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Abstract
Classification of neurodegenerative diseases (NDD) like Parkinson’s disease (PD), Amyotrophic Lateral Sclerosis (ALS), and
Huntington’s disease (HD) is of high clinical importance. The gait analysis based classification is attractive due to its simplicity
and noninvasiveness. In this paper, we propose a data driven features approach along with autocorrelation and cross correlation
between gait time series to create different feature set for a sample representation. Further, a rule based classifier using Decision
Tree is trained with those features to classify the neurodegenerative diseases from healthy controls. Mutual Information (MI)
analysis revealed the dominance of data driven features over auto and cross correlation based features. The classifier fed with top
500 features could produce the classification accuracy of 88.5%, 92.3%, and 96.2% for HD vs. control, PD vs. Control, and ALS
vs. control. Pooling all neurodegenerative samples into one as NDD class and applying current approach produced nearly 87.5%
of accuracy for NDD vs. control. Finally, we validated the present approach for a challenging situation of classification of less
severe patients and observed respectable accuracies of 80%, 80%, 90%, and 73.33% for HD vs. control, PD vs. Control, and ALS
vs. control, and NDD vs. control, respectively. The proposed algorithm shows potential for rule based classification system in
data driven features for Neurodegenerative disease classification.
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1 Introduction

Around 30,000 people are diagnosed with Amyotrophic Lateral
Sclerosis (ALS), same with Huntington’s disease (HD) and

1,000,000 with Parkinson disease (PD) each year in the United
States [1]. The prevalence rate of the spectrum of neurological
disorders in India has a mean of 2394 per 100,000 populations,
providing a rough estimate of over 30 million people with neu-
rological disorders (excluding neuro-infections and traumatic in-
juries) [2]. A progressive Neurodegenerative disorder like ALS
affects the nerve cells in the brain and the spinal cord. The ability
of the brain to initiate and control the muscle movements is lost
with the degeneration ofmotor neurons [3]. The primary effect of
Parkinson’s disease is on dopaminergic (the dopamine-
producing neurons) in the substantia nigra part of the brain.
Bradykinesia, gait and balance problems, rigidity of limbs, trem-
or are some of the symptoms of Parkinson’s disease [4].
Identification of factors that contribute to mobility and gait im-
pairments due to neurological impairments such as Parkinson
disease has been done [5] which shows balance is the most
relevant factor for the same. Thus exercise interventions focusing
on balance may be best able to impact gait and mobility in
Parkinson’s disease. HD is caused due to the expansion of
CAG trinucleotide in Huntingtin’s gene, which causes
polyglutamine repeat in the huntingtin protein. It is a protein
misfolding movement disorder in basal ganglia which includes
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chorea, tremor, motor restlessness and myoclonus thereby caus-
ing gait impairments [6]. The symptoms of PD, ALS, and HD,
collectively called as neurodegenerative diseases (NDD), are not
specific with easily overlooked nature. It creates a significant
overlap to each other among NDDs; leading to a misdiagnosis.
As per the report of The Michael J. Fox Foundation for
Parkinson’s research, up to 25%of Parkinson’s disease diagnoses
are incorrect. Such misdiagnosis put those patients on wrong
drugs and delays the correct treatment. Neuroimaging tests,
Computer Tomography or Magnetic Resonance Imaging, some-
times along with blood and urine tests, are the state of the art for
NDDs diagnosis at present. However, a recent study [7] conclud-
ed that conventional Magnetic Resonance Imaging (MRI) was
not found to be a reliable diagnostic tool for ALS with a sensi-
tivity and specificity of 48% and 76%, respectively. In addition,
MRI andCTare expensive, time-consuming, and require specific
skills. Hence, there is a need of alternate diagnosis method which
is quick, low-cost, and can be easily operated without specific
skills. With this motivation, in the present approach we utilized
the gait variable measurements to explore the feasibility of NDD
diagnosis from walking pattern of the individuals.

Previous works The movement disorders due to NDDs decline
the ability of a person to walk properly and lead to a disturbed
gait cycle. The analysis of gait parameters affected due to such
diseases has applications in explaining neural component of lo-
comotion and developing an automated noninvasive classifica-
tionmethodology. Among all gait parameters, the spatiotemporal
variables of gait cycles utilize the simplified instrumentation and
hence suitable for real time low resource settings [8]. The effec-
tiveness of backward walking on spatio-temporal gait variables
has been reviewed [9] where it is concluded that backward train-
ing could improve participants spatio-temporal gait characteris-
tics and is potentially useful in neurological rehabilitation.
Utilization of few foot switches provides information of stance,
swing, and double support intervals from both lower limbs [10,
11]. Due to binary nature of switches, this information is directly
available, with minimal computation, in the form of time series
for processing and does not require any extensive pre-processing
method before analysis. A sensor network is also proposed that
allows to capture knee-ankle data in children while they walk for
the purpose of gender classification [12]. This makes it attractive
for utilizing in neurodegenerative disease classification also.
Various features and classification methods have been reported
earlier which utilized the stance, swing, and double support in-
terval time series to classify neurodegenerative diseases. Time-
domain characterization of these gait intervals followed by pat-
tern recognition techniques has shown respectable accuracy
[13–15]. Introducing a signal turn count (STC) feature alongwith
other time domain feature improved the classification accuracy to
90.32% [16]. STC being a deemed parameter of frequency [17]
could have introduced frequency representation of gait intervals
and thus provided remarkable classification accuracy. Motivated

by this, our recent work [18] utilized wavelet transformation
based time-frequency representation of gait interval and achieved
similar accuracy by using less input information i.e. only one gait
interval time series. Improvement in the accuracy up to 100%
was observed after pooling the wavelet features from all the gait
interval time series. Similar results are reported from other re-
searchers where wavelet transform based coherence and entropy
have been proved useful for the classification of the control and
the NDD patients [19]. Various other feature extraction methods
such as maximum signal-to-noise ratio (MSNR), maximum
signal-to-noise ratio combined with minimum correlation
(MSNR & MC), maximum prediction power combined with
minimum correlation (MPP & MC) and principal component
analysis (PCA) provided a remarkable classification accuracy
for the classification of patients with neurological disorders
against controls [20]. Also approaches like deterministic learning
theory, empirical mode decomposition, phase synchronization
and conditional entropy have been shown of great potential in
the categorization of controls and NDD patients [14, 21, 22].

RBC (Rule Based Classifier) has advantage of being inter-
pretable and are Bwhite-box^ model in contrast to other avail-
able classifiers. While interpretability has been confusing and
underspecified in many ways earlier [23], in our present work,
we refer interpretability in the context that they are basically the
Bwhite boxes^ in the sense that the acquired knowledge can be
expressed in a readable form like if-else compared to just some
matrices or mathematical representation, while other classifiers
like KNN, SVM, Neural networks are generally Bblack boxes^
that is we cannot read the acquired knowledge in a comprehen-
sible way. The importance of interpretability lies in ability of
users to understand the model. Having an interpretable model
like Decision Tree reveals new hidden pattern and serves as a
positive feedback to the user/expert. For example, if we develop
an interpretable model to predict the severity of disease and if
the user/expert is a clinician he can bring the expert knowledge
domain to correlate the particular feature, critical for classifica-
tion as adjudged by Decision Tree, to clinical symptoms based
on individual patient’s history and condition. In summary, in-
terpretability facilitates more generalized model to be handled
by user/expert. Even though a good predictor would certainly
be useful in practice, making a model that reveals the reasons
why the outcome was wrong in specific cases would be much
more meaningful and would enable the experts to design better
model in the future. Also the rule based classifier needs low
computational resources for implementation in hardware and
the gait variable measurement used in the present study are
easily and quickly measurable, therefore, one of the application
of present work would be to develop a portable system to be
used as wearable system for patient to observe any abnormality
in gait pattern at initial stages and timely consult a physician.

We selected decision tree (DT) as a RBC representation for
our work. The decision trees are easy to use, free of ambiguity
and robust even in the presence of missing values [24, 25].
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The decision tree was trained by three types of features as
following – 1) Autocorrelation based features 2) Data
Driven Features and 3) Correlation between time series.
Autocorrelation in time provides an explicit estimation of fre-
quency and hence indicate some information of frequency
content in the signal without actual transformation in frequen-
cy domain [26] while saving the computation resources. Data
driven features are the human observations that brings quali-
tative approaches combined with quantitative approach.
Human observer can highlight the essential, clinically mean-
ingful parts, thereby providing the quantitative approaches
with a more relevant subset of the available data. Therefore,
data driven features are important as they use the visual infor-
mation captured by the expert and have been shown useful in
representing various bio signals. For example, feature extrac-
tion has been performed using data driven methods from night
sleep PSG (Polysomnography) recordings for sleep/wake
stage classification [27]. Finally, correlation feature between
gait interval time series is used to introduce the bilateral coor-
dination during walking. It has been shown recently [22] that
considering the coordinated locomotor pattern between both
legs showed impressive NDD classification accuracy. We first
generate large number of features using all these three types of
features, then do feature selection using mutual information
(MI) and finally train a decision tree classifier. Finally, we
validated the present approach for a challenging situation of
classification of less severe patients for a more realistic and
meaningful clinical applications.

2 Materials and methods

2.1 Gait database description

The gait database used is freely available on the web page of
Physionet1 [28]. The record contains the gait parameter inter-
vals that are taken in the real time for control (n = 16; 2 males
and 14 females) and NDD (Parkinson’s disease - n = 15; 10
males and 5 females, Huntington’s disease - n = 19; 6 males
and 13 females, Amyotrophic lateral sclerosis - n = 13; 10
males and 3 females) patients. This database reports time in-
terval of gait parameters (stance, swing, double support, and
stride) from both legs. In the experiment [29], each subject
was requested to walk at his or her normal pace along a
straight hallway of 77 m in length for 5 min without stopping
(unless he or she had to turn at the end of the hallway) on level
ground. Force signals from ultrathin force sensitive switches
inside each subject’s shoes were recorded with a sampling
frequency of 300 Hz. These force signals were used to deter-
mine stance, swing, stride, and double support phase interval.
The database also quantifies the severity of NDD in the

respective category. A Hohn and Yahr score is provided which
gives the severity of the Parkinson’s disease and varies from
1.5 to 4. A total functional capacity measure for Huntington’s
disease is also provided which varies from 1 to 12. For the
patients suffering from Amyotrophic Lateral Sclerosis this
database gives the severity since the diagnosis of the disease.
As the dataset is imbalanced the present study utilizes random
under sampling to balance class distribution by randomly
eliminating majority class examples. Two scenarios were con-
sidered while balancing the dataset – 1) Control vs. Parkinson,
Control vs. HD, Control vs. ALS and 2) Control vs. NDD. In
scenario#1, the minimum of 13 subjects in each category were
available to balance the dataset i.e. uniform distribution. If we
choose n = 13 we will have equal number of observations
from each category for scenario #1. Therefore a new dataset
was derived with n = 13 from each category. Now in this new
dataset for scenario #2 i.e. Control vs. NDD 13 subjects in
control are available and tomatch the equal number of patients
in NDD group 13 patients were needed from NDD. However,
NDD consist of three classes and it is not possible to take
equal observations from all three classes and make it 13 –
the number 13 is not completely divisible by 3. Therefore 12
was the preferred choice as taking n = 12 for NDD makes
equal observations (4 patients) from each three category
namely Parkinson’s disease, Huntington’s disease, and ALS
disease thus making the dataset balanced for Control vs. NDD
classification. Table 1 shown below represent the summary of
demographics of various groups.

To validate our proposed approach we used the dataset of
less severe patients (n = 5) in each category (PD, HD and
ALS). Classifying less severe patients who are in the early
stages of the disease would be more challenging and will have
a rich clinical applications with assisting the clinicians for
better diagnosis. Table 2 shown below represent the summary
of demographics of various groups belonging to less severe
patients.

2.2 Processing of the data

In order to neglect the startup effects we removed the data of
first 20 s. As described in the Physionet database that the
significantly different strides were detected when the patients
have to turn around the end of hallway space of walking.
These strides were considered as outliers and were identified
as the data point with the value three standard deviations
greater or less than the median value [16]. These outliers were
replaced with the median value of the corresponding time
series because simply just excluding the outliers from the
analysis would firstly shrink the data points of the time series
and secondly decrease the variance in the data and cause a bias
based on under or overestimation [30]. The median value is a
measure of central tendency and offers the advantage of being1 Online available at http://www.physionet.org/physiobank/database/gaitndd/
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very insensitive to the presence of outliers [31]. That is why
the outliers which are with the value three standard deviations
greater or less than the median value are replaced with the
median value of the corresponding time series. Figure 1 shows
the seven time intervals for a representative sample from each
group.

2.3 Feature extraction

The gait signals used in the present study consists of seven gait
intervals in form of time series given in the database which are
left and right stride interval, left and right swing interval, left and
right stance interval and double support interval. From the data

Table 1 Summary of Demographics and severity measures of different groups

S.NO. GROUP AGE (yrs)
(mean ± SD)

HEIGHT (meters)
(mean ± SD)

WEIGHT (kg)
(mean ± SD)

Gait speed(m/s)
(mean ± SD)

Severity Measures
(mean ± SD)

1. Control
(n = 13)

42.23 ± 18.89
(range, 22–74)

1.83 ± 0.083 69.46 ± 10.44 1.37 ± 0.171 NA

2. Parkinson’s
Disease Patients

(n = 13)

68.46 ± 9.53
(range,53–80)

1.88 ± 0.15 76.0 ± 16.98 0.97 ± 0.203 3 ± 0.73
(H & Y score)

3. Huntington’s
Disease Patients

(n = 13)

47.53 ± 11.11
(range,33–71)

1.85 ± 0.094 71.61 ± 15.53 1.24 ± 0.32 7.2 ± 3.46
(Total functional

capacity measure)

4. ALS Disease
Patients

(n = 13)

55.61 ± 12.82 (range,36–70) 1.74 ± 0.09 77.11 ± 21.14 1.05 ± 0.21 18.30 ± 17.81
(Time in months since

the diagnosis)

a b

c d
Fig. 1 Time series plots for one representative sample from each class. [a
- Control, b – Parkinson’s Disease, c - Huntington’s Disease, d –ALS].
The black box highlights the standard deviation of subsequences from 30

to 60 (x-axis) for the ‘Control’ group which is quite low as compared to
other groups. This difference becomes more prominent in the left and
right swing interval time series
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set, highlighted in the box, please see Fig. 1, it can be easily
visualized that the standard deviation along certain dimensions
in controls is remarkably low fromNDD. Thus, while generating
features it wasmade sure that all such features would be included
in the analysis. Overall, 7546 features were extracted from each
of the samples to aid in classification, which is mentioned below:

Auto-correlation based features As mentioned earlier the auto-
correlation based features provide an explicit indication of fre-
quency contents in the signal. Following autocorrelation analysis
was performed and further features were selected as below:

a) Pearson correlation at different lag values between the
elements of the time series was calculated. The lag con-
sidered was from 0 to 100. Here, the length of time series
is 106. Thus, this gives us 101 features for each dimen-
sion. Formally, auto-correlation is defined as:

ρ hð Þ ¼ ∑
N−h

i¼1
yi−y

� �
� yIþh−yh
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N−h

i¼1
yi−y

� �2
� ∑

N

j¼h
y j−yh

�
2

s
ð1Þ

Where:

& yiis the value of the time series at time ‘i’
& h is the lag
& N is the total number of time stamps in time series

y ¼ ∑
N−h

i¼1
yi= N−hð Þ ð2Þ

& y is the mean of time series from 1 to N-h

yh ¼ ∑
N

i¼h
yi= N−hð Þ ð3Þ

& yh is the mean of time series from h to N

b) Each of this time series was first differenced to obtain
another time series of length 105. Then, similarly as in
Eq. 1, Pearson correlations at different lag values were
found. This gave additional 101 features.

Hence, from autocorrelation based features we get 1414
features. This can be explained as:

7* 101* 2 ¼ 1414
� �

Where 7 is the number of times series for each subject

101 are the different time lags considered for different
time series.
2 is the type of time series that is first is the original time
series and second is the differentiated version of the orig-
inal time series.

Data driven features Data driven features were observed heu-
ristically in the time series as an observer. As mentioned ear-
lier, visual observation suggested the remarkable difference
between controls and NDD at different time windows.
Following features were calculated accordingly:

a) Mean and Standard Deviation of the time series was cal-
culated and added to the features list.

b) Awindow size was determined say ‘w’ and then moving
average and moving standard deviation were calculated at
each point i.e. average and standard deviation of all sets of
continuous ‘w’ points were added to the feature sets,
shown in Fig. 2. This gives 2*(107 – w) features for each

Moving window 

Fig. 2 Statistical features were
extracted from moving windows
of different sizes. Mean and
Standard deviation for the data
points inside the window frames
were calculated and added to the
features pool
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time series and window size ‘w’ in the experiment. The
window sizes used were 5, 10, 20, 30, and 40 timestamps.

Hence, from data driven based features we get 6020 fea-
tures. This can be explained as:

7*5*2 ¼ 70
� �

Where 7 is the number of times series for each subject

2 is the type of time series that is first is the original time
series and second is the differentiated version of the orig-
inal time series.
And 5 (7 *2 = 14 features representing mean and standard
deviation along complete separate time series. The same fea-
tures were added 5 times corresponding to eachwindow.)

As Windows = [5, 10, 20, 30, 40].
Suppose ‘w’ is 5, then first window would be from 1 to 5,

second from 2 to 6, third from 3 to 7 and finally from 102 to
106. Thus, in total we have 106–4 windows. This can be
written as:

106 − 4 = 106 − (5 − 1) = 107 – 5
Thus, (107-w) features were calculated for each time series.
Therefore, Sum (7*(107 - w)*2) = 6020 # sum over w,

where w is the window size.

Inter-dependence between time series This feature finds inter
and intra limb coordination in and among various gait inter-
vals. Following features were extracted under this category:

a) Correlation between each of the seven dimensions was
determined and added to the features list. This gave 21
additional features. Formally, correlation is defined as:

Dataset

Auto-correlation based Data-driven Features Inter-dependence 

Features between dimensions

Total Features

MI based 

Feature Selection

Classification Algorithm

Fig. 3 Flow chart representing
features, their selection
methodology and classification

Fig. 4 MI score between features
and class labels for different
binary classification tasks. 500
top features were selected for
constructing classification tree in
all the tasks
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cor X ;Yð Þ ¼ ∑
N

i¼1
yi−y

� �
� xi−x
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
yi−y

� �2
� ∑

N

j¼1
x j−x

� �2
s

ð4Þ
Where:

& Nis the total number of time stamps in time series.
& yi, xiIs the value of the time series X and Y at time ‘i’.

y ¼ ∑
N

i¼1
yi= Nð Þ ð5Þ

& y is the mean of time series Y

x ¼ ∑
N

i¼1
xi= Nð Þ ð6Þ

& x is the mean of the time series X

b) Each of the time series was first differenced to obtain
another set of seven time series. Then, the correlation
between each of the time series was used as a feature.
This also added another 21 features.

This gives additional 42 features which can be explained
as:

21þ 21 ¼ 42½ �

Here 21 is the correlation between the two type of time
series that is first is the original time series and second is the
differentiated version of the original time series.

Hence, total features were:

Sum 42; 1414; 6020; 70½ �ð Þ ¼ 7546

2.4 Feature selection

Mutual information (MI) between each of the features and the
class label was determined. Then, those features were retained
which had higher MI. High MI value depicts less randomness
between the values of the two sets. LowMI shows that the values
of the two sets are mostly independent. Hence one variable can-
not be used to predict the other variable, if MI value is low.

True False True False

a

c

PD vs. Control b HD vs. Control

True False True False

ALS vs. Control d NDD vs. Control

X [206] <= 0.031

gini = 0.5

Samples = 26

Value = [13, 13]

gini = 0.0

Samples = 13

Value = [0, 13]

gini = 0.0

Samples = 13

Value = [13, 0]

X [11] <= 0.023

gini = 0.5

Samples = 26

Value = [13, 13]

gini = 0.0

Samples = 13

Value = [0, 13]

gini = 0.0

Samples = 13

Value = [13, 0]

X [228] <= 0.723

gini = 0.5

Samples = 26

Value = [13, 13]

gini= 0.0

Samples = 13

Value = [0, 13]

gini= 0.0

Samples = 13

Value = [13, 0]

X [228] <= 0.023

gini = 0.5

Samples = 24

Value = [12, 12]

gini = 0.0

Samples = 12

Value = [0, 12]

gini = 0.0

Samples = 12

Value = [12, 0]

Fig. 5 Decision Tree classifiers obtained for the 4 binary classification
tasks. The features used in these trees are described in Table 5. X [n]
denotes the statistic value of feature ‘n’, gini indicates the gini value of
all samples within the box, samples indicate the number of training

samples reaching that box in the decision tree, and value given by [x, y]
denotes the ‘x’ diseased sample and ‘y’ healthy/control sample reaching
that box. Tables 6, 7, and 8
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Formally, MI between two random variables is defined as:

MI X ; Yð Þ ¼ ∬p x; yð Þ � log
p x; yð Þ
p xð Þp yð Þ

� �
dxdy ð7Þ

Where p(x, y) is the joint probability density function of X
and Y, and p(x) and p(y) are the marginal probability density
functions of X and Y respectively. In the present study X is a
feature and Y is associated label class. In case of discrete
valued random variable integral is replaced by summation
and probability density function is replaced by probability
mass function in Eq. 7. Here, the label class is a discrete
valued random variable. High MI value indicates high
chances of predicting that class correctly using the features,
hence high MI value features was used for further analysis.

The shortlisted features were used for constructing classi-
fication tree. Features with low MI score are not used for
classification as it may lead to construction of poor trees.
These features may get included in the decision rules at the
lower branches and thus lead to construction of poor rules.
Thus, only top 500 features were used for constructing classi-
fication tree. Figure 3 shown below represents the flowchart of
the methodology employed in the present approach.

2.5 Classification and evaluation

Decision Tree Classifier, as implemented with the name
‘Decision Tree Classifier’ in the scikit-learn module of python
(version 0.19.0) [32], was used for classification. The afore-
mentioned implementation was used with default values for
training the decision tree classifier. Still, different runs of the
same algorithm may produce slightly different results due to
randomness inherent in the algorithm. The algorithm random-
ly selects a feature from the pool of all features, without taking
into consideration any specific order, and then selects the best
split point in that feature. This way, it goes through all the list
of features. So, if two split points are equally good, then the
order in which they are found becomes important. Hence, this
brings slight randomness in the algorithm. Decision Tree
Classifier is chosen because the classifier needs to be trained
on 500 features and the training samples are very few. This
classifier itself does feature selection to find the best splits.
Also, the decision tree provides interpretability (set of rules)
to the overall classification system. In contrast, SVM and
ANN classifiers would simply over fit on such a training data
set where number of features far exceed the number of avail-
able training samples. Also, they do not provide any set of

Fig. 6 Confusion matrices for all the category of binary classification
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rules for interpretability like the Decision Tree Classifier. K
nearest neighbor classifier would also become inefficient due
to the curse of dimensionality [33]. Leave One Out cross val-
idation scheme was used for evaluating the classifier. In each
iteration of the validation scheme, the following steps were
done. One sample was removed from the complete data set for
testing. The rest of the samples were used for feature selection
and training the classifier. Then, the prediction of the classifier
on the test sample was noted. The performance of the classifier
was evaluated using sensitivity, specificity and accuracy and
was calculated as follows:

Sensitivity ¼ TP

TPþ FNð Þ � 100 ð8Þ

Specificity ¼ TN

TNþ FPð Þ � 100 ð9Þ

Accuracy ¼ TPþ TN

TPþ FNþ TNþ FPð Þ � 100 ð10Þ

Where TP is true positive, TN is true negative, FP is
false positive and FN is false negative value for the
evaluation of classification performance. A confusion
matrix was also constructed for further evaluation of
classifier.

3 Results

A one-way analysis of variance (ANOVA) test was conducted
to observe any differences in demographics across groups in
Table 1. The results show that there was a significant difference
across the groups in all demographic variables, except weight,
as shown with the corresponding p value in Table 3 and 3.

Post hoc analysis showed a significant difference (α =
0.05) across the groups with respect to age, height and gait
speed. The findings are shown in Table 4. As shown in
Table 4, control group was significantly different from ALS
in gait speed and from Parkinson in age and gait speed.

The hyper-parameter 500 for feature selection was chosen
by cross-validation on 4 values (250, 500, 1000, and 1900) in
one of the classification task. The cross-validation results did
not have much difference in terms of accuracy. Selection of
500 features ensured the MI values of nearly 0.5 or more for
all the classes and was most obvious choice due to optimality
between number of features to be selected and highMI values.
In further analysis of the top 500 features, it was found that all
500 features were data-driven features. Figure 4 shown below
theMI score between features and the class labels for different
binary classification tasks.

Table 2 Summary of Demographics and severity measures for less severe patients (n = 5)

S.NO. GROUP AGE (yrs)
(mean ± SD)

HEIGHT (meters)
(mean ± SD)

WEIGHT (kg)
(mean ± SD)

Gait speed(m/s)
(mean ± SD)

Severity Measures
(mean ± SD)

1. Control 33.2 ± 14.99
(range,22–52)

1.87 ± 0.07 71 ± 7.07 1.50 ± 0.047 NA

2. Parkinson’s Disease
patients

64 ± 15.11
(range, 44–80)

1.86 ± 0.12 78.4 ± 14.53 1.13 ± 0.151 1.8 ± 0.27
(H & Y score)

3. Huntington’s Disease
patients

41.8 ± 7.36
(range, 36,54)

1.86 ± 0.08 80.4 ± 15.5 1.44 ± 0.311 10.6 ± 1.67
(Total functional

capacity measure)

4. ALS patients 51.8 ± 14.58
(range, 36–68)

1.78 ± 0.07 86.54 ± 12.05 1.16 ± 0.2 5.1 ± 3.17
(Time in months since

the diagnosis)

Table 3 ANOVATest for demographics differences across groups

S. No Demographic variables F- ratio p value

1. Age 9.205 0.000

2. Height 3.771 0.016

3. Gait Speed 7.864 0.000

4. Weight 0.647 0.589

Table 4 Post Hoc test for multiple comparisons across the groups

S. No. Demographic
variables

Differences between
the groups

p value

1. Age Control and Parkinson’s disease 0.000

Huntington’s disease and
Parkinson’s disease

0.001

2. Height ALS and Parkinson’s disease 0.014

3. Gait Speed Control and Parkinson’s
disease

0.000

Control and ALS 0.005

Huntington’s disease and
Parkinson’s disease

0.024

Health Technol. (2019) 9:547–560 555



Figure 5 gives decision trees for each of the binary classi-
fication tasks. The decrease in gini value from higher node to a
lower node of a tree denotes the strength of the split. Higher
decrease indicates better splits for a given tree. Gini impurity
for a set of items with J classes (1, 2, 3 … J), and pi denoting
the fraction of items labeled with class i, is given by:

gini ¼ 1− ∑
J

i¼1
pi

2 ð11Þ

Figure 5 (A) depicts a decision tree which classifies
Parkinson’s disease versus control. If the standard deviation
of subsequence from 16 to 45 in right stride interval time
series is less than or equal to 0.031, then the subject is classi-
fied as control. If this statistic is greater than 0.031, then the
subject is classified as Parkinson’s disease patient. Similarly,

all other trees can be deciphered. A summary of features in all
trees of Figs. 5 and 6 is given in Table 5.

4 Discussion

Previous studies have demonstrated importance of statistical
[16], frequency [18], and bilateral limb coordination features
[22] in NDD classification. We utilized a combination of these
approaches keeping in mind the human visual observation of
the data. This combined approach of features led to a high
dimensional data of greater than 7000 which was reduced to
500 based on mutual information criterion. MI based analysis
revealed the dominance of data driven features over other auto
and cross correlation based features. Among top ranking 500
features with MI value nearly 0.5 or greater all were data
driven features. Utilizing these data driven features in current
approach produced better accuracy than previously reported
accuracies in any category of binary classification. For exam-
ple, the classification of Parkinson’s disease was achieved
with 90.32% in previous work [16] using time domain and
STC features, however current work improved the accuracy
up to 92.3% by utilizing data driven features. Similarly, pre-
vious work [13] reported the classification accuracy of 82.8%
while classifying ALS using the mean of the left-foot stride
interval and the modified Kullback-Leibler divergence
(MKLD). Our work shows superiority of data driven features
by classifying ALS with 96.2%. It has to be noted that the
classifiers are different in both the previous studies compared
to our work which may account for differences in classifica-
tion accuracies. Present study used Decision Tree classifica-
tion compared to SVM in previous studies as Decision Tree is
more interpretable than SVM. However, for NDD vs. control
classification present approach underperform comparative to
some previously reported accuracies [34]. We attribute the
higher accuracy in previous work [34] to the unbalanced
dataset used. The previous work used unbalanced dataset for
the classification (20 patients with HD, 13 patients with ALS,
15 patients with PD and 16 healthy controls) and for NDD vs.
control (48 patients with NDD and 16 healthy controls) which
might have led to over fitting and biased classification accu-
racy. However, in the present work, in order to develop an
unbiased and not an over fit classifier the number of subjects
in each NDD category was compromised to have a balanced
dataset (n = 13 in each category) and for NDD vs. control (12
patients with NDD and 12 healthy controls). Further, pooling
Huntington’s disease in NDD might have deteriorated the
classification accuracies by narrowing down the classification
margin - the classification accuracy for Huntington’s disease
vs. control was lower with 88.5%. Contrary to classifiers like
Support Vector Machine (SVM) and others in previous stud-
ies, Decision tree classifiers do features selection itself by
choosing the best splitting point amongst all features to create

Table 5 The description of various features employed in the decision
trees

Classification
Tree

Feature
Number

Feature Description

NDD vs. Control 228 Standard deviation of subsequence
from 12 to 51 in right stance
interval time series

Parkinson’s Disease
vs. Control

206 Standard deviation of subsequence
from 16 to 45 in right stride
interval time series

Huntington’s Disease
vs. Control

11 Standard deviation of subsequence
from 2 to 41 in right stance interval
time series

ALS Disease vs.
Control

228 Mean of subsequence from 41 to 70
in left stance interval time series

Table 6 Description of various features employed in the decision trees
for less severe patients

Classification
Tree

Feature
Number

Feature Description

NDD vs. Control 3 Standard deviation of subsequence from
34 to 53 in right stance interval time
series

NDD vs. Control 310 Standard deviation of subsequence from
73 to 77 in left stance interval time
series

Parkinson’s disease
vs. Control

338 Standard deviation of subsequence from
38 to 67 in left stance interval time
series

Huntington’s
Disease
vs. Control

338 Standard deviation of subsequence from
59 to 68 in right stance interval time
series

ALS Disease vs.
Control

338 Mean of subsequence from 76 to 105 in
right stride interval time series
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split between the data and the final classifier is based on only
very few features and thus minimizing over fitting. A Leave
one out cross validation (LOOCV) method was performed
further to avoid the redundant features in an attempt to mini-
mize over fitting with the small dataset in the present study.

A detailed comparison of present work with previous re-
ported work is shown in Table 9.

It is interesting to see that the visual pattern were dominat-
ing and successfully transferred to decision tree similar to
previous research [27]. Recently, it has also been shown that
the expert knowledge improve automatic probabilistic classi-
fication of gait joint motion patterns in children with cerebral
palsy [35]. In this paper we have followed the similar mech-
anism and visual input from the researchers, as shown in Fig.
1, that in control subjects the standard deviation of data points
in all gait variables from 30 to 60 is highly different from
NDD patients were embedded in features list which proved
efficient as all dominating features selected by Decision tree
were data driven features. Though data driven features pro-
vided superior accuracy but it led to very high dimensional
feature space. Mutual information (MI) was utilized for data
reduction in the present work. An MI approach was preferred
for dimensionality reduction over Principal Component
Analysis (PCA) because PCA loses physical interpretation
after linearly transformation of original variables, while MI
retains the physical interpretation which suits to Rule based
classification. The previous study [21] reported that the ran-
dom forest classifier has the best average performance
amongst all classifiers. Random forest classifier is the ensem-
ble of decision tree classifiers. Also, random forest classifiers
are not as interpretable as single decision tree classifier.
Hence, classification is done using Decision Tree classifier.
Previously, Random forest has shown lower classification ac-
curacy than SVM for the same database [34], however in the
present work we could reach to the at par accuracy using
hybrid approach features and decision tree.

With the encouraging results in Table 8 for classification in
less severe patients, we believe the present work has potential
to serve both – 1) the physician and 2) the patient. The work

has a potential to be translated for the benefit of physicians and
the patient. In one hand, the physician can use the rule based
classifier to identify the stage of the patient and thus decide the
diagnosis, while on the other hand the system is portable to be
used as wearable system for patient and observe any abnor-
mality in gait pattern at initial stages and timely consult a
physician. Despite of overlapping walking speed at early
stages of NDDs, as shown in Table 2, the rule based classifier
provides respectable accuracy in classification showing the
impact of approach in the present work. Thus with more num-
ber of participants, the present approach has enough scope to
improve the classification accuracy in less severe participants.

The primary motivation to adapt the present methodology
for real time implementation is of two fold. One was to use the
minimal computational resources, for example implementable
on any smart phone, so that the overall system is portable,
wearable and can be used as home-based solutions. The pres-
ent approach practically needs only a switch-based insole and
a smart phone for implementing the proposed system. With
this home-based solution we target the elderly population who
are unable to visit clinics on a regular basis. Second, a real
time implementation will facilitate a quick diagnosis thus sav-
ing the time of physicians and the patients both.

Present study has some limitations too. We utilized only
one classifier but this attributes to the choice of rule based
classification system. Rule based classification is favorable
for real time system and a wearable sensors integrated shoe
in the author’s laboratory is under process for real time imple-
mentation and will be reported in future publications. Dataset
unbalancing problem in the present study case was addressed
by random under-sampling method however some other
balancing dataset solution can be adopted in future to improve
the accuracy further. Future work will primarily involve the
real-time implementation of current approach. The presented
work studied the online data available and therefore a real-
time study is required to investigate for robust evaluation of
the proposed approach. In addition, it will be interesting to see
in future that if the methods can be helpful for home-based
diagnosis of neurodegenerative disease patients who are at

Table 7 Sensitivity, Specificity and Accuracy (all in %) values of the classifier for the classification

NDD vs. Control Parkinson’s Disease vs. Control Huntington’s Disease vs. Control ALS Disease vs. Control

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

84.6 90.9 87.5 92.3 92.3 92.3 85.7 91.7 88.5 92.8 100 96.2

Table 8 Sensitivity, Specificity and Accuracy (all in %) values of the classifier for the classification of less severe patients

NDD vs. Control Parkinson’s Disease vs. Control Huntington’s Disease vs. Control ALS Disease vs. Control

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

73.3 73.3 73.3 100 71.4 80.0 80.0 80.0 80.0 100 83.3 90.0
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early stage. Such an application will be of tremendous use in
improving the quality of life among these patients.

5 Conclusion

The present work generated a new set of features from the gait
signals, which were more effective in doing classification than
a recently published study. Simplistic feature selection was
then done, and finally a single decision tree classifier was
trained to do classification. This method achieved accuracy
of 88.5, 92.3, 96.2, and 87.5 (all in percentage value) while
classifying controls from HD, PD, ALS, and NDD respective-
ly. The method was also effective while classifying the less
severe patients and thus proposing the impact of the work for
meaningful clinical application. The decision tree provided a
set of rules for classification, which added interpretability to
the classifier. This research work clearly demonstrated the
importance of the features generated, which were never used
before in the prior studies. These features should be taken into
account while doing further studies on this problem.
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