
ORIGINAL PAPER

Machine learning models for the prediction of acuity and variability
of eye-positioning using features extracted from oculography

Giovanni Improta1 & Carlo Ricciardi2,3 & Giuseppe Cesarelli4,5 & Giovanni D’Addio3
& Paolo Bifulco6

&Mario Cesarelli3,6

Received: 10 January 2020 /Accepted: 10 June 2020
# IUPESM and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
During the first months of life, babies can be affected by congenital nystagmus, an ocular-motor disease making visual acuity
decrease. Electrooculography (EOG) and Infrared-oculography are utilized in order to perform eye-tracking of patients, giving
the possibility to extract from the signals several useful features. In the past years, different algorithms were used to perform the
detection of events on these features and many researchers studied the relationships between the features and physiological values
such as visual acuity and variability of eye-positioning. In this paper, machine learning techniques were used to predict visual
acuity and the variability of eye positioning using features extracted from EOG. The EOG of 20 patients was acquired, signals
underwent a pre-processing, and some parameters were extracted through a custom-made software. Frequency, amplitude,
intensity, nystagmus foveation periods and both amplitude and frequency of baseline oscillation were the features used as input
for the algorithms. Knime analytics platform was employed to perform a predictive analysis using Random Forests, Logistic
Regression Tree, Gradient boosted tree, K nearest neighbour, Multilayer Perceptron and Support Vector Machine. Finally, some
evaluation metrics were computed employing a leave one out cross validation. Considering the coefficient of determination,
visual acuity achieved values between 0.67 and 0.85 while variability of eye positioning ranged from 0.62 to 0.79. These results
were compared with past analysis with the exact same aims and dataset, obtaining a greater value as regards the variability of eye
positioning and comparable results exploiting all the features related to nystagmus as regards the visual acuity. This paper showed
the feasibility of a regression analysis performed through machine learning algorithms in detecting relationships among variables
related to congenital nystagmus.
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1 Introduction

Congenital nystagmus (CN) is an ocular-motor disease that
makes visual acuity (VA) decrease in the first months of

babies’ life [1]. It consists of involuntary, conjugated and
rhythmical horizontal to and fro movements and patients af-
fected by it have a disrupted fixation due to quick movements
of the image to watch on the retina [2]. There are different
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ways to perform eye-tracking [3] but one of the most
employed is electrooculography (EOG) that exploits the mea-
surements of skin potentials. It works by placing electrodes
and sensing the corneo-retinal potential (the resting potential
between the cornea and the retina of the eye) which is propor-
tional to the eye-movement. Finally, since the obtained signal
has low voltage, it is amplified, filtered and processed to re-
move involuntary blinks, noises and other artefacts [4–6].
Differently, Infrared-oculography (IROG) is a non-invasive
method to validate the time of foveation, an indirect measure
of VA: an infrared light illuminates the eye and the sclera
reflects it; the difference between the input and the output of
infrared light from the eye describes the eye positioning. Both
EOG and IROG are still considered good methodology for
measuring eye-movement and for eye-tracking, as testified
by Singh and Singh in their review [7].

Relationships among VA, baseline oscillations (BLO) of
both amplitude and frequency, variability of eye positioning
(SDp), nystagmus foveation periods (Tf), nystagmus ampli-
tude and frequency were studied in the past literature. Bifulco
et al. examined the association between the amplitude of the
BLO and the SDp while Cesarelli et al. suggested an expo-
nential model between SDp and VA, both focused on
foveation periods [8, 9]. Differently, other authors had their
main focus on the automatic detection of nystagmus and stud-
ied its relationships with other parameters [10–12]: Sheth et al.
proposed many associations such as between VA and nystag-
mus features or standard deviations of eye velocities and eye-
positioning [13]. Regarding the investigation of relationships
among features and physiological values, Dunn et al. studied
the extent to which use of the null zone (as opposed to other
gaze angles) affects VA in adults with infantile nystagmus
[14]. In a review, Dunn provided researchers with a clinical
viewpoint on the recent advances in the field [15].

Differently, Kelly et al. investigated and found a direct
relation between the VA with visual evoked potential and
optic disc diameter in awake children [16]. Moreover, Kelly
investigated how much eye velocity in CN deprives the de-
veloping visual system of physiological VA [16].

Due to the big amount of data, new techniques have been
used in literature in order to discover hidden patterns in
datasets: machine learning [17–19]. The growth of informa-
tion technology has brought massively engineers in the health
facilities to help clinicians during the tasks of diagnosis and
prognosis of patients, which is often a hard one [20–22].
Machine learning has been employed for a wide range of
biomedical applications in literature: Ricciardi et al.
employed it in neurology to distinguish Parkinsonisms, in
cardiology to help with coronary artery disease diagnosis
but it has been employed also with biomedical signals such
as Cardiotocography [23–25]. Of course, some difficulties
and challenges have to be faced regarding the manage-
ment, processing and understanding of big data [26].

The applications of machine learning in ophthalmology
have the tendency to tackle the thematic of brain computer
interfaces (BCI), particularly through the combination of
EOG and electroencephalography (EEG). Witkowski et al.
introduced and tested a novel hybrid brain-neural computer
interaction system fusing EEG and EOG to enhance reliability
and safety of continuous hand exoskeleton-driven grasping
motion and, similarly, Punsawad et al. used a system fusing
EOG and EEG but for different purposes. Fatourechi et al.,
instead, revealed the weaknesses in BCI studies due to a
wrong management of electromyography and EOG artefacts
[27–29]. Nevertheless, some efforts were made to make clas-
sifications based on eye-movements recording; Zemblys et al.
employed machine learning techniques to detect events in
eye-tracking data and tested different state-of-art algorithms
[30, 31]. Other past applications were focused on detecting
fixations and saccades through velocity-based and
dispersion-based algorithms, giving no information about
events though [32, 33].

Therefore, the aim of this paper is to study the relationships
between physiological values of CN affected people and fea-
tures extracted from their EOG through several machine learn-
ing algorithms (Random Forests (RF), Logistic Regression
Tree (LRT), Gradient boosted tree (GBT), K nearest neighbour
(KNN), Multilayer Perceptron (MLP) and Support Vector
Machine (SVM)) and compute some evaluation metrics to
compare the new results with the past ones without this ap-
proach. The dataset used for this paper was the same of
Cesarelli et al. and Bifulco et al. in 2000 and 2002, respectively
[8, 9].

2 Materials and methods

The EOG of 20 patients, 10 males and 10 females affected by
different forms CN with an age between 6 and 34 years, was
recorded for both right and left eyes, obtaining 40 signals.
Each patient underwent binocular and horizontal eye-
movements at different gaze position. Patients, laying on a
head support and a chin rest to reduce head motion, watched
a light stimulus at a fixation distance of 1 m. An arched,
horizontal LED-bar was used and adjusted according to the
height of the subject. The sequence of light stimuli had the
following angles: 0°, 5°, 10 °, 20°, 30°, 0°, −5°, −10°, −20°,
−30° and 0°. It lasted 2 min, holding all the positions for
10 s. Both EOG and IROG were utilized for the recording of
eye-movement with a sampling frequency of 200 Hz. IROG
was employed to deal with non-collaborative patients such as
children. Before acquiring signals, all patients were allowed to
familiarize with the device to obtain a better result.

The classic Landolt Cs technique was performed to mea-
sure VA. The Bioengineering Unit (Department of Electronic
Engineering, University of Naples ‘Federico II’) designed a
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specific software to process EOG signals and to extract nys-
tagmus features.

The characteristics of patients according to these features
were summarized in Table 1. VA ranges from 0 to 1 with steps
of 0.1 and the normal value is 1, value lower than 0.6 are
considered pathological. The SDp for normal people is equal
to 0 because it isn’t a physiological phenomena.

2.1 Pre-processing of signals and extraction of
features

A low pass filter at a frequency of 70 Hz and with a cut-off of
3 dB was applied to all signals as well as a notch filter to
reduce power line noise. Another pre-processing phase was
required to eliminate the DC and a possible linear component
to avoid electrode polarisation signal components. A low pass
differentiation algorithm for biological systems was used to
calculate eye velocities from eye positions [34].

Signal tracts, corresponding to the different gaze positions,
were extracted from an entire recording. A specific algorithm
was employed to automatically recognise nystagmus cycles
and extract nystagmus features such as amplitude, frequency,
intensity and waveform shape [35]. The foveation window
was localized in the signal by considering the time interval
for which the eye position was contained within 0.5° from the
local maximum of the nystagmus cycle, and the eye velocity
was lower than 4°/s. The time length of the foveation window
was proposed as a measurement of the Tf. The foveation win-
dow was different from the one proposed by Dell’Osso et al.
[36]. The SDp was estimated by computing the standard de-
viation of all the samples in all the foveation windows
contained in a single signal tract. Examining eye movement
recordings in our dataset, it was often observed a cycle-to-
cycle variability of the eye position and velocity in the
foveation periods during foveation windows. This cycle-to-
cycle variability looks like the result of a superimposition of
a sinusoidal-like oscillation of the baseline. The hypothesis of
considering the BLO a pure sinusoid has been held. In order to
characterize these sinusoidal oscillations, a common least

mean square (LMS) fitting technique was used starting from
an estimation of the BLO frequency estimated directly on the
FFT of the signal tract. For each signal tract the highest peak
of the power spectrum of the eye movement signal in the
range 0.1–1.5 Hz was considered as an estimator of the
BLO frequency. BLO amplitudes and phase were computed
using LMS fitting approach. Reasonably, this slow baseline
wanderingmay cause an increase of the SDp during foveation,
which in turn may hamper VA.

Figure 1 represents how some features were extracted.

2.2 Tool, algorithm and evaluation metrics

Knime analytic platform is a “business intelligence and pre-
dictive analytics” tool and was chosen to implement the algo-
rithms. This platform allows users to create workflows by
combining different nodes and to install the plugins of the
most popular programming languages and software such as
R,Weka, Matlab, and Python. It has been used in literature for
many biomedical applications: in cardiology [37, 38], neurol-
ogy [39], radiology [40, 41]. RF, LRT, GBT, KNN, SVM and
MLP were used in this study: LRT is one of the most common
algorithm for regression analysis, RF and GBT are an empow-
erment of the decision tree that is the easiest and most intuitive
algorithm in literature while KNN has a different functional
principle since it is an instance-based algorithm. Since this is
an investigative analysis, several algorithms exploiting differ-
ent principles were employed. RF, LRT andGBT are based on
the decision tree, whose basic idea is to divide a composite
problem into many easier ones. It is made up of leaves and
nodes, which stand for a predicted value and an attribute,
respectively. RF consist of an ensemble of decision trees
where each tree employs a random and partial subgroup of
attributes in each node, utilizing only a random part of the
training data. The LRT consists of a decision tree whose
leaves contain linear regression. The last tree-based algorithm
is GBT, which uses all the principles of ensemble learning to
empower the decision tree: randomization and bagging just
like the RF and boosting. In summary, RF and GBT are based
on decision tree but they exploit two different combinations of
ensemble learning principles (bagging and randomization for
RF, GB adds boosting). While the decision tree algorithm is
easy to use and understand, the KNNwas employed because it
should have good results when dealing only with numeric
attributes. It is an instance-based algorithm, which assigns
the class to the test data based on their distance from similar
training data. SVM is capable to face problems dealing with
over fitting, small dataset, not linear and/or high dimensional
data; it can be used for both classification and regression. It
aims at finding the best hyperplane that divides the dataset into
two classes and employs a non-linear mapping technique that
converts the starting data into a higher dimensional space
when they are not linearly distributed; it aims at maximizing

Table 1 Descriptive statistics ad unit of measurement of each feature

Features Unit of measurement Mean Dev. Std

Age Years 14.25 7.84

Amplitude of nystagmus Degree 6.35 2.01

Frequency of nystagmus Hz 3.34 0.46

Tf ms 56.03 17.80

BLO amplitude Degree 1.31 0.81

BLO frequency Hz 0.34 0.13

VA Tenths 0.29 0.16

SDp Degree 1.42 0.68
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the margin separating the classes to predict while minimizing
the classification errors [42]. The last algorithm, MLP, has
another different principle since it is a form of neural networks
with an input layer, one or more hidden layers and an output
layer. The training is usually performed through the algorithm
backpropagation of errors (BP) or some of its variants. The
MLP can characterize complex mappings and to address large
nonlinear problems in an effective and relatively simple way
[43].

A leave one out cross-validation was also employed since
the number of records was quite small 40, 20 patients per two
registrations (right and left eyes). The models are learned on
all the patients minus one that “is left out” for testing allowing
evaluations that are more honest. This procedure is repeated
for a number of times equal to the number of records. The
performance was evaluated with the following evaluation
metrics, recognized in literature for comparing and assessing
classifiers [44]: coefficient of determination (R2), mean abso-
lute error, mean squared error, root mean squared deviation,
mean signed difference. The features considered for
predicting VA were the same of Cesarelli et al. [8] while the
features included in the algorithms to predict SDp were the
same of Bifulco et al. (with Tf in place of VA) [9]; they are all
shown in Table 2.

3 Results

The features shown in Table 2 were used to train and test six
algorithms: RF, LGT, GBT, KNN, MLP and SVM. The tar-
gets for the regression analyses were VA and SDp and the
performance was evaluated by employing a leave one out

cross-validation. The results for VA are shown in Table 3;
those for SDp are shown in Table 4.

On the one hand, RF was the best algorithm for predicting
VA obtaining the highest coefficient of determination (R2 =
0.85) and the lowest errors. Then, there were MLP and GBT
for predicting VA with R2 respectively equal to 0.83 and 0.82
and errors that were comparable with those of RF. KNN and
SVM.

On the other hand, GBT, RF and LRT obtained low R2,
respectively, 0.68, 0.65 and 0.62. Some good results were
achieved by KNN and MLP (respectively, R2 equal to 0.74
and 0.72). The best algorithm for predicting SDp was SVM
with a R2 equal to 0.79 and the lowest errors compared to the
other algorithms.

Figures 2 and 3 represent, respectively, the features impor-
tance for the regression analysis of VA and SDp according to
the results obtained by the RF. The importance was computed
based on how often a variable was utilized for making the
splits at the first, second or third level.

SDp and Tf were the most important features for the pre-
diction of VA confirming the strong relationship between VA

Table 2 Features included in the algorithms for both predictions

Regression on VA Regression on SDp

Age Age

Amplitude of nystagmus Amplitude of nystagmus

Frequency of nystagmus Frequency of nystagmus

Tf BLO Amplitude

SDp BLO Frequency

Tf

Fig. 1 Qualitative picture of an eye movement recording including five nystagmus cycles. It exemplifies the computation of the foveation windows, the
foveation time Tf and the standard deviation of eye position during foveation SDp
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and SDp while BLO amplitude, Tf and amplitude of nystag-
mus were the most important features for predicting SDp.

4 Discussion and conclusion

Summarizing the study, the first phase consisted in acquiring
the EOG of 20 people affected by CN for both eyes. A pre-
processing was performed and, then, there was the extraction
of some features (frequency, amplitude, intensity, nystagmus
foveation periods and BLO both amplitude and frequency)
through a custom-made software, developed by the
Bioengineering Unit of the University of Naples “Federico
II”. In a second phase, four algorithms (RF, LRT, GBT,
KNN) were implemented through Knime analytics platform,
trained and test with a leave one out cross-validation their
performance underwent an evaluation through some evalua-
tionmetrics (R2, mean absolute error, mean squared error, root
mean squared deviation, mean signed difference).

The first model confirmed the results obtained by Cesarelli
et al. and Bifulco et al. with a strong dependence of VA from
SDp [8, 9]. The Tf was the second most important feature
when predicting VA and it has a physiological explanation:
when Tf has an acceptable duration, people affected by CN
can have a good vision with a VA of 0.8/0.9 that is near a
normal value; when the Tf goes below a critical value, instead,
the vision becomes blurred. This model is true if the eye-
position goes back to the foveation position after each cycle.

The second model kept into consideration and confirmed
the hypothesis that was made from the authors [8, 9]. The
nystagmus is a periodic function; thus, it should have always
the same maximum position. It seemed to be false in the set of

patients that were analysed. Therefore, the hypothesis was that
there was a BLO amplitude at low frequencies that overlapped
on top of the amplitude of nystagmus that was at higher fre-
quencies. This situation implied that the foveation position
was always different with a consequent worsening of the vi-
sion. The feature importance computed with machine learning
detected this concept, namely that increasing the Tf or the
amplitude of nystagmus makes the SDp increase.

On the one hand, Cesarelli et al. created an exponential
model called Nystagmus Acuity Estimator Function
(NAEF), function only of SDp and Tf, obtaining a coefficient
of determination of 0.85 as a measure of linearity between
NAEF with VA that is comparable to the R2 obtained through
machine learning, although they just applied linear regression
and did not model the VA with all the features [8]. On the
other hand, Bifulco et al. introduced also the BLO amplitude
and frequency and obtained a coefficient of determination of
0.69, which is lower than three machine learning algorithms
that we employed, as a measure of linearity between SDp and
the BLO amplitude [9].

When comparing these results to those obtained with the
more modern machine learning algorithms, it is clear the good
feasibility of these techniques in the context of EOG.
Regarding the regression on SDp, it was computed with a
maximum R2 of 0.79 through SVM but also KNN and MLP
obtained a R2 greater than 0.70. Concerning VA, it was com-
puted with a R2 always greater than 0.67 and with three max-
imums of 0.85, 0.83 and 0.82 through, respectively, RF, SVM
and GBT. RF have shown greater potential in predicting nys-
tagmus features. As regards the interpretation of the algo-
rithms, all the tree-based algorithms achieved good results
for the prediction of VA with R2 greater than 0.70 while the

Table 3 Performance in the
prediction of VA Random

Forests
Logistic
Regression Tree

K Nearest
neighbour

Gradient
boosting tree

MLP SVM

R2 0.85 0.72 0.67 0.82 0.83 0.68

Mean absolute error 0.05 0.06 0.06 0.04 0.10 0.48

Mean squared error 0.00 0.01 0.01 0.00 0.02 0.34

Root mean squared deviation 0.06 0.08 0.09 0.07 0.13 0.58

Mean signed difference 0.00 0.01 0.01 0.00 0.00 0.05

Table 4 Performance in the
prediction of SDp Random

Forests
Logistic
Regression Tree

K Nearest
neighbour

Gradient
boosting tree

MLP SVM

R2 0.65 0.62 0.74 0.68 0.72 0.79

Mean absolute error 0.32 0.34 0.27 0.31 0.10 0.09

Mean squared error 0.16 0.17 0.12 0.14 0.02 0.01

Root mean squared deviation 0.4 0.42 0.34 0.38 0.13 0.11

Mean signed difference 0.00 0.00 −0.04 −0.01 0.00 0.00
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instance-based ones (KNN and SVM) didn’t overcome 0.70.
For predicting SDp the tree-based algorithms were not able to
obtain a high coefficient of determination (R2 < 0.70) while
the instance-based ones were able to do it. Finally, the MLP
obtained good results in both cases (R2 > 0.70).

Dunn et al. found a strong relationship between character-
istics of nystagmus and VA [14]. He also showed that a letter
chart is typically employed for the measurement of VA in the
health facilities and, despite the struggles of clinicians to give
patients plenty of time to read the chart, there is the necessity

to go on with the next text [15]. Thus, he pushed the research
into the investigation of restricted duration optotypes.

Zemblys et al. showed that RF Forests exhibited the best
eye-movement event classification performance [31, 32].
Most of the past algorithms had a positive functioning within
assumptions on data such as an input of high-quality, or a
requirement of high sampling frequencies while training a
classifier on an extensive selection of input data allows ma-
chine learning to generalize better than hand-crafted algo-
rithms [45]. Indeed, these classifiers can be applied to many

Fig. 3 Feature importance in the
prediction of SDp

Fig. 2 Feature importance in the
prediction of VA
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kinds of data, just needing a proper training to accomplish
their tasks.

Thus, considering the feasibility of machine learning algo-
rithms used on features extracted from EOG, they could be
used also to accomplish diagnosis and prognosis tasks in oph-
thalmology like it has been done in many medical fields [24,
25, 38, 39]. Since CN is a complex pathology, in the UK a
Nystagmus Care Pathway of 7 phases was developed and our
procedures may be included in some stages of the clinical
pathway, particularly in the identification of the CN and in
the phases of finding and managing underlying causes and
associations [46]. This study agrees with the conclusion of
Zemblys et al. and augments its strength since, in this case, a
regression analysis was performed. Moreover, the findings of
Kelly et al. and Dunn et al. were confirmed, a relationship,
particularly, between VA and characteristics of nystagmus,
was found [15, 16]. There is a clear limitation that has also
been much discussed literature [47, 48] regarding the black
box nature of machine learning models; the algorithm doesn’t
provide researchers with many details, but it just gives insight
when discovering the possibility to find relationships or useful
classifications (i.e. for a diagnosis or a prognosis). Of course,
there is the possibility of future developments: only 20 signals
were analysed, and they were recorded and processed through
old instrumentation, meaning that the quality of signals and
features could be better with instrumentation that is more
modern. Finally, as shown by some researchers [14, 15], VA
isn’t the best way to measure CN; so, the use of machine
learning algorithms could be the best way to find new insights
on how to replace this measure.
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