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Abstract
Purpose  Artificial intelligence (AI) has contributed to the advancement of medical research, particularly cancer research. 
AI technology is an inclusive science comprising computer science, cybernetics, psychology, neurophysiology, medical 
science, and dialectology.
Methods  In the present review, we first addressed the new developments of AI in the oncology-related area and its application 
in the progression of anticancer drugs and treatment. Then, we discuss the state-of-the-art status and progress outlook of AI.
Results  Comprehensive Cancer Information from the National Cancer Institute (NCI) suggests that AI, deep learning (DL), 
and machine learning (ML) can be utilized to improve patient outcomes in cancer care. AI technology can be used to antici-
pate the action of anticancer drugs and/or aid in the development of anticancer drugs. AI technology can aid physicians in 
making accurate treatments, decreasing nonessential surgeries, and assisting oncologists in progressing treatment plans for 
cancer patients. Thus, AI can improve the speed and accuracy of cancer detection, assist with clinical decision-making, and 
result in better health outcomes.
Conclusions  We conclude by summarizing the challenges and possible future directions—along with their limitations—of 
AI-assisted anticancer medication research in the context of cancer. The application of AI in cancer research has a significant 
future in prognostication and decision-making given the expanding tendency.
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1  Introduction

Artificial intelligence (AI) refers to the intelligence that is 
discovered by machinery built by a human being. AI tech-
nology is an inclusive science comprising computer science, 
cybernetics, psychology, neurophysiology, and dialectology. 

In 1950, Alan Turing was the first person to think up the idea 
of using computers to emulate intellectual activities and peril-
ous thinking [1]. In 1956, AI was invented at the Dartmouth 
conference. Subsequently, the continuous progression of the 
connotation of AI has constantly increased, and generally, it 
has developed in various names, such as artificial neural net-
works, machine learning (ML), and deep learning (DL) [2]. 
AI appears to be linking the gap of accession to data and their 
notable understanding of cancer. These methods have revealed 
better exceptional capabilities and deteriorated approaches 
[3]. DL is a vital part of AI, which can automatically remove 
features from large volumes of data. Furthermore, DL can 
discover the data in images that cannot be recognized by the 
human eye [4]. This is of inordinate meaning for the initial 
diagnosis of cancer based on the image data. Additionally, AI 
can aid in the diagnosis and treatment of cancer [5]. Similarly, 
AI can directly create rapid and instinctive decisions to clear 
up difficulties. This is not a problem because AI can intensely 
augment the present patterns of cancer research. To provide a 
complete representation of the present situation of the actions 
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played by AI in the treatment of cancer, a regular appraisal 
was performed to scrutinize the devices related to AI, which 
has already acquired an authorized agreement for inflow-
ing into oncology medical practice, including its connected 
areas. To this goal, scientists have recovered entirely AI-based 
machines that have received Federal Drug Administration 
(FDA) approval in cancer-associated areas, removing entirely 
potential data by investigating official FDA databases. Such 
kinds of data were also combined with all earlier connected 
reviews and/or comments. Complete data were arranged to be 
distinctly presented by the precise oncological regions in the  
script in the figure below (Fig. 1) [6].

John McCarthy 1956 invented the term AI, as today’s 
science and engineering technologies produce intelligent 
devices [7]. Currently, AI signifies a developing and quickly 
growing pattern that regards diverse technical areas, which 
are also dedicated to the treatment of cancer [8]. It can be 
understood as a general idea representing the capability of a 
device to acquire and identify designs and connections from 
an adequate quantity of illustrative models and to apply this 
evidence for enhancing the present method regarding the 
method of decision-making in a particular area [9].

In oncology, AI is reforming the current situation, aiming 
to assimilate the enormous quantity of data obtained from 
multiomics scrutinizes with present developments in good 
presentation calculating and revolutionary DL approaches 
[10]. In particular, the uses of AI are increasing and include 
innovative methods for cancer detection, diagnosis, screen-
ing the depiction of cancer genomics, scrutiny of the cancer 
microenvironment, and analysis of biochemical markers [11].

For a good understanding of present roles as well as 
future views of AI, two vital terms that are strongly related 

to AI should be rational: ML and DL. ML is a universal 
concept that indicates the aptitude of a device in learning 
and hence developing the designs and models of scrutiny, 
while DL specifies an ML method that uses multilayered 
and deep networks to accomplish an enormously prophetic 
concert. It is well known that these two ideas are essential 
in AI in the treatment of cancer.

In the present review, we first addressed the new devel-
opments of AI in the oncology-related area and its applica-
tion in the progression of anticancer drugs and treatment. 
Then, we went on to discuss the state-of-the-art status and 
progress outlook of AI. The related literature was studied 
and analyzed, and a systematic review was performed. 
We searched the significant and high-quality literature 
from high-ranked journals for significant interpretation. 
Simultaneously, we scrutinize additional literature to 
enhance authentication. We discuss cancer diagnostics in 
the oncology-associated area wherein clinically AI already 
has shown an enormous effect. We concluded by outlining 
the difficulties and potential future paths of AI-assisted 
anticancer drug research, with limitations, and future 
directions in cancer.

2 � Conventional cancer diagnosis 
and treatment approaches

Traditionally, a patient seeks medical attention from a doc-
tor when they have symptoms such as hard lumps on their 
bodies or strange patterns on their skin. The clinic com-
piles the patient's clinical history, screening exams, and 
medical imaging as the initial step in the cancer detection 
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Fig. 1   Present status of AI in cancer and its associated areas. Outline the images of the FDA-approved AI-based devices. “Reproduced with per-
mission from which was published under Creative Commons Attribution 4.0 International License [6]” 
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process. The screening test looks for people who have  
cancer or precancer but have not yet displayed any symp-
toms to quickly refer them for further testing and treatment  
if necessary. Several scan modalities can be used to per-
form a prestage analysis. This is carried out as a preven-
tative measure to avoid cancer in a high-risk population 
being discovered too late. After a questionable discovery, 
tissue samples from the affected area are collected and 
examined in a lab. For additional information on the find-
ings, medical professionals are consulted [12, 13]. They 
compile, synthesize, and analyze the pertinent data while 
also recommending a diagnosis. The appropriate course 
of therapy is suggested, and the patient is advised of the 
current diagnosis and prognosis. With possibilities for 
speedy diagnosis and the capacity to learn from mistakes, 
this procedure is advantageous for patients as well as the 
healthcare system. Nevertheless, this procedure has room 
for error and is adaptable based on the medical specialty.

Early detection is recognized as a crucial goal by many 
international institutions, including the World Health 
Organization (WHO) and the International Alliance for 
Cancer Early Detection (ACED). Screening can increase 
early cancer diagnosis and mortality, according to sev-
eral studies. However, discussions about patient selection 
and risk-benefit trade-offs persist, and concerns are raised 
about what is perceived as a "one size fits all" approach 
that is at odds with the objectives of personalized medi-
cine, even in disease groups such as breast cancer that have 
long-standing screening programmes in place [14–16]. 
Risk assessment and patient selection provide significant 
obstacles to screening initiatives. Shortly thereafter, AI 
algorithms may play a part in streamlining this process 
because of their ability to handle enormous amounts of 
multimodal data and discover signals that would other-
wise be challenging to detect [17–19]. Additionally, AI 
can help discover cancer early on by automating clinical 
workflows in situations when capacity is limited and start-
ing an investigation or referral in patients who have been 
screened based on clinical characteristics [20]. This study 
discusses the potential applications of AI for early cancer 
diagnosis in both symptomatic and asymptomatic patients. 
Special emphasis is placed on the types of data that can be 
used and the clinical areas most likely to undergo changes 
in the near future. We discussed the areas where AI is 
anticipated to have clinical influence in the near future 
using exemplar cancer groups as examples (Fig. 2).

With increased concerns about the lack of diagnostic staff 
and infrastructure, particularly in the wake of the COVID-
19 pandemic that disrupted diagnostic workflows and halted 
screening programmes, it is expected that AI-based workflow 
triage will play a larger role in the near future [22, 23]. Based 
on risk, these systems are meant to filter diagnostic test results 
and assign cases for specialist examination by pathologists 

or radiologists, for example, to prevent the large number of 
routine or low-risk tests from being escalated (Fig. 3).

Gehrung et al. recently published a paper [25] that used 
deep learning to triage pathology workflows. Reflux-
induced epithelial metaplasia, or Barrett's esophagus (BE), is 
a risk factor for esophageal cancer that necessitates extensive 
diagnostic resources for monitoring endoscopies and biop-
sies [26]. The advent of novel nonendoscopic techniques, 
such as Cytosponge, enhances the patient experience but 
makes the pathology resource shortage worse because it 
generates cellular material that needs to be reviewed by a 
pathologist [27]. These studies offer solid proof that AI sys-
tems may be effectively incorporated into clinical workflows 
and that, with the right risk thresholding, they can improve 
triage and lessen the workload associated with diagnosis.

The amount of time that medical experts can devote to 
making a diagnosis is often limited, and it could be chal-
lenging to make inferences from nonstandardized data from 
several modalities. Additionally, the process could take 
longer than anticipated [28] because a diagnosis needs to be 
made by several experts from various medical disciplines. 
The difficulty of conventional cancer treatment stems from 
the need to try and test patient-specific therapy combina-
tions. Mechanical, physical, chemical, and biological ther-
apies are the main approaches used to treat patients with 
malignant disorders. The prescribed customized treatment 
plan includes one or more conventional modalities, such as 
chemotherapy, surgery, and radiation.

AI will develop and become more widely used in the 
medical industry in the future (Fig. 4) because of ongoing 
advancements in computer hardware and software as well 
as AI algorithms.

3 � Role of artificial intelligence  
in cancer management

3.1 � Development of anticancer drugs and AI

Nowadays, AI is used to many aspects of cancer research, 
including image classification of aberrant cancer cells [29], 
target protein structure prediction [30], and drug-protein 
interaction prediction [31, 32]. These findings show how 
artificial intelligence methods can completely transform 
the way anti-cancer drugs are designed. Figure 5 illustrates 
some applications of artificial intelligence in anti-cancer 
drug design processes.

AI technology can be used to anticipate the action  
of anticancer drugs and/or aid in the development of 
anticancer drugs. Several types of cancers and the same 
medications have various responses, and data from large 
screening methods frequently expose the association 
between genomic erraticism of cancer cells and drug 
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action. Lind et  al. developed a random forest model 
by assimilating screening data and ML, the model can 
anticipate the action of anticancer agents according to the 
mutation state of the cancer cell genome [34]. Wang et al. 
developed a drug sensitivity estimation model based on 
an ML model termed an elastic net regression model [35]. 
The literature has reported that ML effectively predicts 

drug sensitivity in ovarian and gastric cancer patients [35] 
as well as endometrial cancer [36].

These cancer patients were predicted through the ML 
model to be resistant, such as ovarian, gastric and endo-
metrial cancer patients treated with anticancer drugs such 
as tamoxifen, 5-FU, and paclitaxel, respectively. The 
abovementioned cancer patients were shown to have a 

Fig. 2   AI in clinical settings for early cancer detection. “Reproduced with permission from [21]”. NLP: natural language processing; EHR: elec-
tronic health record. NGS: next-generation sequencing; DL: deep learning; ML: machine learning

Fig. 3   A sample triage pathway for diagnostics. Each examination is 
given a risk category and confidence estimate by the AI model, and 
scans that are deemed high risk or have low diagnostic confidence are 

forwarded to a professional for review. “CT scans from the publicly 
available LUNGx dataset [24]”
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poor prognosis. Authors suggest AI-technology has high 
potential in anticipating the sensitivity of chemotherapeu-
tic agents. Additionally, AI can play an outstanding role in 
inscribing drug resistance in cancer patients [37]. AI can 
rapidly comprehend in what way cancer cells develop resist-
ance to anticancer drugs through learning and analyzing 
data on enormous drug-resistant cancers, which can assist 
in enhancing anticancer agent development and enhancing 
the management of drug applications in cancer.

AI can control the application of anticancer agents and 
estimate the tolerance of anticancer agents, thus improving 
the regimen of cancer treatment. AI technology can aid phy-
sicians in making accurate treatments, decrease nonessential 

surgeries, and assist oncologists in progressing treatment 
plans for cancer patients [38].

AI mostly concentrates on assessing the therapeutic impact 
and aiding doctors in regulating therapeutic strategies in cancer 
immunotherapy. Scientists established an AI platform based on 
ML to precisely forecast the treatment impact of apoptotic cell 
death protein 1 (PD-1) inhibitors. This platform can efficiently 
estimate the impact of immunotherapy in patients with pro-
gressive solid tumors who are sensitive to PD-1 inhibitors [39]. 
The authors developed an ML technique based on the human 
leukocyte antigen (HLA) mass spectrometry database that can 
boost the recognition of cancer neoantigens and enhance the 
effectiveness of cancer immunotherapy [40].

Fig. 4   AI's potential for use in cancer. “Reproduced with permission from which was published under Creative Commons Attribution 4.0 Inter-
national License [30]”
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3.2 � The role of AI in cancer chemotherapy

AI technology mostly concentrates on the interaction 
between chemotherapy and cancer patients in cancer chem-
otherapy. The major applications of AI include the treat-
ment of cancer by chemotherapeutic agents, estimation of 
anticancer drug tolerance, and optimization of cancer treat-
ment programs. AI technology can adjust the application of 
anticancer agents and estimate the tolerance of anticancer 
agents, thus augmenting the administration of chemother-
apy. AI can aid physicians in providing accurate treatment 
decisions, decrease needless surgeries, and assist doctors in 
progressing cancer therapy strategies [41].

AI can efficiently and quickly accelerate the combina-
tion chemotherapy process for cancer. Researchers used 
"CURATE, AI" to examine the best doses of medications, 
such as zen-3694 and enzalutamide, which improved the 
efficacy and tolerability of the combined therapy [42]. When 
Gulhan et al. created DL, they showed that it can identify 
cancer-infected cells with HR deficit with 74% precision. 
They also calculated that poly adenosine diphosphate-ribose 
polymerase (PARP) inhibitors could assist patients [43]. The 
author developed an ML process that can interpret the toler-
ance of breast cancer to anticancer drug treatment. Earlier 
literature stated the association between chemotherapeutic 
agents and genetic materials of cancer patients, which was 

Fig. 5   Some of the uses of AI in the development of anti-cancer 
medications. The models based on deep learning mentioned above 
are typically used to implement the bottom (de novo drug design). 
Reinforcement learning has been widely applied recently. An iterative 

chemical graph generating method is demonstrated in the workflow 
example of a graphical chemical structure with an O–C–O relation-
ship above. “Reproduced with permission from which was published 
under Creative Commons Attribution 4.0 International License [33]”
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able to differentiate between the impacts of two chemothera-
peutic agents such as Taxol and gemcitabine [44].

Moreover, studies suggest that the DL process is crucially 
higher than the Epstein‒Barr Virus-DNA-based model in 
the danger stratification and supervision of introduction 
treatment for nasopharyngeal cancer [45]. This indicates 
that the supervisory function of the DL technique can be 
applied as a promising indicator to estimate the initiation of 
chemotherapy for progressive nasopharyngeal cancer [46].

ML procedures can be accomplished on high-quantity 
screening data to progress models that can estimate the 
feedback of cancer cell lines as well as cancer patients 
to innovative medicines and/or drug combinations [47]. 
Researchers are quickening drug discovery by applying 
ML to produce and make inverse synthesis pathways for 
drugs. The entire method of generating an innovative 
medication generates a large amount of data. ML sug-
gests a large chance to process chemical data and generate 
outcomes that may assist us in the progression of drugs 
[48]. ML can also aid us in processing data collection 
throughout the years and/or in a very short period [49]. 
Additionally, it will aid us in building further decisions 

that would otherwise have to be made by forecast and 
investigation [50].

DL is an exceptional ML system that has accomplished 
the highest performance in drug discovery and various 
fields [51]. These kinds of models have an inimitable fea-
ture that may create those more appropriate for multifac-
eted responsibilities of modeling drug responses based on 
biological as well as chemical data, but the use of DL in 
the response of drug prognostication has only newly been 
investigated (Fig. 6) [52].

AI interventions in cancer research can be more effec-
tive if proper data are available for developing ML and DL 
models. Figure 7 shows the broad approaches to cancer 
research using AI.

3.3 � AI and radiotherapy

Lin et  al. applied the 3D convolutional neural network 
(3DCNN) to accomplish an automatic explanation of naso-
pharyngeal cancer, with a precision of 79%, which is equiva-
lent to radiotherapy [55]. The function of AI technology in 
radiation oncology is presented in Table 1.

Fig. 6   Usages of AI, ML, and DL in digital healthcare and cancer to settle healthcare problems and anticipate optimum therapy results. “Repro-
duced with permission from which was published under Creative Commons Attribution 4.0 International License [53]”
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Scientists developed automatic software based on the 
DL system that abridged the time it took to strategy radia-
tion treatment to a short time. The AI software generated 
a treatment plan that was comparable to the patient’s con-
formist therapy strategy [61, 62], and the time was seriously 
decreased (Fig. 8). Cha et al. developed a predictive model 
that evaluates the response to bladder cancer therapy by 
combining the DL approach with radiomics [63].

3.4 � AI and cancer imaging are seeing better 
with complicated neural networks

Image scrutiny has been shown to be among the most effec-
tual approaches in that AI has a wedged society. Assuming 
that a large quantity of digital imaging data exists within the 
medication, there is cumulative exhilaration about the use of 

the same methods for imaging within oncology (Table 2). 
This cycle in image investigation was catalyzed through the 
progression of a specific DL technology, the convolutional 
neural network (CNN). CNNs analyze pixel-level data from 
images. CNN-based models have recently been shown to be 
equivalent to human beings in picture categorization and 
object detection [64]. Furthermore, there has been interest 
in the application of DL to estimate the toxicity of cancer 
therapy. Recently, a CNN method has been used to anticipate 
the toxic impacts of combination databases of protein‒protein 
and drug-protein interactions [65].

3.5 � AI and clinical consequences

In interior medical oncology, AI has progressively been used 
to connect the power of the electronic health record (EHR) 

Fig. 7   Methods for cancer research utilizing AI. “Reproduced with permission from which was published under Creative Commons Attribution 
4.0 International License [54]”

Table 1   The function of AI in radiation oncology 

Stage of the workflow Current AI role Current and future
inferences

Ref

Tumor segmentation DL technique in
outline OAR and target tissue

Quicker, more reliable outline; and obliging in adaptive planning [55]

Image acquisition Progression of CT scan from
MRI images

No necessity for distinct development CT; and greater for image 
registration

[56]

Image registration DL approaches Quicker and better accuracy image registration than intensity-based
processes

[57]

Radiation planning Voxel-based dose determination and
dose monitoring

Quicker and better specific planning
process

[58]

Radiation delivery Utilizing soft resort activator 
regulatory flexion of the neck

Reduced intrafraction motion [59]

Applying DL for assessing
breathing pattern

Precise tumor followed by slight
errors of lag and predictive estimate

[60]
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(Table 3). Specifically, AI-based usual language processing 
methods have revealed potential in forecasting the expansion 
of ailments across enormous healthcare systems. Mount Sinai 
stated that a DL-based AI process modeling EHR was able 
to anticipate the progression of various ailments with 93% 
precision in general, comprising cancers of the prostate [74].

This study discovers five novel drug‒drug interaction 
estimations, and finally, those were found to have supported 
scientific proof. The toxic effect of predicted radiotherapy has 
created important interest in a few years using AI [75]. Basic 
neural networks, CNNs, and other ML techniques have stated 
the use of medical and dosimetric data to forecast the toxicity 
of the urinary system resulting from prostate radiotherapy out-
comes [76], hepatobiliary toxicity after hepatic radiotherapy, 
and rectal toxicity for cancer patients who received radiother-
apy for the treatment of cervical cancer [77].

AI is starting to develop in the translational oncology 
area. To predict protein structure, DL neural networks have 
also been applied [85] to categorize cells into a separate step 
of mitosis and to even forecast the future lineage of parent 
cells based on microscopy images [86].

The progression of drugs and reuse has become an attractive 
choice for DL. One cluster utilized DL Artificial neural network 
(ANN) skilled in transcriptomic retort to medicines to estimate 

with better precision the probability of unsuccessful clinical tri-
als of more than two hundred examples of medicines [87]. One 
more application of ANN to anticipate the sensitivity of cancer 
cells in the treatment of genomic as well as chemical properties 
has been reported [88]. Additionally, CNNs have been used to 
anticipate peptide-major histocompatibility complex binding 
[89], which may have implications for oncological immuno-
therapy expansion. Table 4 outlines the uses of AI technology 
in translational oncology that have been investigated.

Scientists developed a process that can scrutinize the 
digital images of women’s cervix and precisely recognize 
the precancerous wounds that are essential for treatment, 
which leads to a decrease in unnecessary treatment for can-
cer patients [93]. Authors developed an ML device that can 
decrease the overtreatment of wounds doubted of breast 
cancer. The device can analyze that more dangerous breast 
wounds are likely to become cancer, aiding physicians in 
making accurate decisions for treatment and diminishing 
unnecessary operations [94].

3.6 � AI and clinical decision making

Assuming the cumulative quantity and stage of published 
work, clinical research registration, drug development, and 

Fig. 8   Automatic description of cancers and organs at threat. The 
use of AI technology in radiotherapy mostly comprises cancer target 
areas, the delineation of organs in danger, and the automatic prepa-
ration of radiotherapy strategies. AI technology can automatically 

understand the intelligent delineation of radiative images without 
manual registration interpolation and other operations. “Reproduced 
with permission from which was published under Creative Commons 
Attribution 4.0 International License [125]”
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biochemical marker detection in cancer in recent years, there 
is a better chance than ever for AI to help in creating these 
data and supervising decision-making. Numerous saleable 
uses in progression use DL and natural language processing 
to this goal [95].

These utilizations are being planned to connect patient 
data to databases of clinical trials and to match patients to 
suitable clinical trials countrywide. One more algorithm 
uses ML to choose the accurate research medicine expan-
sion for a specified patient. There has also been interest in 
using AI integrated with patient data and national therapeu-
tic strategies to supervise cancer treatment, with the great-
est protuberant example being IBM’s Watson for Oncology 
(WFO) [96]. Whereas this area of AI use is in its promising 
steps, to enhance continuous performance, there is also a 
large potential to progress medical practice.

The DL technique builds cancer therapy selections more 
intellectually. AI can find the most appropriate therapeutic 

strategy for oncologists by learning from clinical big data 
[97]. Advanced a Clinical Decision Support System (CDSS) 
based on DL technology that can extract and assess a large 
quantity of clinical data and create decisions regarding 
cancer therapy. The study reported the significance of AI 
technology in aiding oncologists to boost cancer treatment 
strategies [98].

4 � Challenges and constraints

4.1 � Data admittance and equity

Directly contributing to this complication of overfitting are 
problems with information access and excellence. DL neural 
networks, more than other ML systems, need large quantities 
of data. This can cause a problem in health care when striv-
ing to use AI for an ailment process with low prevalence. 
These problems are beginning to be addressed, with increas-
ing emphasis on efficient data capture [99] and several vari-
ous institutional data sharing contracts [100]. Strategies have 
been anticipated to encourage findable, accessible, interop-
erable, and refillable (FAIR) data use [101], and there are 
now chances for research clusters to publish their data itself, 
which may boost openness [102].

4.2 � The ethical concern of AI and ML‑based therapy

Artificial intelligence has a big impact on healthcare sys-
tems. It may cause distress in terms of diagnosis and therapy, 
exhibiting a high degree of moral thought. ML healthcare 
employs a range of techniques, from fully autonomous AI 
for cancer diagnosis to nonautonomous mortality predic-
tions to oversee budget allocations in healthcare. AI and ML 
treatment options are expanding, ranging from community-
based robots to simulated psychotherapists for a range of 
issues [103]. Transparency is the main issue with AI today. 
It is challenging to characterise and evaluate a variety of AI 
and ML systems, primarily deep image inspection meth-
ods. Even medical professionals and/or scientists who are 
aware of this process are unable to explain it. Researchers 
have argued that continual use of AI and ML in therapy may 
create damaging effects, thereby suggesting that select data 
will not match current clinical data and would lead to impre-
cise conclusions [104]. AI can also be used in psychologi-
cal practice to both increase and decrease patient autonomy. 
These technologies are required in order to educate patients 
and ensure that they do not mislead AI systems intended for 
human usage. Furthermore, consenting to uses outside of the 
healthcare environment raises issues about suffering [105].

AI is vulnerable to misjudgment and improper risks. 
Naturally, the brain of a human being has a low capability 
to process a large volume of data and existing information 

Table 2   Applications of AI in imaging

SVM support vector machine

Disease
Site

AI Task Method Ref

Head and
Neck

Lymph node
categorization and
histopathologic
forecast (CT)

DL [55]

Lung Histopathologic
categorization and
genetic mutation
estimation
(histopathology)

DL [58]

Colorectal Polyp recognition
and categorization
(endoscopic)

DL [66]

Brain Brain tumor
classification and
genetic mutation
prediction (MRI)

DL [67]

Colorectal Lymph node
identification and
classification (MRI)

DL [68]

Breast Tumor recognition
and classification
(mammogram)

DL [69]

Head and
Neck

Tumor autosegmentation
(CT)

DL [70]

Prostate Prostate gland autosegmentation
(MRI)

DL [71]

Skin Skin scratch
classification and
histopathology
forecast (photograph)

DL [72]

Prostate Tumor classification
and Gleason Score
estimation (MRI)

SVM/
Adaptive
Boosting

[73]
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[106]. The scientific community reported that DL devices 
have adequate problems at the micro and macro levels in the 
medical area. These problems, such as unfettered exercise 
set procedures, unsupervised learning accomplishments, 
and patient data privacy, require significant attention in the 
direction of human–computer interfaces (HCIs) and the 
application of AI [107]. The reproducibility of a clinical 
study is a major problem at the molecular level of drug dis-
covery, which takes several centuries for the inauguration of 
effective preparation in the sooq after clinical trials [108]. 
Assessment of an enormous volume of intricate and var-
ied healthcare data can be achieved through the scrutiny of 
big data and ML devices to diminish limitations and false-
positive data [109].

4.3 � Interpretability of black box problem, 
limitations and future instructions

One of the fundamental problems is to the acceptance of AI 
in health care is the concern that these models, despite nor-
mally accomplishing high presentation, are to some extent 
opaque. For example, a DL model may properly estimate 
that a patient will grow pancreatic cancer based on his past 
two years of EHR data. Currently, we are inadequate in our 
ability to assess the accurate logic behind DL-based pre-
dictions. This is frequently stated as the “black box” prob-
lem [110]. In medical practice, it has usually been vital in 
clinical decision-making to know the logic for each decision. 
In contrast, DL uses formless input data, and vast knowl-
edge creation occurs within the concealed layers. Thus, it 
becomes a problem to assess the precise characteristic of the 
input data contributing to the consequence. This interpret-
ability challenge has enormous implications for the accept-
ance of AI-based systems in healthcare, both from doctor 
and supervisory outlooks [111]. Undertaking the black box 
problem has now become a focus of research [112].

In AI image scrutiny processes, numerous approaches 
have been improved, including feature imagining, salience 
maps, and sensitivity scrutinizes, where certain portions of 
the image are concealed to the impact on prediction [113]. 
Although these approaches have developed in a few years, 
further work is needed to better clarify the decision-making 
logic with deep neural networks.

Owing to AI's diverse applications, it would be practically 
impossible and extremely laborious to review every research 
paper on the subject. The papers included in the survey were 

Table 3   Uses of AI in clinical 
consequence prediction

SVM support vector machine

Disease
Site

AI Task Method Ref

Lung Immunotherapy response using
CT images and histopathology

Elasticnet
Linear
Regression

[63]

Multiple Patient disease classification and outcome prediction DL [74]
Prostate Acute radiotherapy toxicity prediction Artificial Net/SVM [76]
Breast/
Brain/
Renal

Survival prediction using genomic and clinical data DL [78]

Cervical Acute radiotherapy toxicity prediction DL [79]
Brain Survival prediction using MRI images DL [80]
Head and
Neck/
Lung

Disease outcome prediction and classification using CT
images

DL [81]

Colorectal Chemoradiation response using CT images DL [82]
Liver Survival prediction using RNA and miRNA sequencing and

methylation data
DL [83]

Prostate Late radiotherapy toxicity prediction Artificial
Neural Net

[84]

Table 4   Applications of AI in translational oncology

MHC major histocompatibility complex

AI Task Method Ref

Cell cycle reconstruction
and disease progression
prediction

DL [60]

Polypharmacy side effect
prediction

DL [65]

Drug-target interaction
strength prediction

DL [90]

Cancer cell drug
sensitivity prediction

Artificial neural net-
work/random forest

[88]

Peptide-MHC binding prediction DL [89]
Anticancer drug synergy prediction DL [91]
Transcriptomic-based
drug repurposing prediction

DL [92]



428	 Health and Technology (2024) 14:417–432

chosen carefully for their AI-related substance and signifi-
cance. Newer research is prioritized more when providing 
interested researchers with an overview of current trends. 
Thus far, four primary domains of attention have been dis-
tinguished: a means of providing an explanation for intricate 
black-box models, neural network performance and analysis, 
boosting the acceptance of white-box models among devel-
opers, and strategies to eliminate prejudice and increase 
equity [114]. Investigating novel ideas broadens one's meta-
information and aids in the assessment of local algorithms' 
individual class predictions [115]. The significance of each 
concept rises when it is broken down and dissected. AI will 
have an impact on people's daily lives in both positive and 
negative ways, as life's ups and downs will inevitably bring. 
The effects of this technology are numerous. It must be 
implemented by all organizations for their websites, operat-
ing algorithms, games, etc. Governance, new technologies, 
and ethics will be important to the future. Elite companies 
are always developing Artificial Intelligence (AI)-based 
products via rigorous technological application.

Whereas AI technology is quickly assimilated into the 
scientific research of cancer, the rest of the work is to be 
done to interpret these works into real-world, medically sig-
nificant uses. One of the major fences is in exterior authenti-
cation as well as evidencing the generalizability of DL uses. 
Certain intricacies of neural networks and the tremendously 
enormous quantity of variables, where there is a greater pro-
pensity for neural networks to make overfitted models that 
do not generalize throughout the various populaces. More-
over, since there is a substantial volume of heterogeneity 
of clinical data throughout the institutions, several exterior 
authentication groups might be needed for the evidence of 
the accomplishment of an application [116].

The fact that many AI models have not undergone the 
same thorough evaluation as would be needed for other 
medical therapies is arguably the most important critique of 
AI. First, as was already said, certain technologies have been 
utilized in clinical settings without being published in a peer-
reviewed journal, which means they have not been exposed 
to the kind of rigorous adversarial input that the scientific 
community expects. Furthermore, considering assertions 
that academia is still experiencing a reproducibility crisis, it 
is troubling that a methodology that is not published cannot 
be replicated [117]. Additionally, there are surprisingly few 
prospective studies despite the sharp increase in AI publica-
tions using very large datasets [118].

The existing techniques of cancer detection and treatment 
have drawbacks, including greater rates of false-positive 
test results that suggest that someone does not have lung 
cancer. For instance, in CT scans, some noncancerous lung 
abnormalities closely resemble cancer. Additionally, an 
early diagnosis may mean that certain malignant nodules 
found during the scan are not apparent to the human eye. The 

patient experiences more pain during therapy as a result of 
the increased number of treatment trials and related costs. 
There is a significant risk associated with repeatedly subject-
ing individuals to radiation for routine screening [119]. AI 
developments have been shown to reduce the limitations of 
current cancer diagnostic and treatment methods, and they 
have the potential to bring about revolutionary advances in 
the field of cancer healthcare.

5 � Discussion and future outlook

The current paper provides a comprehensive review of the 
status and applications of AI in cancer-related fields, specifi-
cally narrating the devices related to AI technology that have 
already received official approval to enter medical practice. 
AI has demonstrated cross-cutting significance in all scien-
tific branches since its inception, indicating promising future 
development. As stated in the review, this advancement 
has piqued the interest of researchers in cancer and related 
fields. In general, the use of FDA-approved machines has not 
been considered superfluous of standard scrutiny or diagnos-
tic workflow; however, it is envisioned as a consolidative 
device to be used in specific cases, potentially depicting the 
conclusive stage for enhancing cancer patients' treatment. 
Currently, AI is having a greater impact in this field, as evi-
denced by many approved instruments, in particular radiol-
ogy and pathology. Cancer diagnosis typically characterizes 
the critical idea of beginning to plan appropriate treatment 
strategies and medical supervision. Furthermore, this speci-
fies that the future emergence of AI technology should con-
sider uncharted but critical horizons in this landscape, such 
as drug discovery, drug administration, and follow-up plans. 
According to us, to determine a conclusive development in 
cancer treatment, AI technology development must follow 
comprehensive and multifaceted designs. This demonstrates 
one of the most significant opportunities provided by AI. 
This will allow for precise connections and integration of 
cancer-related areas in a specific patient, conceivably inter-
preting the difficult purposes of the individualized drug. 
Specific types of cancer, such as lung cancer, breast cancer, 
and prostate cancer, are now benefiting more from AI-based 
devices in clinical practice. Because AI technology is based 
on the collection and analysis of large amounts of data, pro-
gress in the treatment of rare cancers will most likely be 
delayed. When all of this is considered, rare cancers are one 
of the most important classes in precision oncology [120].

As a result, even though the potential benefits appear far 
away, current approaches to AI progression cannot ignore 
this cancer cluster. The ability to assimilate multiple and 
compound data obtained from multiomics methods to cancer 
patients is the most talented anticipation for AI. AI-enabled 
devices may be the only devices capable of adjusting the 
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large volume of data generated by various types of analysis 
[121]. However, assessing the precision of AI uses for medi-
cal decision-making remains hampered by a lack of real evi-
dence obtained from protected clinical data sources. Overall, 
AI has an emerging impact on entire scientific branches, 
including cancer and its related fields, as emphasized in this 
review. The primary stages are represented by knowing it is 
past contextual and understanding its existing accomplish-
ments for scheming novel progression approaches with real 
effects. As previously stated, AI has already entered the 
medical practice of oncology; however, ongoing and aug-
menting efforts must be justified for AI to realize its full 
potential [122]. In our opinion, the formation of multidisci-
plinary growing perspectives, the immediate understanding 
of the significance of entire cancers, including rare cancers, 
and continuous assistance for assuring their development are 
currently the most significant challenges for concluding the 
AI revolution in oncology.

6 � Conclusion

To improve chemotherapy regimens, AI can manage the 
application of anticancer agents and predict chemotherapeu-
tic agent tolerance. AI can assist physicians in making accu-
rate treatment decisions, reducing unnecessary surgeries, 
and assisting oncologists in moving cancer patients' therapy 
plans forward. AI technology has made significant contribu-
tions to the development and treatment of chemotherapeutic 
drugs [123]. Humans have limited knowledge, which makes 
it difficult to provide the best possible care. According to 
this viewpoint, if physicians choose inappropriate therapy, 
patients will miss out on appropriate treatment. It can pro-
vide significant insights and indications that human recog-
nition and individualized therapy for each cancer patient 
cannot [124]. While the various technologies suggested in 
the study have achieved significant prediction outcomes, the 
cancer mortality rate has not been reduced, possibly due 
to the numerous limitations of AI. As a result, a broader 
range of research is needed to meet the challenges in the 
field of cancer prediction. AI technology has the potential 
to accelerate the discovery of novel materials, which could 
significantly increase the spread of chemotherapeutic agents. 
AI technology is expected to soon become a major driving 
force in cancer research and treatment. We believe that AI 
technology will impact medical technology in the future.
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