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Abstract This paper presents the development of a sys-
tem that uses inertial sensors, wireless transceivers and
virtual models to monitor the exercises of motor reha-
bilitation of the upper limbs based on Kabat’s method.
This method involves performing rehabilitation complex
exercises that cannot be easily reproduced by the pa-
tient, requiring permanent assistance of a qualified pro-
fessional. However, it is very expensive to have a pro-
fessional expert assisting the patient throughout the
treatment. Therefore, the development of technologies
to monitor this type of exercise is necessary. The
Kabat’s method has several applications, e.g. in motor
rehabilitation of stroke patients. Stroke is considered the
second most common cardiovascular disorder and af-
fects about 9.6 million people in Europe alone, and an
estimated 6 million people worldwide die from this dis-
order. Also, the natural aging process increases the
number of strokes, and the demand for healthcare and
motor rehabilitation services. To minimize this problem,
we propose an experimental system consisting of inertial
sensors, wireless transceivers and virtual models accord-
ing to the models of Denavit & Hartenberg and Euler
Angles & Tait Bryan. Through inertial sensors, this sys-
tem can characterize the movement performed by the
patient, compare it with a predefined motion and then
indicate if the motor system performed the correct
movement. The patients monitor their own movements

and the movement pattern (correct movement). All
movements are stored in a database allowing continuous
checking by a qualified professional. Several experimen-
tal tests have shown that the average system error was
0.97°, which is suitable to the proposed system.

Keywords Inertial sensors . Motion analysis . Kabat’s
method .Models of Denavit &Hartenberg . Euler Angles &
Tait Bryan

1 Introduction

This article offers a contribution to the characterization
of the human motion indicated for motor rehabilitation
of the human body using inertial sensors that form a
wireless network. The main novelty is the use of inertial
sensors and virtual models to monitor the user’s move-
ments developed by Kabat. Inertial sensors, such as ac-
celerometers, gyroscopes and magnetometers are often
used in industrial applications. However, in recent years
they have been widely used in Biomedical Engineering
due to the following reasons: low cost compared to
kinematics equipment; its use is not restricted to the
laboratory environment; their small size allow a wide
range of real-time motions, and they are available in
various types, models and different sensitivities [1–11].

Studies on the characterization of human body seg-
ment movements have deserved considerable attention
in the last years. For example, Pérez et al. [12] pro-
posed an inertial sensor-based monitoring system for
measuring and analyzing upper limb movements. Four
inertial sensors (MTi Xsens) mounted on a special gar-
ment worn by the patient provides the quaternions
representing the patient upper limb’s orientation in
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space. A kinematic model was built to estimate 3D up-
per limb motion for accurate therapeutic evaluation. The
mean correlation coefficient obtained from all the move-
ments was 0.957, indicating that both signals are almost
identical in shape for all degrees of freedom (DOF).
Sheikh et al. [13] used the Xsens MTi sensor of Xsens
Technologies for determining the suitability of inertial
sensors for motion analysis research. The results of the
Xsens MTi sensor were compared against an electro-
magnetic motion tracking system (Fastrak, Polhemus)
for measuring motions of an artificial hinge joint and
random 3D motions. The authors concluded that inertial
sensors have sufficient accuracy for clinical assessment.
Vargas et al. [14] presented a systematic review of the
literature comparing inertial sensors with all kinds of
gold standards (electrogoniometry, optoelectronic sys-
tems, electromagnetic systems, etc.) and concluded that
inertial sensors can offer an accurate and reliable meth-
od to study human motion, but the degree of accuracy
and reliability are site and task specific.

Zhoua et al. [15] showed a human motion tracking
system that used two wearable inertial sensors (MT9B
inertial sensors of Xsens Technologies) that are placed
near the wrist and elbow joints of the upper limb. The
turning rates of the gyroscope were utilized for localiz-
ing the wrist and elbow joints on the assumption that
the two upper limb segment lengths were previously
known. To determine the translation and rotation of
the shoulder joint, an equality-constrained optimization
technique is adopted to find an optimal solution, incor-
porating measurements from the tri-axial accelerometer
and gyroscope. Experimental results demonstrated that
this new system, compared to an optical motion tracker,
had RMS position errors of less than 0.01 m, and RMS
angle errors between 2.5 and 4.8°.

Shin et al. [16] used smartphone inclinometer for
measuring range of motion in the physical examination
and functional evaluation of the shoulder joint. Accord-
ing to the authors, the digital inclinometers available in
the market are expensive, which shall inhibit their wide-
spread use. The results obtained with smartphone
showed acceptable reliability compared to the classical
goniometric measurements of movements and the corre-
lation between the two measurements was fairly high.
Hadjidj et al. [17] presented a review of sensors used
for motor rehabilitation, sensor node design projects and
comparison of communication protocols. According to
the authors, rehabilitation supervision has emerged as a
new application of wireless sensor networks, with
unique communication, signal processing and hardware
design requirements.

Zhou & Hu [18] presented an excellent review of
human motion tracking systems for rehabilitation and a

performance comparison of different motion tracking
systems, e.g., inertial sensors, magnetic sensors, and ul-
trasound sensors, among others. In general, the inertial
sensors have high accuracy, high compactness, efficient
computation and low cost although the main drawback
is drift. In their study, Zhou & Hu [19] used two com-
mercially available inertial sensors. One of the inertial
sensors was placed on the lower arm, 2 cm far from the
wrist joint, whereas the other was fixated on the upper
arm around 5 cm far from the elbow joint. The purpose
of the study was to present an inertial motion tracking
system for monitoring upper limb movements in order
to support a home-based rehabilitation scheme in which
the recovery of stroke patients’ motor function through
repetitive exercises needed to be continuously monitored
and appropriately evaluated.

People who have experienced trauma and must per-
form physical rehabilitation exercises, such as stroke
patients, car accident victims, among others, often re-
quire specialized medical assistance to regain their nor-
mal motor functions. The path to the full rehabilitation
is often long and intensive, and requires repeating exer-
cises for weeks or even months. This treatment in a
hospital and the continuous doctor or physiotherapist
care at home is very expensive. However, if the patient
is to perform the exercise alone it is likely to do so
wrongly, probably hindering their rehabilitation. A pos-
sible solution to mitigate this issue is to use a system
that continuously monitors the implementation of the
rehabilitation protocol, which allows the patients to vi-
sually monitor their movements and correct them, when
necessary, while implementing the set of exercises pro-
posed by the doctor or physiotherapist, i.e., allowing
them to perform the rehabilitation exercises autono-
mously and correctly. Moreover, this minimizes the
need for hospitalization and less time is spent in mon-
itoring by trained professionals.

Therefore, this work aims to develop a system of assistive
technology able to characterize upper limb movements, using
the method developed by Kabat. This system is expected to:

& monitor the movements performed by the patient’s arm in
3D space;

& the movement performed by the patient must produce data
for instant comparison with a predefined movement called
standard virtual model;

& the data generated must be stored in a database so
that the movement can be reconstructed for further
analysis;

& the data generated must be stored in a database so that the
movement can be reconstructed for further analysis;

& the system should be robust to be used in the patient’s
home;
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& the system should be inexpensive so that each patient can
have a unit in their home.

Initially, the paper presents a brief description of the main
concepts related to the development of the mechanical model
that interacts with the virtual model, wireless transceivers and
inertial sensors. The next chapters describe the system devel-
oped, emphasizing the inertial sensors and its integration to a
wireless network based on IEEE 802.15.4 protocol [20], as
well as the description of a virtual model that responds to the
motions determined by sensors. Next, the outcomes from this
study and the conclusions drawn from the system developed
are shown.

1.1 Mechanical model of human upper limb

The accuracy of the virtual model is defined by the
number of polygons that compose it. The processing
time is increased depending on the number of polygons,
thus generating a slower system response. This project
does not require a high quality model of the human
body. It is desirable that the virtual models are created
as quickly as possible, allowing real-time feedback to
support the users of the system. Therefore, a virtual
model that allows the user to identify in detail the
movement being done is enough for the purpose of this
project.

In order to characterize the movements of every seg-
ment of the human body, the arm joints (shoulder, el-
bow and wrist) were modeled using mechanical link-
ages. Seven degrees of freedom (DoF) are used to rep-
resent the human arm [21]:

& shoulder three degrees of freedom of rotation (spheroid);
& elbow two degrees of freedom rotation (ellipsoid);
& wrist two degrees of freedom rotation (ellipsoid).

These upper limb joints are represented as shown in Fig. 1,
assuming the arm at its resting position, i.e., vertically extend-
ed parallel to the body, with the inside of the hand facing the
body. Two mechanical models were evaluated in this work:
the model of Denavit & Hartenberg and the model of Euler
Angles & Tait Bryan summarized below.

1.2 Denavit & Hartenberg model

Denavit & Hartenberg established a convention for
representing mechanical joints that is widely used in
robotics. This convention defines an axis for each con-
nection and allows to determine the position and con-
figuration of each connection type (pivot or prismatic)
in the representation, for example, of the mechanical
arm. A pivot connection allows only one DOF

(rotation) and no translation, while a prismatic connec-
tion allows only one DOF (translation) [22–25]. Each
connection has its own axis and references that need
to be defined according to the following rules:

& Oi is the source of the connection i;
& Xi is the X axis of the connection i;
& Ai is the rotation axis of the bond;
& Oi is situated on Ai and on the common perpendicular

between Ai and Ai-1;
& Xi is supported by the common perpendicular between Ai

and Ai-1 and is oriented from Ai-1 to Ai;
& Zi is supported by the shaft and its orientation is arbitrary;
& the vector Yi results of the cross product between Xi e Zi.

The Denavit & Hartenberg model requires the definition of
the α and θ parameters, which describe the inclination of the
axes of the second joint, and r and a parameters, which define
the position of the origin of the second joint (see Fig. 2). In this
study, only α and θ parameters had to be identified according
to the following rules:

& αi is the angle between Zi e Zi+1measured about Xi+1 axis;
& θi is the angle between Xi e Xi+1 measured about Zi axis.

Fig. 1 Generic Representation of the left human upper limb
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For example, to determine the axis of the second joint on
the reference axis, as a function of θi, one can use a homoge-
neous matrix T1,2, and so on, to obtain the joint axis i+1
depending on the axis of joint i using the matrix of homoge-
neous transition Ti,i+1 (see Eq. (1)):

Ti;iþ1 ¼
cθi −cαisθi sαisθi aicθi
sθi cαicθi −sαicθi aisθi
0 sαi cαi ri
0 0 0 1

2
664

3
775 ð1Þ

The matrix of Eq. (1) is extremely useful as it is able to
fully describe the joint axis i +1 depending on the axis of joint
i. In this case, the first 3 rows of the first column describe
respectively the axis Xi+1 according to Xi, Yi and Zi. The sec-
ond column, describes Yi+1 axis and the third column Zi+1
axis. In the last column the values of the first 3 lines corre-
spond to the position of point Oi+1 as a function of X, Y and Z
coordinates for pointOi. Therefore, it is possible to completely
describe the axes of joint i+1with this matrix. For this project
it is possible to neglect the fourth column of the matrix, since
the purpose here is to describe the angles of the axes only.
Therefore, the matrix of Eq. (1) becomes:

Ti;iþ1 ¼
cθi −cαisθi sαisθi
sθi cαicθi −sαicθi
0 sαi cαi

2
4

3
5 ð2Þ

The matrix of Eq. (2) can also be used to describe any axes
of the joint as a function of the axes of a previous joint and all
the intermediate variables as shown in Eq. (3):

Ti;iþ2 ¼ Ti;iþ1:Tiþ1;iþ2 ð3Þ

Using the inverse model Denavit & Hartenberg it is possi-
ble to calculate the values of the angles θi based on the de-
scription of the subsequent axes as a function of the reference
axes using the inverse matrix, for example, indicated in
Eq. (4):

Tiþ1;i ¼
cθi sθi 0 −ai

−cαisθi cαicθi sαi −risαi

sαisθi −sαisθi cαi −ricαi

0 0 0 1

2
664

3
775 ð4Þ

1.3 Model of the Euler Angles and Tait Bryan

Euler angles are used to describe the spatial orientation
of rigid bodies. They make it possible to describe a
three-dimensional rotation relative to a Cartesian coordi-
nate system in terms of three parameters [26]. Given a
reference coordinate system, a rotation of α° about z-
axis is performed. Then a β° rotation is performed
about axis N as a result of x-axis rotation around z-axis.
Finally, a third rotation is performed on the value of γ°
about z axis results of the last two preceding rotations.
The α, β and γ angles are called Euler angles. This
system is widely used in aeronautics and computer
graphics [27]. Tait Bryan angles are very similar to
Euler angles and are also able to describe any three-
dimensional rotation of a coordinate system. However,
instead of performing rotations about z axis N, and Z,
Tait Bryan’s method is more general. Axis rotation is
arbitrary, allowing six possibilities of rotations.

2 Methods

2.1 Experimental system

Figure 3 shows a simplified block diagram on the pro-
posed system. This system consists of the following
main blocks: inertial sensors, data transmission, virtual
model and database. The module called inertial sensor
(units ArduIMUV3 (see Fig. 4) that includes accelerom-
eters, gyroscopes and magnetometers) is positioned on
the human body (shoulder, elbow and wrist joints) and
measures the inclination of the upper limbs in 3D. The
sensors provide the tilt in 3 axes (x, y, z) with respect to
a rest position, which is calibrated at system startup.

The data transmission module consists of XBee trans-
ceivers based on IEEE802.15.4 protocol, providing com-
munication between the inertial sensor module and a com-
puter. The module is formed by a virtual model that per-
fectly replicates the Diagonal Movement of the Kabat’s
method and demonstrates the movement performed by

Fig. 2 The Denavit & Hartenberg Parameters
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the patient, allowing the comparison of the movement
performed by the patient with the standard virtual model.
This block system was developed with MakeHuman and
Blender software and allows interaction between the pa-
tient and the virtual system. For data manipulation and
communication between XBee transceivers and software
Blender a Python program was developed. The data pack-
et sent to the XBee is composed of data from 9 inertia
sensors (accelerometer, gyroscope and magnetometer) po-
sitioned in the human body.

The flowchart in Fig. 5 shows the path of the data
through the system. Communication between the XBee
and a computer was configured in API mode to allow the
identification of the module that sent the data. The devel-
oped program is responsible for receiving the data and
identifying all the sensors responsible for sending the data.
With this ability to control the virtual model, we developed
a script that opens a socket connection and waits to receive
information about the rotations to be performed on a spe-
cific segment of the human arm. Upon receiving the data,
Blender performs the corresponding animation of the virtu-
al model according to the data received. The virtual model

of the Blender, with strategically placed sensors that mon-
itored the arm movement, is shown in Fig 6.

2.2 Conversion of data from sensors

In order to determine the spatial orientation of the inertial
ArduIMUV3 module and, consequently, each segment of
the virtual model, it is necessary to describe the axis of
the inertial module relative to the initially determined axes
of reference. This results in a matrix shown in Eq. (5)
where, for example, PrXY corresponds to the projection
of the x axis of the inertial module on the y-axis of
reference and so forth:

Pr ¼
PrXX PrYX PrZX
PrXY PrYY PrZY
PrXZ PrYZ PrZZ

2
4

3
5 ð5Þ

Therefore, the axes of the inertial module are repre-
sented by the columns of the matrix relative to the
original axes. We used accelerometers as inclinometers.
Thus, the angle α formed between the axis of the ac-
celerometer and the acceleration of gravity g (see
Fig. 7a) determines the projection of acceleration due
to gravity Pg given by Eq. (6):

Pg ¼ g � cos αð Þ ð6Þ

The axis of gravity corresponds to the z axis of ref-
erence in the opposite direction, so the output value of

Fig. 3 A block-diagram repre-
sentation of the system

Fig. 4 ArduIMUV3 utilized and reference axes
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accelerometers corresponds to the projection of the axis
of the accelerometer in the z direction with the sign
reversed, multiplied by the value of gravity. However,
in the proposed application, the value of gravity is the only
significant acceleration in this system and corresponds to
the vector sum of the total acceleration measured by the
accelerometers (see Eq. (7)), where acelX is the value

measured by the accelerometer on the x axis of the inertial
module and so on:

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acelX 2 þ acelY 2 þ acelZ2

p
ð7Þ

Therefore, the normalized projection is given by Eq. (8):

PrXZ ¼ −acelX
�
g

PrYZ ¼ −acelY
�
g

PrZZ ¼ −acelZ
�
g

ð8Þ

Only the horizontal components of data from these sensors
are analyzed to determine the horizontal axes of the magne-
tometers The vertical component of this vector was subtracted
and the projection of the vector magnetic fields on the vertical
axis was determined according to Eq. (9). Then, the result of
this projection was subtracted from the initial vector deter-
mined by magnetometers:

pr
v! u!¼ u!: v!

v!: v!
�
v!

�
ð9Þ

It now remains to determine the angle between the magnet-
ic field and axis Y of the human body. Figure 7b shows the y
axis in the lateral direction, leaving the body. At least a hori-
zontal reference is needed to determine the angle α between
the measure of the magnetometer and the y axis. This refer-
ence can be obtained from a known position of the magne-

Fig. 5 Flowchart of the data path of this project

Fig. 6 Sketch of the virtual model: bones used to represent the hand-arm
segment

Fig. 7 (a) Axis of the accelerometer with respect to the acceleration due
to gravity and (b) the angle between the measured signal of the
magnetometer and the y-axis of system
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tometer sensors. With the arm extended in vertical position, as
shown in Fig. 8, and positioning the inertial ArduIMUV3
module with its x-axis pointing to the longitudinal direction
of the upper limb, (in this study, the y-axis, for the arm), it is
possible to obtain a known position of the magnetometer with
in relation to the axis of the body.

Thus, in this position, the axes of the magnetometer are
coincident with the axes of the system. In the case of the
arm, it is necessary to determine angle α in relation to the Y-
axis magnetometer through Eq. (10):

α ¼ arctg magX
�
magY

� �
ð10Þ

Therefore, measurement of α° about Z axis with magne-
tometer is used to determine the direction of Y axis. Finally, X
axis can be calculated from the cross product between Yand Z.
Thus, the reference axes from the initial position can be ob-
tained with the following procedure:

& the Z axis is the result of measurements of accelerometers
with inverted and normalized signal;

& Yaxis is the measure of magnetometers subtracted from its
projection on the Z axis, the rotated α° about the Z axis
and normalized;

& X axis is calculated from the cross product between Yand Z.

With the reference axes normalized, we should perform the
dot product between the axles calculated by the sensors and
the reference axes (for the values of the second and third rows
of the matrix projections).

3 Results

Figure 9 shows a photo of the prototype system (featuring
inertial sensor (IMU) and Xbee). A 9 V battery powers
the ArduIMU and an output port of the ArduIMU powers
the Xbee. The XBee network was configured to work in
star mode, i.e., all Xbees send data to the FFD device
connected to the computer. Table 1 shows the configura-
tion of the star network.

Tests were performed to ensure the transmission and
reception of packets with standardized data. The results
of these tests are shown in Table 2. Data in Table 2
show that the operation of the wireless network is suit-
able for the purpose of this study. Errors below 10 %
do not interfere with the operation of the system, i.e., a
20 Hz frequency was selected.

3.1 Application of Denavit & Hartenberg model

According to Fig. 1, the human upper limb was repre-
sented by three major joints: shoulder, elbow and wrist,
which are represented by a ball joint, an ellipsoid and
another ellipsoid, respectively. However, according to
Denavit & Hartenberg, all the rotations must be repre-
sented as pivot connections. The kneecap is represented
by three orthogonal pivot connections and an ellipsoid
and can be represented by two pivot links. Figure 10
illustrates the joints, in the form of pivot links. All
matrices determined for this system are based on
Eqs. (1) to (4).

Fig. 8 Arm positioned vertical configuration

Fig. 9 Photo of the prototype system

Table 1 Configuration of the star network

ID Send to FFD device? Network address

Receiver 0x1234 0xFFFF Yes 0X3332

Arm 0xEEEE 0X1234 No 0X3332

Forearm 0xCCCC 0X1234 No 0X3332

Hand 0xDDDD 0X1234 No 0X3332
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The axes O1 of the link (first link pivot) are invariant
while all other axes are rotated according to the rotation
of previous connections. The axes of O4 represent the
axes of the arm after shoulder rotations. The O6-axis
represents the axis of the forearm and the O8 represents
the axis of the hand. The arm is always rotated in re-
lation to the axis of the body, while the forearm is
rotated about the axis of the arm. The hand is rotated
about the axis of the forearm. However, it is important

to note that the Denavit & Hartenberg model’s axes do
not directly correspond to the axes of Blender software.
Table 3 presents the conversion rules to solve this prob-
lem. The parameters of Denavit & Hartenberg model’s
for the upper limb are shown in Table 4.

To determine the rotation angles depending on the
inclinations of the sensors it is necessary to use the
inverse model Denavit & Hatenberg. However, in this
particular case, it is possible to segment it into 3 parts,
i.e. determine the rotation angles from the previous seg-
ment. Here, the rotations of the arm were defined in
terms of the absolute axis. Rotations were defined for
the forearm relative to the axes of the arm after their
rotation, and the rotations of the hand are defined in
relation to the axes of the forearm. This segmentation
is interesting because only two variables will have to be
considered to define, for example, the rotations of the
hand: the DOF of the wrist. Thus, the rotation can be
defined without the need to evaluate the rotations in the
forearms. This is possible for two reasons: there is a
sensor in each segment of the upper limb that provides
its inclination with respect to the absolute axis; Blender
receives as input the rotation about the axes of the fore-
limb and not on the absolute axis. The definition of the
angles of rotation of the arm relative to the body, of the
forearm relative to the arm and hand in relation to the
forearm, were assessed independently. The measurement

Table 2 Testing the efficiency of the XBee network

Transmission frequency
of the ArduIMU

Transmission
time

Frames expected
by ArduIMU

Frames received
from the XBee Arm

Frames received from
the XBee Forearm

Frames received from the
XBee Forearm

10Hz 30 s 300 300 (100 %) 300 (100 %) 300 (100 %)

15Hz 30 s 450 411 (91.3 %) 385 (85.6 %) 385 (85.6 %)

20Hz 30 s 600 595 (99.2 %) 593 (98.8 %) 593 (98.8 %)

25Hz 30 s 750 735 (98.0 %) 745 (99.3 %) 735 (98.0 %)

33.33Hz 30 s 1000 854 (85.4 %) 922 (92.2 %) 922 (92.2 %)

40Hz 30 s 1200 1124 (93.7 %) 1124 (93.7 %) 1124 (93.75)

50Hz 30 s 1500 1491 (99.4 %) 1480 (98.7 %) 1480 (98.7 %)

Fig. 10 Model of the joints of the human arm in a resting position

Table 3 Conversion axes of the Denavit & Hartenberg model for
Blender

Axes in the Denavit & Hartenberg model

Shoulder Elbow Wrist

X Y Z X Y Z X Y Z

Axes in Blender Z X Y Z –X –Y X –Y –Z
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of the sensor positioned in the user’s arm provides the
inclination of the axis O4 with respect to the absolute
axis, i.e., O1. Therefore, the matrix provided by the

sensor is the generic 3×3 matrix represented by
Eq. (11):

M ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

2
4

3
5 ð11Þ

the inclination of the axis O4 depends only on three possible
rotations of the shoulder joint, represented by θ1, θ2 and θ3, that
is, the matrix representing the axis of the arm is shown as a
function of the absolute axis, or the matrix is equal to T14 shown
in Eq. (12):

T14 ¼

sin t1ð Þ � sin t3ð Þþ
cos t1ð Þ � cos t2ð Þ � cos t3ð Þ −cos t1ð Þ � sin t2ð Þ cos t1ð Þ � cos t2ð Þ�

sin t3ð Þ−cos t3ð Þ � sin t1ð Þ
cos t2ð Þ � cos t3ð Þ � sin t1ð Þ−
cos t1ð Þ � sin t3ð Þ −sin t1ð Þ � sin t2ð Þ cos t1ð Þ � cos t3ð Þþ

cos t2ð Þ � sin t1ð Þ � sin t3ð Þ
−cos t3ð Þ � sin t2ð Þ −cos t2ð Þ −sin t2ð Þ � sin t3ð Þ

2
6664

3
7775 ð12Þ

In T14 the term of the third row and second column depend
solely on variable θ2. Thus, one can determine θ2 equating
these two terms of the matrices. The inverse transform matrix
can be determined in Eq. (13):

−cos t1ð Þ � sin t2ð Þ ¼ a12
−sin t1ð Þ � sin t2ð Þ ¼ a22
−cos t3ð Þ � sin t2ð Þ ¼ a13
−sin t2ð Þ � sin t3ð Þ ¼ a33

ð13Þ

One may then obtain two valid responses to t1, t2
and t3, which result in the same rotation matrix obtain-
ed. The same logic used in the previous case, namely
the O6 rotate relative to O4., can be used to find the
angle of rotation of the forearm about the arm. Howev-
er, the matrix of inclination of the axes provided by the
sensor is measured in relation to absolute axis and not
in relation to the axis of O4. Therefore, it is necessary
to rewrite the inclination of the axes of O6 depending
on the axis of O4. One must make a projection of O6

axes on axes O4 for this relationship. This can be done
by performing a scalar product between the axes of O6

and O4. For example, the description of the scalar prod-
uct of O6 x-axis on the x axis O4 result in the first term
of the matrix. The matrix of inclination of the axes O6
in relation O4 axes (I46) is given by Eq. (14):

I46 ¼ I
0
4 � I6 ð14Þ

Where I4 is the inclination of the axes of O4 related to the
absolute axes and the symbol ’ represents the transpose of the
matrix. Equating I46 the T46 matrix should determine the 2

angles corresponding to the forearm rotation given by
Eq. (15):

T46 ¼
cos t4ð Þ � cos t5ð Þ −sin t4ð Þ −cos t4ð Þ � sin t5ð Þ
cos t5ð Þ � sin t4ð Þ cos t4ð Þ −sin t4ð Þ � sin t5ð Þ

sin t5ð Þ 0 cos t5ð Þ

2
4

3
5

ð15Þ

In this case, there will be only one correct answer. Just like
in the arm system - in forearm rotation it is necessary to make
the projection of the O8 axes for O6, according to Eq. (16):

I68 ¼ I6
0 � I8 ð16Þ

Equating the I68 matrix the T68 matrix is possible to obtain
the values of rotation for the wrist (see Eq. (17)). Again, in this
case there is only one correct answer.

T68 ¼
cos t6ð Þ � cos t7ð Þ −cos t6ð Þ � sin t7ð Þ sin t6ð Þ
cos t7ð Þ � sin t6ð Þ −sin t6ð Þ � sin t7ð Þ −cos t6ð Þ

sin t7ð Þ cos t7ð Þ 0

2
4

3
5

ð17Þ

3.2 Application of angles Tait Bryan

To select the best way to represent the rotation angles
of each segment of the upper limb, it is interesting to

Table 4 Denavit & Hartenberg parameters

1 2 3 4 5 6 7

Α −90 −90 90 90 −90 90 0

Θ θ1 θ2 θ3 θ4 θ5 θ6 θ7
θinitial −90 −90 0 90 −90 0 0
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analyze the procedure that Blender uses to perform ro-
tations about the segments of the virtual model. As
Blender uses angles Tait Bryan extrinsic to orient their
bones in space, is interesting transform the projected
axes in the three rotation angles of Tait Bryan extrinsic.
The order of rotation axes is arbitrary. It is only re-
quired to indicate Blender. The following order of rota-
tion was selected: Z, Y, X. The rotation about Z axis
will be called γ, on Y axis will be called β and on X
axis, α. The resulting matrix of three rotations corre-
sponds to the projected matrix with axes. The resulting
matrix is the same generic matrix shown in Eq. (11),
followed by rotation matrices on the x, y and z axes
(see Eqs. (18) to (20)):

Rx ¼
1 0 0
0 cos αð Þ −sin αð Þ
0 sin αð Þ cos αð Þ

2
4

3
5 ð18Þ

Ry ¼
cos βð Þ 0 sin βð Þ

0 1 0
−sin βð Þ 0 cos βð Þ

2
4

3
5 ð19Þ

Rz ¼
cos αð Þ sin αð Þ 0
sin αð Þ cos αð Þ 0

0 0 1

2
4

3
5 ð20Þ

The matrix of rotation about the three axes is given by
Eqs. (21) and (22):

Rzyx ¼ Rx� Ry� Rz ð21Þ

Rzyx ¼

cos βð Þ � cos γð Þ −cos βð Þ � sin γð Þ sin βð Þ
sin αð Þ � sin βð Þ � cos γð Þþ
cos αð Þ � sin γð Þ

cos αð Þ � cos γð Þ−sin αð Þ�
sin βð Þ � sin γð Þ −cos βð Þ � sin αð Þ

sin αð Þ � sin γð Þ−cos αð Þ�
cos γð Þ � sin βð Þ

cos γð Þ � sin αð Þ þ cos αð Þ�
sin βð Þ � sin γð Þ cos αð Þ � cos βð Þ

2
6664

3
7775 ð22Þ

After extensive algebraic work it is possible to obtain
Eq. (23):

β ¼ arctg2 Rzy 1; 3ð Þ;Rzy 3; 3ð Þð Þ
γ ¼ arctg2 Rzy 2; 1ð Þ;Rzy 2; 2ð Þð Þ ð23Þ

3.3 Calibration of sensors

Accelerometers were programmed for a range up to ±4 g
and gyroscopes with a sensitivity of ±2000°/s. The signals
from the accelerometers and gyroscopes were digitized by
a 16-bit ADC (the signals from the magnetometers are
digitized by a 12-bit ADC). Subsequently, data were fil-
tered through a 10 Hz low pass filter (available from
ArduIMU itself). Each sensor was calibrated and its offset
and sensitivity were determined (all data from the inertial
sensors were compared with a commercial inertial sensor
(MTI-100 Xsens Company)). The offset value is deter-
mined by Eq. (24):

Offset ¼ MaxþMin=2 ð24Þ

where Max and Min are the maximum and minimum
values of the sensor. The sensitivity of each sensor is
determined by Eq. (25):

S ¼ Max−Min=2 ð25Þ
Each output of the sensor is given by Eq. (26):

V ¼ leitura−Offset=S ð26Þ

Table 5 Transfer
function of the
accelerometers used

Axis Transfer function R2

X y=8081.6x−123.7 0.9994

Y y=8135.1x+21.605 1

Z y=−8458.9x+791.03 0.9999

Fig. 11 Movement of the Kabat: (1) standard virtual model, (2) virtual
model managed from the set of inertial sensors indicated by (3) and (4)
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It is important to note that this procedure was performed for
all sensors. Table 5 shows an example of the transfer functions
of the accelerometers used.

After many trials it was possible to determine the error for
each axis of each sensor and hence the error for each motion,
e.g. the error for the rotation of 45° about the X axis was:

ErroM ¼
0:0132 0:0071 0:0218
0:0621 0:0205 0:0016
0:0077 0:0120 0:0122

2
4

3
5

For all inertial sensors used, the calculated error was
similar to the one presented above (Eq. (27)), i.e., typ-
ically less than 0.06. It was possible to transform the
array of projections for any angle of rotation using Eu-
ler angles or Tait Bryan. The system developed was
able to convert the array of projections in the exact
angles, in ways compatible with Blender. The virtual
model generated by MakeHuman and animated by
Blender software was very user friendly. Therefore, it
was possible to identify the position of the upper limb
measured by the sensors. However, Blender does not
allow a very high rate of updates of the position of
the segments of the model. For example, with a data
transmission rate of 100 Hz to Blender, it showed a
significant delay in the animation performed. But with
a sending rate of 20 Hz per sensor, the animation was
satisfactory and without noticeable delays. Moreover,
20 Hz is compatible with the movements performed in
this type of test.

Figure shows a picture of the system. The volunteer is
performing the movement of diagonal Kabat. The time delay
in this system was not greater than 0.2 s. This result is consis-
tent with the proposal of this system. Ongoing trials with
stroke patients have demonstrated the effectiveness of the pro-
posed system. According to information from health profes-
sionals, the use of this system has reduced the training time for
the correct performance of movement Kabat (Example of the
tests (see Fig. 11).

4 Conclusion

The initial design goal was successfully achieved. The system
developed allowed to monitor the movement of Kabat’s meth-
od. Moreover, this system is portable, inexpensive and devel-
oped in free code. It uses only inertial sensors and allows
comparison of the movement performed by the user with a
standard motion. Errors did not exceed 0.97 ° allowing us to
conclude that this system is suitable for the proposed
application.

Equaling I46 the T46 matrix
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