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Abstract Previous work by our group introduced a novel
concept and sensor design for “off-the-person” ECG, for
which evidence on how it compares against standard
clinical-grade equipment has been largely missing. Our
objectives with this work are to characterise the off-the-
person approach in light of the current ECG systems
landscape, and assess how the signals acquired using this
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simplified setup compare with clinical-grade recordings.
Empirical tests have been performed with real-world data
collected from a population of 38 control subjects, to ana-
lyze the correlation between both approaches. Results show
off-the-person data to be correlated with clinical-grade data,
demonstrating the viability of this approach to potentially
extend preventive medicine practices by enabling the inte-
gration of ECG monitoring into multiple dimensions of
people’s everyday lives.
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1 Introduction

Electrocardiography (ECG) is an established standard
medical practice and a mainstream diagnostic technique.
Although the first practical implementations of devices for
human use can be dated back to 1887 [1], measurement
methods are still mostly bound to hospital and short-time
monitoring settings. With prevention being one of the main
pilars for managing the risks associated with cardiovascu-
lar diseases management, new solutions with the potential
to complement current practices, and accelerate early detec-
tion of abnormal conditions, can play a major role.

In [15] we introduced a sensor design for ECG data
acquisition at the hand palms or fingers, further improved in
[14], and capable of operating using non-gelled electrodes
and conductive fabrics. This can greatly contribute for car-
diovascular disesase management, especially in prevention
and early detection, given that the sensor can be integrated
in everyday use objects (e.g. a computer keyboard or a game
station remote) rather than being attached to the body of the
person, leading us to the concept of “off-the-person” ECG.
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Evidence regarding how this approach performs when
compared to clinical-grade systems has been largely lack-
ing. As such, this paper builds upon our previous work,
by providing empirical evidence showing how our off-
the-person approach correlates with data collected using a
clinical-grade system. Given that segmentation is a fun-
damental step in computer-based ECG data analysis, we
also assess the performance of several commonly used peak
detection algorithms on off-the-person data.

It is important to stress that ECG signals are signifi-
cantly different from the mere heart rate readings obtained
using the systems incorporated in commonly found fitness
equipment, both in terms of instrumentation requirements
and information content. Our goal with the pursuit of this
line of work is to contribute to further enrich current prac-
tices in cardiovascular disease prevention, by enabling ECG
data acquisition to become more pervasive and seamlessly
integrated in multiple aspects of peoples everyday lives.

The remainder of the paper is organized as follows:
Section 2 provides a taxonomy for the current ECG devices
landscape with respect to their level of practicality (or intru-
siveness); Section 3 describes the methodology used for
experimental data acquisition and analysis; Sections 4 and
5 present the comparative evaluation of the off-the-person
approach against data collected using clinical-grade equip-
ment; finally, Section 6 summarizes the main conclusions
and future work.

2 Taxonomy for the practicality of ECG devices

Over the years, multiple ECG measurement approaches
have been proposed. Voltage potential differential is the
most common and widely used method, due to the bioelec-
trical phenomena underlying the cardiac activity [10]; other
methods include capacitive and even ballistic sensing. In
light of our line of thought, geared towards placing the sen-
sors in objects with which the person interacts rather than
directly on the body of the person, we found a top-level clas-
sification for the practicality of existing hardware devices
with respect to their placement on the user to be missing.
As such, in this paper we provide a taxonomy for which an
overview is presented in Fig. 1.

2.1 In-the-person

This category defines equipment designed to be used
directly inside the body of the person, which includes
devices that are either surgically implanted, have subder-
mal application, or need to be ingested in pill-shaped
form factors. These are generally used by chronic patients,
and in extreme clinical scenarios for which less intru-
sive approaches do not suffice. Despite being internal to

the body, most modern devices enable clinicians and even
patients to access the data externally.

Implantable systems are one class of devices in this cat-
egory. Artificial cardiac pacemakers have been around
for decades, and are perhaps the best known example of
implantable systems [17]. Modern devices for human use
have extremely compact and lightweight form factors; a
state-of-the-art example of such devices is Medtronic’s
recently announced Micra Transcatheter Pacing System1,
which has 24 mm in length and a volume of less than 1 cm3.

Another type of devices belonging to this class can be
defined as Minimally Invasive, including systems such as
Implantable Loop Recorders (ILR) and pill-like systems.
Despite the fact that these devices are designed for use
inside the body, they either have subdermal application
through simple medical procedures or are administrated
orally. ILR’s are a typical example of a minimally invasive
system, in which the application is done through a small
incision that only requires local anesthesia; once the device
is applied, it enables the continuous logging of the cardiac
activity.

2.2 On-the-person

Most of the devices used nowadays in clinical and well-
being applications can be classified in this category, which
defines ECG measurement methods that require the use of
a device or some of its components directly attached to the
body surface (e.g. the electrode leads). Examples of such
devices range from bedside monitors or medical diagnos-
tics systems used in a hospital setting, to personal devices
for self-monitoring of 1-lead ECG data, such as chest straps
or attachable patches for heart rate monitoring (e.g. Zephyr
BioHarness & BioPatch2).

Standard ECG devices such as workbench, cart or bed-
side units can be defined as Stationary systems. These
devices generally use up to 12 leads mounted on the chest
and limbs, and require the use of conductive gel or pastes.
Also, devices in this class are mostly designed to be used
within a limited physical space to which the person is bound
to, this being a medical care facility, an ambulance, an
ambient assisted living unit, or other environments alike.

Over the years, a vast effort has been made in the field of
Ambulatory systems. This class includes devices that range
from Holter monitors used for near-continuous cardiac data
logging, typically over the course of 24h periods, to t-shirts
and other wearable form factors. Representative examples
of these devices are the VitalJacket from BioDevices3 [5],

1http://newsroom.medtronic.com/phoenix.zhtml?c=251324&
p=irol-newsArticle&id=1883208
2http://www.zephyranywhere.com/products/
3http://www.biodevices.pt
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Fig. 1 Overview of the
intrusiveness and potential
outreach of ECG data
acquisition systems

and the AAL+ necklace described in [16] that uses dry
Ag/AgCl electrodes and enables heart rate measurement on
the user’s neck.

Within the ecosystem of on-the-person wearable devices,
an increasingly growing trend has been seen within the cur-
rent state-of-the-art towards integrating ECG sensors into
mobile phones or bracelets. Examples of such trend are
the Samsung SIMBAND4, the AliveCor5 smartphone acces-
sory, and the EPI Life6 purpose-built phone fitted with ECG
sensors.

2.3 Off-the-person

In a pervasive healthcare framework, one can easily envi-
sion several use cases where the sensors do not need to be
with the person, but instead are embedded into everyday use
objects; this brings us to the concept of off-the-person ECG.
A major advantage of this approach is the fact that the sen-
sor placement does not require a voluntary action from the
user, unlike, for example, wearable on-the-person devices.
These novel approaches are actually well aligned with the
future trends envisioned in terms of medical applications of
technology [18].

One category in this space comprises Contact Based
systems, that is, devices that still require the use of elec-

4http://www.samsung.com/us/globalinnovation/innovation areas/#
simband
5http://www.alivecor.com
6http://heartronics.com.my

trodes in contact with the body of the person, but in which
design considerations were taken to allow their integration
in objects with which the person regularly interacts, with-
out impacting the normal routines. An example of contact
based off-the-person sensing can be found in [15], where a
sensor designed for use with dry electrodes was proposed,
targeting ECG data acquisition at the hand palms or fin-
gers. Although primarily created to perform measurements
at the chest, the previously mentioned AliveCor smartphone
accessory can also be seen as another example of an off-the-
person device, given that the ECG measurements can also
be performed by letting the phone rest on the fingers. This
type of sensors can be easily embedded into items such as
a computer keyboard, a gaming station controller, among
many other items, enabling their use for electrocardiogra-
phy in a pervasive health framework, and promoting novel
periodic and long-term monitoring paradigms.

Another class is Contactless systems, which includes
both capacitive and mechanical sensing. It is important to
highlight that these approaches are not capable of mea-
suring the tradicional ECG signal, but they do measure
an ECG-like activity, with the advantage of relieving the
constraints associated with needing to have the electrodes
in contact with the body of the person. Capacitive meth-
ods work by measuring electric field changes induced by
the bioelectric activity of the heart [3, 11, 13], and can
be designed to measure the ECG at distances of ∼1cm or
more, even with clothing in-between the body and the sen-
sor. Mechanical methods measure heart-related events by
sensing the vibrations propagated to the body surface after
the contraction of the cardiac musculature. This is known
as ballistocardiography or seismocardiography, and current

http://www.samsung.com/us/globalinnovation/innovation_areas/#simband
http://www.samsung.com/us/globalinnovation/innovation_areas/#simband
http://www.alivecor.com
http://heartronics.com.my
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approaches have been based on the use of accelerometers or
electromechanical films [12].

3 Experimental procedures

A long-standing question with respect to our proposed
approach for off-the-person ECG has been the relation
between the signals obtained with this type of sensor, and
those obtained with clinical-grade stationary on-the-person
devices, which are an ECG gold standard. It is important
to highlight that on our approach, the hand palms sensor
placement and the use of non-gelled electrodes relief impor-
tant pre-established constrains in gold standard methodolo-
gies [14, 15]. Therefore, the goal of this comparison is
not to prove or demonstrate any physiological principles,
but instead, to empirically analyse if our signals corre-
late with one (or more) leads of what is known to be the
gold standard, thus validating its potential use in real-world
applications.

3.1 Data acquisition

To address this question, we have conducted experimen-
tal tests involving 38 volunteers (50 % females), in which
simultaneous recordings were performed using a Philips
PageWriter Trim III series ECG device (hereinafter referred
to as Philips), and our off-the-person sensor design as pre-
sented in [14] (hereinafter referred to as BITalino). Figure 2
provides an overview of the experimental setup used in our
work.

The Philips device was used in the standard 12-lead set-
ting (I-III, V1-V6, aVF, aVL, aVR), with conductive paste
applied to each of the electrodes, while our sensor was used
in the virtual ground setting with dry Ag/AgCl electrodes;
for data acquisition we used our sensor with the BITalino
system [14]. Subjects were asked to hold one of the elec-
trode leads in the right hand and the other on the left hand.
Data collection was performed using the standard clinical
procedure, in which the subject is lying down, at rest, in an
examination bed. The BITalino system acquired data con-
tinuously. Given that the Philips device only records 10
seconds of data per run, we acquired three sequential runs,
thus amounting to 30 seconds of data per subject per ses-
sion. Ground truth data annotation for R-peak labelling was
performed manually by a human expert that reviewed all of
the records.

This setup with the users at rest, was motivated by the
fact that our approach already relaxes several requirements
of gold standard approaches, reason for which we left the
analysis of dynamic scenarios to be the focus of future work.
Still, it is important to stress that there are multiple real-
world situations where users are inherently at rest, with

Fig. 2 Experimental setup used in our work, involving a Philips
PageWriter Trim III classical 12-lead ECG placement system, along
with our off-the-person sensor approach using dry electrodes placed at
the hands (drawings not to scale)

limited or no dynamic activity of locations such as the hand
palms. Examples of such use cases include working with a
computer keyboard or using a remote control of a gaming
station, just to name a few.

3.2 Preprocessing

Given that the Philips PageWriter device has a sampling rate
of 500 Hz, whereas in BITalino we used 1000 Hz, the raw
data from our device was post-processed in order to perform
a downsampling to 500 Hz, after filtering the signal with a
butterworth digital filter, of order 3, in the frequency band
[0.5, 40]Hz. Another core aspect that we have considered
in our analysis is the fact that data acquisition is being done
by two independent systems.

The Philips device does not provide a direct approach
to synchronization at the hardware level; to overcome this
problem, in the post-processing we also performed the tem-
poral alignment of both signals by first normalizing the DC
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Fig. 3 Synchronized BITalino and Philips Lead I signals for subject
S8, and example of R-peak detection for segmentation using the best
performing algorithm [9]; normalization was performed using Eq. 1,

and the positions of the R peaks are plotted in red vertical lines, while
the limits of one of the heartbeats are shown in magenta

Fig. 4 Root Mean Square Error between the BITalino and Philips Lead I synchronized signals for all subjects; values are the averages across all
runs
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offset and amplitude of the signals as shown in Eq. 1, where
the original signal x[k] is subtracted of its mean μ, and then
divided by the total amplitude variation.

xnorm[k] = x[k] − μ

maxk {x[k]} − mink {x[k]} (1)

We then aligned the signals between corresponding
BITalino and Philips time series, by computing the time
delay for which the cross-correlation between them is max-
imum (2). Note that we use the Lead I from the Philips
system to determine the delay, given that, as we will
demonstrate throughout the following sections, this
derivation is the one that better correlates with the
off-the-person data.

d∗ = arg max
d∈Z

+∞∑

k=−∞
x[k] y[k + d] (2)

Figure 3 shows an example of the synchronized signals
for one of the acquisition runs, where we can observe that
there is an almost exact match between the two signals. This
is further validated by computing the Root Mean Square
Error (RMSE), as defined in Eq. 3.

RMSE(x, y) =
√∑n

k=1 (x[k] − y[k])2

n
(3)

In Fig. 4 we present the RMSE between the synchronized
BITalino signal and each of the Philips leads, for the entire
database. It is important to highlight that for this analysis,
the signals were preprocessed as described in the beginning
of Section 5. We can see that the error to Lead I is indeed
small (< 0.05), although we lack a reference with which to
compare it to.

4 Segmentation performance

An important step in ECG data analysis is the identifica-
tion of fiducial points within the signal trace, the R-peak
generally being the reference complex in the segmentation

Table 1 Total number of detected R-peaks across all records

Algorithm Total Philips BITalino

Eng. & Zee.[9]

1712

1691 1692

Christov[4] 1927 1931

Hamilton[8] 2380 2250

Zong et al.[19] 1594 1568

process. As such, we sought to evaluate if there are notice-
able differences in the peak detection performance when
using off-the-person data. We chose four R-peak detection
algorithms.

The detectors by Engelse and Zeelenberg [6], Hamilton
[8], and Christov [4], were selected due to the fact that they
are widely found in reference literature. Zong et al. [19] has
a simpler implementation, thus potentially being more sen-
sitive to noisy data, reason for which we also included it in
our comparison. In addition to the previous references, we
refer the reader to the work by [2, 9] and references therein
for additional details on each of these algorithms.

For our segmentation tests, the collected data from both
devices was pre-processed using a bandpass FIR filter with
a 300 ms window and a passing band spaning the [5, 20]Hz

range. From the filtered data, we compared the number of
R-peaks detected (Table 1), as well as the precision.

Precision, as described in Eq. 4, is the ratio between
the number of R-peaks correctly detected from the off-the-
person data when validated against the ground truth data
(TP), and the total number of detected R-peaks from the
off-the-person data (FP + T P ; FP being the total num-
ber of incorrectly detected R-peaks). We use the manually
labelled R-peaks as ground truth (or reference) to bench-
mark against. A given R-peak detected in the off-the-person
data is considered to be correct (that is, a TP), if it differs
by < 50 milliseconds from a potential counterpart in the
clinical-grade data, and it is considered incorrect otherwise
(that is, a FP).

Precision(%) = T P

FP + T P
× 100 (4)

The results for R-peak detection precision are presented
in Table 2. We used each algorithm for R-peak detection on
the clinical-grade data and on off-the-person data. Figure 3
shows an excerpt of a signal annotated with the R-peaks
as detected using the best performing algorithm. For seg-
mentation, we consider the signal segment corresponding to
200ms before and 400ms after each R peak, amounting to a
total of 600ms, which corresponds to the RR interval with a
heart rate of 100bpm.

Table 2 Average R-peak detection precision of commonly used peak
detectors on off-the-person and clinical-grade data (μ ± σ %)

Algorithm Philips BITalino

Eng. & Zee.[9] 99.00 ± 4.58 98.36 ± 7.15

Christov[4] 95.03 ± 18.93 94.86 ± 18.95

Hamilton[8] 92.62 ± 18.89 91.54 ± 20.37

Zong et al.[19] 90.32 ± 19.37 90.27 ± 18.77
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Our analysis has revealed that, on average, R-peak detec-
tion from off-the-person ECG data has a precision above
90% for all algorithms, the best performing algorithm being
the detector by Engelse & Zeelenberg [9] with > 98%
precision. Furthermore, results show the segmentation per-
formance to be fairly comparable to that achieved when
using clinical-grade data.

5 Correlation of clinical and off-the-person data

With segmentation results pointing towards a comparable
performance, we set out to perform a more granular assess-
ment, by evaluating how the actual morphology of each
individual heartbeat waveform compares between the sig-
nals collected using our off-the-person approach and the
clinical-grade equipment.

Given that the analog signal conditioning circuitry is dif-
ferent in both devices, the raw data collected from each
device was passed through a filtering preprocessing step.
Our sensor uses the most restrictive frequency bandwidth,
which spans the [0.5, 40]Hz range; as such, we designed
a digital filter with a high pass cutoff frequency of 0.5Hz

and a lowpass cutoff frequency of 40Hz, and filtered both

signals using the same procedure, which consisted on a
3rd order zero-phase forward and reverse Butterworth filter
[7].

All the individual heartbeat waveforms were segmented
using the best performing algorithm, that is, the Engelse &
Zeelenberg approach [9]. Our focus in this part of the study
is on determining the morphological similarity between
individual heartbeat waveforms collected using each of the
sensor devices. Considering that dry electrodes are used
in our sensor, and also due to the fact that the clinical-
grade equipment uses leads scattered through different
anatomical locations, the magnitude of the signals collected
by each device is affected by a variable scale factor. To
account for such differences, in this study we adopted the
cosine similarity (5); this metric is quite convenient given
that it provides a magnitude-independent result normalized
to [0, 1].

Dcos (x, y) = 1 −
∑n

k=1 x[k]y[k]
√∑n

k=1 x[k]2
∑n

k=1 y[k]2
(5)

The boxplot in Fig. 5 characterises the distances between
the off-the-person and the medical-grade leads. Results

Fig. 5 Boxplot of the distance between the off-the-person and each of the medical-grade leads
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Fig. 6 Example of the segmented heartbeat waveforms obtained with the off-the-person and each of the clinical-grade leads for subject S8

Fig. 7 R2 coefficient of determination computed between the off-the-person and each of the medical-grade leads



Health Technol. (2014) 4:309–318 317

show that, in the overall, data collected at the hand palms or
fingers using our approach correlates best with the clinical-
grade Lead I. For a better visual reference, Fig. 6 depicts an
overlay with the segmented individual heartbeat waveforms
for one of the tested subjects. The off-the-person data is rep-
resented in blue, while the clinical-grade data for each of the
leads is represented in green; in this case, the off-the-person
lead and the Lead I data closely match.

SSxx =
n∑

k=1

x[k]2 − nμ2
x (6)

SSyy =
n∑

k=1

y[k]2 − nμ2
y (7)

SSxy =
n∑

k=1

x[k]y[k] − nμxμy (8)

R2 = SS2
xy

SSxxSSyy

(9)

The median cosine distance between the off-the-person
waveform and the Lead I waveform of the clinical-grade
device sits below 0.04, and low variability across the overall
set of subjects was found. The coefficient of determination
R2 (9) is characterised by the boxplot shown in Fig. 7, the
median value being 0.875, which allows us to conclude that
both signals are fairly correlated.

Given that each of the leads is in contact with a differ-
ent limb, unlike local differential setups, there is a large
enough potential difference to be more immune to EMG
contribution. Still, if the user grasps the sensor lead vigor-
ously, the signal-to-noise ratio will degrade. Furthermore,
due to the use of non-gelled electrodes, mechanical action
in the skin/electrode interface (e.g. sliding the hand on the
electrode) will introduce momentary artifacts in the signals.
A more in-depth study of these issues is the focus of ongoing
and future work.

Nonetheless, this approach is particularly interesting as it
can enable more periodic cardiovascular assessments in the
convenience of the users’ everyday life. If one has a com-
puter keyboard fitted with a sensor, one can be followed-up
virtually every day (unlike current practices in which there
is the need to visit a clinical facility), thus enriching the
current practices in what concerns prevention, early detec-
tion, and management of cardiovascular diseases. It is also
important to further reinforce the fact that ECG measure-
ments obtained with our approach, are significantly differ-
ent from the simple heart rate readings provided by fitness
equipment.

6 Conclusions and future work

In previous work, our team has devised a sensor design
capable of measuring ECG data at the hand palms or fingers
using dry electrodes. As depicted in Fig. 8, our approach
enables novel use cases in which the sensor device is fitted
into a multitude of objects such as a computer keyboard, a
game station remote controller, and others alike. We build
upon the idea that, in many cases, the sensors do not need
to be permanently applied to the body of the users, but may
instead be embedded into objects with which they regularly
interact. In particular, we have focused on Electrocardiog-
raphy (ECG), leading us to the concept of off-the-person
ECG, which relaxes several requirements of conventional

(a)

(b)

Fig. 8 Examples of a contact based off-the-person ECG sensor inte-
grated into everyday use objects
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approaches (e.g. pre-gelled electrodes, cable placement at
the chest, among others).

Although we have proven the technical accuracy of our
sensor design, an outstanding question for which evidence
has been mostly lacking regards the relation between the
data collected using our off-the-person approach and data
collected with gold standard equipment. In this paper we
presented a taxonomy that defines ECG data acquisition
methods with respect to their practicality level, and provided
experimental evidence that points towards a fair correlation
between off-the-person and clinical-grade data. Compara-
tive tests have been made with real-world empirical data
to assess the segmentation performance and morphological
waveform correlation, with results showing both a high pre-
cision in R-peak detection for segmentation, and a strong
correlation between individual waveforms segmented from
synchronized off-the-person and clinical-grade data.

Future work will focus on further validating our approach
by benchmarking the system in dynamic scenarios, increas-
ing the control population, and developing clinical studies
with pathological populations, to characterise the type of
conditions that can be detected using our approach, as well
as the feasibility of our approach for the early detection and
management of cardiovascular diseases.
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