
ORIGINAL PAPER

Splice site identification in human genome using random forest

Elham Pashaei1 & Mustafa Ozen2
& Nizamettin Aydin1

Received: 28 June 2016 /Accepted: 25 November 2016 /Published online: 2 December 2016
# IUPESM and Springer-Verlag Berlin Heidelberg 2016

Abstract Gene identification has been an increasingly impor-
tant task due to developments of Human Genome Project.
Splice site prediction lies at the heart of identifying human
genes, thus development of new methods which detect the
splice site accurately is crucial. Machine learning classifiers
are utilized to detect the splice sites. Performance of those
classifiers mainly depends on DNA encoding methods (fea-
ture extraction) and feature selection. The feature extraction
methods try to capture as much information as the DNA se-
quences have, while the feature selection methods provide
useful biological knowledge by cleaning out the redundant
information. According to the literature, Markovian models
are popular encoding methods and the support vector machine
(SVM) is known as the best algorithm for classification of
splice sites. However, random forest (RF) may outperform
the SVM in this domain using those Markovian encoding
methods. In this study, performance of RF has been investi-
gated as feature selection and classification in splice site do-
main. We proposed three methods, namely MM1-RF, MM2-
RF and MCM-RF by combining RF with first order Markov

Model (MM1), second order Markov model (MM2), and
Markov ChainModel (MCM).We compared the performance
of the RF with the SVM competitively on HS3D and NN269
benchmark datasets. Also, we evaluated the efficiency of the
proposed methods with other current state of arts methods
such as Reduced MM1-SVM, SVM-B and LVMM2. The ex-
perimental results show that the RF outperforms the SVM
when the sameMarkovian encodingmethods are used on both
donor and acceptor datasets. Furthermore, the RF classifier
performs much faster than the SVM classifier in detecting
the splice sites.

Keywords Splice site prediction . DNA encodingmethods .

RandomForest classifier . Gene detection

1 Introduction

Biological sequence data has been increasing rapidly during
the past few decades, so there is a crucial need of effective
methods to detect genes [1, 2]. Despite of many efforts, the
issue has been not solved satisfactorily yet [3]. Accurate splice
site identification is essential in gene detection. In eukaryotic
genomes, each gene is composed of exons and introns.
During DNA transcription only exons of the gene,
which contain codes for proteins are transcribed into
mRNAs. [4]. The term splice site refers to boundary
between exon and intron [5]. While the intron-exon junction
with consensus dinucleotide AG is called acceptor splice site,
donor splice site refers to exon-intron junction with consensus
dinucleotide GT (see Fig. 1) [3]. In DNA sequence, splice site
prediction is a search problem for finding donor and acceptor
boundaries.

To predict the splice site, approximately all of the proposed
methods consist of three main steps; proper encoding schema
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(feature extraction), feature selection (optionally), and classi-
fication. Machine learning methods are used to detect splice
site (classification step). The input of machine learning clas-
sifiers is numerical, whereas the information of DNA se-
quences is given as strings. Therefore, encoding the DNA
sequence into numbers is initial and main task of splice site
prediction (feature extraction step) [6]. The probabilistic
encoding approaches such as the zero order Markov model
(MM0), the first order Markov model (MM1), the second
order Markov model (MM2), and the Markov Chain Model
(MCM) are so famous and high usage methods [7–16].

In biology, where structures are described by a large num-
ber of features as splice sites, the feature selection is an im-
portant step towards the classification task. It provides useful
biological knowledge and allows for a faster and better clas-
sification. Feature selection techniques by considering the
method’s output can be divided into two groups; wrapper
methods and filter methods [17, 18]. The wrapper methods
pick up the feature subset based on classifiers performance.
However, the filter methods assess the relevance of features
via univariate statistical criteria instead of cross-validation
performance. So, the wrapper methods give better perfor-
mance result than filter methods due to taking into account
features dependencies and directly interacting with the classi-
fier. However, they are computationally more expensive than
filter approaches [18]. On the other hand, the filter methods
are known as the fast, rapidly scalable and efficient feature
selection approaches in bioinformatics [17, 18]. There are
two types of filter methods, univariate and multivariate
methods. Most filter methods in the literature are univariate
[17]. Multivariate filter methods can find relationships among
the features, whereas univariate methods consider each feature
individually. Therefore, multivariate filter methods can not
disclose mutual information between features [19]. There are
many various wrapper and filter approaches in the literature.
Particle swarm optimization (PSO), genetic algorithms (GA),
sequential forward and backward selection are some examples
of the wrapper approach, while chi-square, correlation coeffi-
cient, Fisher score (F-score) feature ranking are some exam-
ples of filter approaches. There are few specific works where
feature selection techniques have been used in splice site pre-
diction domain. Principle feature selection (PFA) is a multi-
variate filter method that has been employed by Maji [15] in
Human splice site prediction. F-score feature ranking [9, 14]
and Estimated distribution algorithm (EDA) ranking methods
[20] are two univariate filter methods that have been applied

on human and plants splice sites, respectively. Also the EDA
has been utilized as a wrapper approach in [21] which has
shown good performance in plant splice site prediction.

Random forests (RF) are among the most popular machine
learning methods due to their relatively good performance.
They also provide method for feature selection [22–24]. The
random forest feature ranking (variable importance) has been
used in various domain such as integrated analysis of multiple
data type [25], biomarker discovery [26] and multi-label clas-
sification [27]. In this study we investigate the ability of ran-
dom forest feature ranking methods on the splice site predic-
tion domain.

Various successful computational methods such as support
vector machine [1, 6, 8, 9, 14, 28], decision trees [29, 30],
hidden Markov model [13, 31], artificial neural network [2,
32–34] and Bayesian network [35, 36] have been developed
to recognize splice junction of DNA sequences. Among them,
SVM is the most popular classifier method [5]. Baten [8] used
MM1 encoding method to extract the features of splice sites
sequences and give them to SVM as the input for classifying
splice sites. Reduced MM1-SVM [9] was developed using F-
score feature ranking method to choose a subset of more in-
formative MM1 parameters for SVM to predict splice site.
Zhang [6] constructed a mapping method from Bayes’ rule
and integrated it with linear SVM (SVM-B) to predicted splice
sites. A length-variable Markov model (LVMM) [13] is de-
veloped by employing the MM2 encoding. The method can
choose a particular subset of features to predict a candidate
splice site according to the ratio of likelihood at each position.
Despite of the high accuracy that LVMM method produces,
determining the method’s threshold parameters is not easy
task [14]. In [15], a hybrid approach using second order
Markov model and SVM with principle feature analysis
(MM2F-SVM) as a new feature selection method has been
proposed. The MCM encoding method [12] that is combina-
tion of MM1 and MM2 has provided inputs for SVM classi-
fier in [16]. Despite the presence of these methods, splice site
identification remains still a major bottleneck in gene detec-
tion domain due to existing complex dependencies between
the bases around splice site [37]. Therefore, development of
accurate methods to identify splice site junction continue [2].

This study is concerned with RF for feature selection [23]
and classification in splice site prediction domain. The perfor-
mance of RF ranking method has been compared with F-score
feature ranking [38] by using the learning curve concept. Liu
[39] and Kocev [27] have remarked on the use of learning
curves to show the effect of adding features when a list of
ordered features is provided. We have investigated their effect
on HS3D datasets with the goal of using a small number of
features to achieve better classification performance.

Due to its high performance, SVM classifier is frequently
used in prediction of splice sites. However, some parameters
of SVM classifier such as penalty parameter, the kernel type,

Fig. 1 Schematic representation of the splice junction site [5]
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and kernel parameters, must be tuned. Parameter tuning
can be time-consuming when there are multiple param-
eters involved in the training. So, one should be cau-
tious whether SVM is a suitable method to genome-
wide splice sites prediction or not [13]. In this study,
we have combined RF as an efficient and fast classifier
with three predefined encoding methods (MM1 [8],
MM2 [15], MCM [3, 12, 16]) and compared their re-
sults with the SVM. We have also investigated effect of
our methods on H3SD and NN269 datasets and have
evaluated efficiency of proposed methods by making a
comparison with some current methods such as MM1-
SVM [9], SVM-B [6], LVMM [13], MCM-SVM [16],
and MM2F-SVM [15].

The remainder of the paper is organized as follows. In
Section 2, Materials and methods are described. Experimental
results are explained in Section 3. Section 4 provides the
conclusion.

2 Materials and methods

2.1 Splice sites datasets

Experiments have been performed on the Homo sapiens
Splice Site Data set (HS3D) [40], which is composed of
2796 confirmed true donor sites, 2880 confirmed true acceptor
sites, 271,937 false donor sites, and 329,374 false acceptor
sites. The performance of proposed methods are examined
on both donor and acceptor sites separately. Each splice site
sequence consists of 140 nucleotides with the consensus nu-
cleotides AG at position 69 and 70 and consensus nucleotide
GT at position 71 and 72 for acceptor sites and donor sites,
respectively. Balanced (1:1) and unbalanced (1:10) datasets
have been formed by selecting all the true splice sites for both
of them. The ratio between number of true splice site and
randomly selected false splice site in the balanced dataset is
the same, whereas in unbalanced dataset number of randomly
selected false splice sites is 10 times more than true splice
sites.

We have performed an extra evaluation on the NN269 dataset
[10] to estimate the reproducibility and consistency of our meth-
od. The dataset has been gathered from 269 human genes that are
composed of 1324 true acceptor sites, 5552 false acceptor sites,
1324 true donor sites, and 4922 false donor sites. The NN269
dataset has been divided into two subsets: the acceptor dataset
and the donor dataset. The training dataset for acceptor (donor)
site are made up of 1116 true acceptor (donor) sites and 4672
false acceptor (4140 false donor) sites. The test dataset contains
208 true acceptor (donor) sites and 881 false acceptor (782 false
donor) sites. We evaluate the efficiency of the proposed methods
on acceptor sites and donor sites separately. The length of the
sequences in acceptor splice site is 90 nucleotides whereas donor

splice sites have the length of 15 nucleotides. The consensus
dinucleotide AG in acceptor splice site is at positions 69 and
70 and the consensus nucleotides GT in donor splice site is at
positions 8 and 9.

2.2 Markovian based encoding methods

To do classification analysis on splice sites, DNA sequences
should be represented as feature vectors. Different encoding
methods are applied to DNA sequences to extract associated
features. Each encoding method tries to provide as much in-
formation as sequences have. The performance of a
classifier used in splice sites prediction highly depends
on the DNA encoding methods. So, effective DNA
encoding methods for extracting feature vectors from
DNA sequences are essential. In this study, MM1
encoding [8], MM2 encoding [15], and MCM [12, 16]
encoding have been used. The Markov model describes
a sequence of possible states, in which the probability
of each state depends only on the preceding states.

Consider a sequence (s1, s2, … , sn) of length n. The nucle-
otide si is a realization of the i th state variable in Markov
chain. Each state is characterized by a position-specific prob-
ability parameter. The set of parameters in first order Markov
model and second order Markov model are {P(si| si − 1)} and
{P(si| si − 1 , si − 2)}, respectively. The estimation of the model
parameters is calculated by (1)

P sijsi−1;…; si−kð Þ ¼ N si−k ;…; sið Þ
N si−k ;…; si−1ð Þ ð1Þ

where k denotes the order of Markov model and N(si − k, … ,
si) shows the occurrence number of (si − k, … , si). In this study
k = 1 and k = 2 have been chosen for MM1 and MM2. As it is
mentioned in [8], to create Markov model only true splice site
sequences are considered.

The MCM was earlier used by Lio in [12] and again was
employed recently in [3, 16]. This encoding method utilizes
both MM1 and MM2 encoding methods. Each sequence is
broken down into three parts: signal segment (SS), upstream
segment (SU), and downstream segment (SD), as shown in
Fig. 2. The signal segment is encoded byMM1 and the model
is denoted by MS. The upstream segments and downstream
segments are encoded using MM2 and denoted by MU and
MD, respectively. We also define a false model MF to

Fig. 2 Representation of splice site model in MCM encoding method [3]
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characterize the signal segment for false splice sites. The final
model is combination of them, that is (MU,MS,MF ,MD). We
have set lU=30, lS=47, and lD= 63 bp for donor sites, lU= 48,
lS=21, and lD=69 bp for acceptor site in the HS3D dataset,
while we have adjusted lU=3, lS=9, and lD= 3 bp for donor
sites and lU= 52, lS=19, and lD=19 bp for acceptor site in the
NN269 dataset.

2.3 Random forest classifiers

The RF, which has been introduced by Breiman in 2001
[41], is an ensemble classification algorithm based on
decision trees. Each tree in the forest is trained by ran-
domly selecting samples with replacement (bootstrap)
from total samples of the original dataset. The rest of
the samples are used as the test set. A single decision
tree uses randomly m number of features from total M
features in splitting each node (mtry). A random forest with k
decision tree (ntree) repeats above procedure for each decision
tree and final classification is obtained by voting result of
these k decision trees on testing data. Figure 3 describes the
steps of Random Forest algorithms. We have implemented
Random Forest algorithm using BRandom Forest^ package
in R software. The Random Forest has two parameters for
tuning namely Bmtry^ and Bntree^. They are number of fea-
tures to choose at each node for splitting and number of trees
to be grown in the forest respectively. In this study, Bmtry^ is
equal to √M, while Bntree^ is equal to 500 (default value) on
the HS3D dataset. The value of Bntree^ has been set to 530 for
the NN269 dataset.

2.4 Support vector machine classifier

SVM [42] is the most important learning machine that has
been used in many domains due to its excellent classification
accuracy. The SVM aims to find a maximal margin hyper-
plane to separate classes. The kernel function are used to
map data to a higher dimensional space for learning non-
linearly separable functions. New instances are classified ac-
cording to the direction of the hyperplane they belong to [43].
The accuracy of the SVM largely depends on the proper

chosen kernel and its parameters. This study has adopted ra-
dial basis function (RBF) kernel and utilized SVM of Be1071^
package, which is an interface of LIBSVM inR.We have used
grid-based search method to find optimal parameters (C- pen-
alty parameter and γ-gamma).

2.5 Fisher score feature ranking method

The feature ranking methods typically assign a weight to each
feature and rank them accordingly. Then informative features
can be selected and low-scoring features are removed. F-score
is a simple univariate filter approach, which is used for rank-
ing features according to their discriminative powers. Given
training instance xi , i = 1 , … , l, the F-score of the jth attri-
bute is calculated by:

F jð Þ ¼
x

þð Þ
j −x j

� �2

þ x
−ð Þ
j −x j

� �2

variance x
þð Þ
j

� �
þ variance x

−ð Þ
j

� � ð2Þ

where x þð Þ
j , x −ð Þ

j and x j are the average of the jth attribute of the
positive, negative and whole datasets, respectively. The nu-
merator indicates the inter class variance, while the sum of the
variance inside each class is shown by the denominator. High
F-score value of an attribute demonstrates that this attribute
has more discriminative power [38].

2.6 Random Forest feature ranking method

Ranking of variables can be obtained by utilizing the mecha-
nism of random forest. Each tree in the random forest is con-
structed on 2/3 of the training data which are drawn randomly
with replacement (bootstrap). The split in each node of the
trees is selected from subset of variables (features). After
building trees of forest, each tree is tested on the 1/3 of the
samples which have not been selected for bootstrap. These
samples are called the Out-Of-Bag (OOB) instances and error
of predictive performance of them is shown with Err(OOB).
The OOB is used for ranking variables by permuting each
variable (j) one-by-one in OOB dataset of all the trees and

01 Input: training dataset , number of trees ( ) in forest, size of feature subset ( ) that is considered at each node during tree 

construction

02 Begin

03 For = 1 to do

04 Draw a bootstrap sample of size from the training dataset.

05 Grow a random-forest tree to the 2/3 of bootstrapped data, by recursively repeating the following steps for each terminal 

node of the tree until the minimum node size is reached.

06 Select features at random from total features.

07 Pick the best feature/split-point among the .

08 Split the node into two daughter nodes.

09 End For

10 Output the ensemble of trees { } . 

11 End

12 To make a prediction at the new point :

( ) = ( ) , let ( ) be the class prediction of the th tree in RF.

Fig. 3 Algorithm of random
forest classifier
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calculating error of predictive performance of the permuted
version of OOB data (Errj)). Subtraction of these errors is
calculated at the next step. Ultimately, the average error of
subtraction results and associated variances are measured.
Figure 4 explains algorithm of calculating ranking of feature
using RF clearly. The BFSelector^ R package has been used
for implementation of RF feature ranking method. More de-
tailed explanation on RF can be found in [27, 44]

2.7 Classification performance evaluation metrics

In this study, sensitivity (Sn), specificity (Sp), a global accuracy
(Q9), Matthew’s correlation coefficients (Mcc), area under
ROC curve (AUC), and F-measure have been used as the
performance measure. These measures are defined as follows:

Sn ¼ TP= TP þ FNð Þ ð3Þ

Sp ¼ TN= TN þ FPð Þ ð4Þ

Q9 ¼ 1þ q9ð Þ
2

=2

q9 ¼

TN−FPð Þ
TN þ FPð Þ i f TP þ FNð Þ ¼ 0

TP−FNð Þ
TP þ FNð Þ i f TN þ FPð Þ ¼ 0

1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

FN
TP þ FN

� �2

þ FP
TN þ FP

� �2
" #vuut i f TP þ FNð Þ≠ 0

and TN þ FPð Þ≠ 0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð5Þ

Mcc ¼ TP*TNð Þ− FP*FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP*FNð Þ* TN*FPð Þ* TP*FPð Þ* TN*FNð Þp ð6Þ

F−measure ¼ 2*
TP= TP þ FPð Þ*Sn
TP= TP þ FPð Þ þ Sn

ð7Þ

where TP, FP, TN and FN show the number of true posi-
tives, false positives, true negatives and false negatives, re-
spectively. Larger values of the Sn, Sp, Q

9, Mcc, and F −
measure indicate better classification performance.

The Receiver Operator Characteristic (ROC) curve are ob-
tained by plotting sensitivity against 1-specificity and is used
for visualizing the performance of the binary classifier. The
area under ROC curve (AUC) is utilized for summarizing the
performance in a single number. On the other hand, plotting
True Positive Rate versus the False Positive Rate gives preci-
sion recall curve (PRC) and the area under PRC curve
(auPRC) has again summarized the performance in a single
number. The increment in the value of AUC and auPRC lead
to a more accurate model performance.

2.8 Cross-validation design

The10-fold cross-validation has been used to evaluate the
performance of our methods on the HS3D dataset [13, 14].
For this, we have divided the data sets into 10 equal size
parts (folds). After the dataset has been separated into
parts, a model is made using 9 of the folds as a training
set and the remaining fold as a test set. This process is
replicated 10 times with a different test set each time.
Furthermore, we have repeated each experiment 5 times
to increase the reliability of the evaluation. Each time, dif-
ferent folds are generated randomly and average of 5 inde-
pendent repeats has been reported.

Due to existence of the large difference between number of
true and false sites in unbalanced (1:10) datasets of HS3D, the
performance of the classifiers tends to be biased towards the
majority class [45]. To overcome this problem, under-
sampling technique [46, 47] has been used. For this purpose,
we only modified the training set (9 folds out of 10) by con-
sidering that each fold contains the same proportion of number
of true sites versus number of false sites in unbalance dataset.

01 Input: training dataset , number of trees ( ) in forest, size of feature subset ( ) that is considered at each 

node during tree construction

02 Output: Importance of each feature

03 Begin

04 For = 1 to do

05 Draw a bootstrap sample of size from the training dataset.

06 Grow a random-forest tree to the 2/3 of bootstrapped data

07 Give the leftover 1/3 of samples (called OOB) to the tree , and calculate the error rate ( )

08 For = 1 to do // for each feature
09 Permute the value of feature randomly for the OOB samples 

10 Compute the error rate for permuted version of OBB samples using tree 

11 Calculate = − ( )

12 End For

13 End For

14 For = 1 to do

15 Aggregate total error rate from all trees and calculate variance for each feature

= ∑ and  = ∑ ( − )

16 Calculate variable importance   ⁄

17 End For

18 End

Fig. 4 Algorithm for feature
ranking via random forest
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The training is performed on all the true sites by randomly
selecting the same number of false sites on training set without
modifying the test set.

For NN269 dataset, in order to tune parameters of SVM,
we divided training dataset into 10 equally sized data fold.
Each fold contains the same proportion of true versus false
sequences. For each parameter combination, we used 9 out of
10 folds and evaluated the methods on the remaining fold. We
selected the model with the highest average of auPRC on 10
evaluation sets. Then this best model was trained on the com-
plete training dataset. The ultimate evaluation was performed
on the corresponding independent test sets. According to [48],
when the binary classifier on imbalanced dataset is evaluated,
the auPRC is more informative than AUC. So, we focused on
auPRC measure for model selection of SVM.

2.9 Statistical comparison among classifiers

It is important to determine whether the differences between
results of classifiers are statistically significant or not when
they are compared. Therefore we utilized t-test to assess sig-
nificance of differences in classification performance. The null
hypothesis of the test is that there is no difference between
performance of the SVM and the RF. A significance level α =
0.01 has been used in this study.

2.10 Proposed methods to assess performance of RF

RF as feature ranking The proposed procedure consists of
two steps (see Fig. 5) for investigating RF feature ranking
approach in Human splice site detection. At the first step, we
have applied RF feature ranking method to train dataset.
Consequently, a value is assigned to each feature indicating
importance of each feature in classification accuracy. Then,
we sort them according to their values decreasingly. At the
second step, we evaluate the ranking by performing a stepwise
feature subset evaluation, which is used to provide the learn-
ing curve. For this purpose, we select the top-k ranked features
from the ordered variables. Then, we evaluate performance of
the classifier on chosen subset feature and constructed for-
ward feature addition curve (FFA).

RF as classifier Splice site is subdivided into two separate
classification problems: acceptor splice site classification and
donor splice site classification. We try to identify whether a
candidate splice site is true splice site (positive) or not
(negative) for both classification problems. So, two different
models are constructed for them to make prediction. These
models consist of two phases: feature extraction using
encoding scheme and classification. The proposed methods
MM1-RF, MM2-RF, and MCM-RF utilize Markovian
encoding approaches MM1, MM2, and MCM to provide fea-
tures and use RF for classification. The steps of models are
outlined in Fig. 6.

3 Results

3.1 Efficiency of RF as feature ranking approach

Performance of selected attributes on balanced and unbal-
anced datasets have been shown in Fig. 7. From the figure,
it is possible to state that the accuracy of simple MM1-SVM
has been improved by using feature ranking approaches.

By considering balanced datasets (see Fig. 7a and b), it can
be seen that both feature ranking methods have approximately
the same accuracy on their optimal points. Additionally the
optimal points of both are equal in balanced acceptor and
donor sites. The optimal point of balanced acceptor dataset
and balanced donor dataset have been achieved by choosing
60% and 30% of top features using both of the feature ranking
methods, respectively. Considering results for unbalanced
datasets shown in the second row of the Fig. 7, result of the
RF ranking in acceptor sites (see Fig. 7c) is higher than the F-
Score and optimal point has been obtained using fewer num-
bers of attributes. In unbalanced donor splice sites (See
Fig. 7d) F-Score shows better performance than the RF rank-
ing method. So, on 4 datasets, the RF ranking method shows
two equal, one win and one failure on its performance. As a
result, on average it can be concluded that the RF feature
ranking method is a good candidate for performing feature
selection as preprocessing part on splice sites prediction
methods.

01 Input: The provided training data , number of total features

02 Output: Forward feature addition curve (FFA)

03 Begin

04 Compute the RF score of importance for all the feature. = { , , … , } is the vector of obtained feature ranking.

05 Order the features in decreasing order of importance

06 For = 1 to 10 do 

07 select -top ranked feature from and accordingly carry out feature selection on training set, =
( 10 ) 100⁄

08 Apply SVM on the training set to learn the prediction model

09 Use the model to make prediction on the test set with the chosen features(calculate )

10 Return measurement for drawing FFA curve

11 End For

12 End

Fig. 5 Algorithm of providing
forward feature addition curve
using random forest
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3.2 Efficiency of RF as classifier

The performance results of classification have been shown in
Table 1. Since different training data are obtained due to
employing different encoding methods, we considered each
row of the table as an independent dataset. Therefore, our exper-
iment utilized 18 different datasets (9 for the acceptor sites, 9 for
the donor sites). The performance was estimated using various
measures. However, we preferredF −measure tomake statistical

comparison (reported P-value) between SVM and RF. We
should take into account that we could not carry out statistical
evaluation on NN269 dataset due to default separation between
training set and test set. However, we consider their results as
significant when the difference in F-measure became more than
1.50% between SVM and RF.

According to the results, the RF outperforms the SVM signif-
icantly in 8 datasets and nominally in 4 datasets. However, the
SVM outperforms the RF significantly in 4 datasets and

01 Input: The candidate splice site sequences, { , , … , }

02 Output: Labels of unknown sequences

03 Begin

04 For = 1 to do

05 Model using one of the proposed Markovian encoding methods (MM1, MM2 or MCM). The 

Output is a vector of features, =
1
,
2
,
3
, …

06 End For

07 Apply RF on the training set of the extracted features { , , … , } to learn the prediction model

08 Use the model to make prediction on the test sequences of splice sites

09 End

Fig. 6 Algorithm of the proposed
splice site prediction methods
MM1-RF, MM2-RF and MCM-
RF

Fig. 7 Global accuracy of different percentage of selected features using
F-score feature ranking and random forest feature ranking methods on a
Balanced Acceptor splice sites, b Balanced Donor splice sites, c

Unbalanced Acceptor splice sites and d Unbalance Donor splice sites
datasets for assessing performance of MM1-SVM method
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nominally in 2 datasets. So, considering 18 datasets, overall RF
performs better than SVM in 12 datasets. In terms of computa-
tional efficiency, as can be seen from CPU time column in the
Table 1, the RF performed much faster than the SVM due to
parameter tuning process involved in the SVM.

In addition, the classification results of proposed methods
MM1-RF, MM2-RF and MCM-RF compared with these of

MM1-SVM [8], Reduced MM1-SVM [9], SVM-B [6],
LVMM2 [13], MM2F-SVM [15] and MCM-SVM [16]
methods using Q9 criteria for HS3D dataset and auPRC for
NN269 dataset in Fig. 8. The result of the LVMM2 was taken
from [13].

From Fig. 8, considering both balanced datasets, the proposed
method MM1-RF outperformed MM1-SVM, Reduced MM1-

Fig. 8 Classification performance of the different state of art methods for both HS3D and NN269 datasets
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SVM, SVM-B andMM2F-SVM for both acceptor (Fig. 8a) and
donor splice site (Fig. 8b), but could not show better performance
than MCM-SVM. Two other proposed methods, MM2-RF and
MCM-RF performed better thanMM1-RF for both acceptor and
donor sites. In balanced acceptor splice site (Fig. 8a), MM2-RF
and MCM-RF showed the same performance and both of them
could outperform other methods. In balanced donor site
(Fig. 8b), MCM-RF performed better than MM2-RF and
MM1-RF and could outperform all of the other methods except
MCM-SVM. Considering unbalanced acceptor dataset (Fig. 8c),
we can see that MM1-RF outperformed the MM1-SVM,
Reduced MM1-SVM and SVM-B and produce comparable re-
sult with LVMM andMM2F-SVM. The MCM-RFmethod per-
formed better than MM1-RF and could outperform LVMM and
MM2F-SVM. The MM2-RF method performed better than
MCM-RF and outperformed all methods significantly and stood
out as the best method on unbalanced acceptor splice sites. In the
unbalance donor site (Fig. 8d), the MM1-RF outperformed
MM1-SVM, Reduced MM1-SVM, SVM-B and MM2F-SVM.
The MM2-RF performed better than MM1-RF and could pro-
duce comparable results with LVMM. TheMCM-RF performed
slightly better than the MM2-RF and could outperform all the
methods except the MCM-SVM same as the MM2-RF.
In comparison to LVMM2, the proposed methods MM2-
RF and MCM-RF performed slightly better than
LVMM2. However, determining the associated threshold
parameters of the LVMM [13] are difficult [14]. The
proposed method has less complexity in comparison to
LVMM2. The overall performance comparison of the
proposed methods can be summarized in this way.
Considering the balanced acceptor dataset, MM2-RF and
MCM-RF showed the best performance. The MCM-SVM
method illustrated better accuracy than the proposed methods
on balanced donor splice sites. Considering unbalanced
datasets, the MM2-RF outperformed all the methods on ac-
ceptor site and again MCM-SVM showed higher accuracy in
unbalanced donor sites. We can state that our proposed
methods are definitely more suitable for acceptor sites than
donor sites. Additionally, considering performance of RF
along with SVM using the same encoding methods, the pro-
posed methods in most of the cases performed better.

In order to estimate the consistency of the proposed methods,
we performed an additional evaluation on the NN269 dataset.
For acceptor sites (Fig. 8e), auPRC of theMM1-RF is better than
MM1-SVM and Reduced MM1-SVM. Besides, the MM2-RF
performed better thanMM2F-SVM and SVM-B. TheMCM-RF
outperformed all of the methods but MCM-SVM performed
better than the proposed methods. For the donor sites (Fig. 8f),
the auPRC of MM1-RF method is lower than other available
models. TheMM2-RF andMCM-RF showed the same accuracy
in term of auPRC. Both of them outperformed all methods ex-
cept SVM-B and MCM-SVM methods. Overall, the proposed
methods produced good results for NN269 dataset.

4 Conclusion and discussion

In this study, we study RF as a new classifier and feature
selection method in Human splice site prediction domain.
Since a large number of features are used to describe structures
or processes in biology, the elimination of irrelevant and re-
dundant information provide useful biological knowledge for
human experts. F-score feature ranking method is a simple
and efficient method that is used in splice site prediction do-
main frequently. We have investigated efficiency of RF fea-
ture ranking method by comparing it with F-score to show
capability of RF as a feature selection in Human splice sites
identification. The results show that RF feature ranking is
useful method in human splice sites prediction.

SVM has been most commonly used in prediction of splice
sites due to its high performance. But existing of the parameters
that have to be set before using it, such as penalty parameter, the
kernel type and kernel parameters make it time-consuming pro-
cess, causing to question whether SVM is a suitable method to
genome-wide splice sites prediction [13]. In this study we em-
ploy RF as another extremely successful classifier. One of main
advantages of RF-based methods in comparison to SVM-based
methods is that it does not need tuning step in contrary to SVM
and it is really fast with high performance.

By combining RF with three up-to-date encoding methods
(MM1, MM2, and MCM), we show that the proposed
methods perform approximately the same and often better
than the SVM-based methods. In addition, the proposed
methods are simple, fast, easy to use and can be applied to
large scale Human Genome data for identifying splice sites.
As a future study, these methods can also be utilized in iden-
tification of other regulatory regions such as translation initi-
ation sites and promoters.
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