 0 µ≤ . Then, 

for any delay d(t) satisfying the conditions (2), the origin 

of system (1) is asymptotically stable if there exist 

positive matrices
1
, ( 1,2,3),

i
P Q I R= , positive diagonal 

matrices 
1 2

{ , , , },
n

diagλ λ λ λ= …

1 11 12
{ , , ,D diag d d= …  

1
},

n
d

2 21 22 2
{ , , , }

n
D diag d d d= … and any matrices 

( 2, ,5)
i
P i = …  such that the following LMIs hold: 

11 12 13 4 2 1

22 5

33 7

3

1 2

0 0

0

0

2

T T

T

T

P P A KD

P A

P

Q

D Q

λ

Γ Γ Γ − +

 ∗ Γ +

∗ ∗ Γ −

 ∗ ∗ ∗ −

 ∗ ∗ ∗ ∗ − +

∗ ∗ ∗ ∗ ∗

 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

 

2 3 4

5

2 6 7

66

0 0

0 0 0 0,

0 0 0

0 0

3 0

T T T

T

T T

P B hP hP

P B

KD hP hP

hR

hR

− −




− − 

<




Γ 
−


− 

 (20) 

 

11 12 13 4 2 1

22 5

33 7

3

1 2

0 0

0

0

2

T T

T

T

P P A KD

P A

P

Q

D Q

λ

Γ Γ Γ − +

 ∗ Γ +

∗ ∗ Γ −

 ∗ ∗ ∗ −

 ∗ ∗ ∗ ∗ − +

∗ ∗ ∗ ∗ ∗

 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

 

2 3 4

5

2 6 7

66

0 0

0 0 0 0.

0 0 0

0 0

0

3

T T T

T

T T

P B hP hP

P B

KD hP hP

hR

hR

− −




− − 

<




Γ 
−


− 

 (21) 
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Remark 3: Corollary 2 involves fewer slack variables 

than those in [14]. Specifically, in the case when 

( ) ,nx t R∈  the number of the variables to be determined 

in (32) is 2
8.5 5.5 ,n n+  while in [14] the number of 

variables is 2
14 6n n+ . That is, the variables in [14] are 

around 1.6 times more than those in Corollary 2. 

However, our result may provide less conservative 

results than Theorem 1 in [14] as shown example 2 of 

Section 4. 

Remark 4: Very recently, He, et. al. [16] provided 

thestability condition for delay NNs by introducing 

slackvariables. It is worth pointing out that Corollary 2 in 

this paper is equivalent to Theorem 1 in [16] by 

following Finsler’s lemma. That is to say, Nj and 

( 3,4,5)jM j =  in [16] are useless in reducing the 

conservatism of the criterion, which shows that more 

variables in conditions do not necessarily make less 

conservative results and can be seen from the example 2 

in section 4. 

 

4. NUMERICAL EXAMPLES 
 

In this section, we use two examples to show the 

benefits of our results. 

Example 1: Consider the uncertain delayed NNs (1) 

1 0 1 0.5 2 0.5
, , ,

0 1 0.5 1.5 0.5 2
C A B

− −     
= = =     − −     

0 0 0.5 0
, ,

0.1 0.1 0 1
A

H N
   

= =   − −   
 

1 2

0.1 0.1 1 0
, ,

0 0 0 0.5

0.4, 0.8.

B CN N

k k

   
= =   
   

= =

 

For this example, when 0J = , it is easy to check that 

the condition in [19] is not satisfied. It means that they 

fail to conclude whether this system is robust stable or 

not. On the other hand, the results in[23] and Theorem 1 

in this paper can verify theglobal robust stability in this 

example. Therefore, Theorem 1 can provide less 

conservative result than [23] from the comparisons in the 

following Table 1. 

Example 2: Consider the delayed NNs in [12] 

{1.2759; 0.6231; 0.9230; 0.4480},C diag=  

0.0373 0.4852 0.3351 0.2336

1.6033 0.5988 0.3224 1.2352

0.3394 0.0860 0.3824 0.5785

0.1311 0.3253 0.9534 0.5015

A

− − 
 − − =
 − − −
 
− − − 

, 

0.8674 1.2405 0.5325 0.0220

0.0474 0.9164 0.0360 0.9816

1.8495 2.6117 0.3788 0.8428

2.0413 0.5179 1.1734 0.2775

B

− − 
 − =
 −
 
− − 

, 

1 2 3 4
0.1137, 0.1279, 0.7994, 0.2368k k k k= = = = . 

Table 1. Comparisons of maximum allowed delay h. 

 Method 0.5µ =  0.9µ =  

J=0 [23] 2.8551 0.8634 

 Corollary 1 2.9359 0.9776 

J=0.3 [23] 2.9653 0.8629 

 Theorem 1 3.0482 0.9750 

 

Table 2. Comparisons of maximum allowed delay 

Method 0µ =  0.9µ =  
Number of 

variables 

[12] 1.4224 -- 52 

[18] 1.9321 -- 70 

[14] -- 1.3164 248 

[16] 3.2793 1.5847 222 

[23] 3.2793 1.5847 158 

Corollary2 3.5841 1.8090 158 

 

For this example, it can be checked that Theorem 1in 

[4] and Theorem 1 in [12] are not satisfied, whichmeans 

that they fail to conclude whether this systemis 

asymptotically stable or not. For different ,µ  TableII 

gives the comparison results on maximum allowed time 

delay h via the methods in [12,15,16,18,23], in which 
'' ''−  means that the results are not provided to the 

corresponding cases.  

 

5. CONCLUSIONS 

 

In this paper, we consider the problem of robust 

stability for NN with time-varying delays and linear 

fractional uncertainties. By introducing a tighter 

inequality when estimating the upper bound of the 

derivative of Lyapunov functionals, new delay-

dependent stability criteria are established in term of 

LMI. It can be shown that the obtained criteria are less 

conservative than previously existing results through the 

numerical examples. 
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