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Abstract
The characteristics of residential environments that may affect health are posited to contribute to social and race/ethnic 
inequities in health through the differential allocation of health-promoting resources and health-harming conditions that 
stem from macro-level processes that systematically sort large groups of the American population into different neighbor-
hoods. However, few studies have examined how exposure to these neighborhood conditions is inequitably experienced by 
individuals over adulthood. Longitudinal studies are well positioned to contribute to our understanding of the accumulation 
of neighborhood (dis)advantages and their impact on health throughout the life course but must first overcome the challenge 
of measuring differences in neighborhood context across time and between population groups. Using a longitudinal cohort 
of Black and white U.S. adults followed over a 25-year period with linked census tract data, we computed a Neighborhood 
Vulnerability Index (NVI) that combines multiple indicators of neighborhood risk into one composite score and tested the 
assumption of configural, metric, and scalar invariance both longitudinally and between race/gender groups. Using con-
firmatory factor analysis, we identified a two-dimensional model for neighborhood vulnerability and computed an index 
that demonstrated multiple levels of race, gender, and race-by-gender invariance (χ2 1000.48, df 15, RMSEA 0.07, SRMR 
0.02, CFI 0.98, TLI 0.97, AIC 751,272). Inequities in exposure to neighborhood vulnerability between Black and white men 
and women at the neighborhood level has important implications for understanding the root of social, health, and economic 
disparities that have persisted in the U.S. over the past several decades.
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Introduction

Our understanding of neighborhood- and community-level 
factors and their influence on health and well-being has 
emerged as a result of the burgeoning interest in the contri-
bution of contextual factors, over and above individual level 
factors, to health outcomes. The characteristics of residential 
environments that may affect health are posited to contrib-
ute to social and race/ethnic inequities in health through the 
differential allocation of health-promoting resources (e.g., 
safe recreational spaces, access to health care, employment 
opportunities) and health-harming conditions (poor housing 

and working conditions, food deserts, crime) that stem 
from macro-level processes that systematically sort large 
groups of the American population into different neigh-
borhoods (Clarke & Nieuwenhuijsen, 2009; Mode et al., 
2016; Waldstein et al., 2016). For example, many studies 
have documented significant associations between neighbor-
hood socioeconomic conditions and various health outcomes 
including mortality, adverse mental health outcomes, inci-
dence of cardiovascular disease, and diabetes using various 
methods of measuring exposure (Reijneveld et al., 2001; 
Diez Roux & Mair, 2010; Christine, et al. 2015; Schule 
and Bolte, 2015). However, few studies have examined how 
exposure to these neighborhood conditions is inequitably 
experienced by individuals over adulthood. Longitudinal 
studies are well positioned to contribute to our understand-
ing of the accumulation of neighborhood (dis)advantages 
and their impact on health throughout the life course but 
must first overcome the challenge of measuring differences 
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in neighborhood context across time and between population 
groups (Boen et. al. 2016; Vidourek et al., 2019).

Neighborhood indicators of (dis)advantage are often 
viewed as structural factors, defined as aspects of the eco-
nomic and social environments that create the context in 
which risk production occurs (Freisthler & Maguire-Jack, 
2015; Kolak et al., 2020). There are well-known structural 
risk factors that disproportionately impact population sub-
groups. For example, while all minoritized groups experi-
ence race-based oppression, it can be argued that very few 
groups, if any, have been exposed to this mistreatment as 
long as Black Americans, who stand on a socioeconomic 
and cultural base that is persistently undermined by larger 
society (Bailey et al., 2017; Brownlow et al., 2019; Hooks, 
1981; Pager & Shepherd, 2008). Furthermore, Black wom-
en’s social context is drastically different from other racial/
ethnic groups of women (Beauboeuf-Lafontant, 2007; 
Hooks, 2015). Black women experience misogynoir, a com-
bination of sexism and racism that is unique to their identity 
(Bailey & Trudy, 2018). These perspectives suggest the need 
for measures of exposure to structural factors that capture 
differences in race and/or gender-based susceptibility.

Social factors such as race, gender, and class undergird 
environmental exposure to structural racism, sexism, and 
classism that can have consequences for health that shifts 
between places over sociohistorical time. The ways in which 
social systems interact with place and time to create expo-
sure to harm and impact the ability to recover from harm can 
be viewed under a lens of vulnerability. The social systems 
embedded in the structure of America’s policies, institutions, 
and environments are unavoidable and chronically expose 
members of minoritized groups to an increased risk of issues 
related to mental health (chronic stress, anxiety, depres-
sion), physical health (chronic disease, chronic inflamma-
tion) and death (maternal mortality, lower life expectancy) 
(Carter et al., 2019; Chambers et al., 2018; Mitchell et al., 
2020). The vulnerability created by these social systems 
exists regardless of variations in personality, perceptions, 
coping skills, and other individual level characteristics. 
Furthermore, this vulnerability is multifaceted and can be 
measured using aspects of identity within the socioeconomic 
context of the neighborhood environment and time (Krieger, 
2020). While intersecting identities partially account for an 
individual’s exposure, the social, economic, and political 
characteristics of their location in time and place vary its 
intensity and potential impact on health outcomes.

The impact of neighborhoods on health is typically 
explored using two main spatial index measures. Disadvan-
tage, defined as neighborhood deprivation that results from 
institutional practices such as redlining, segregation, and 
political divestment, is often measured using measures of 
concentrated poverty, public assistance recipients, residen-
tial instability, and racial composition (e.g., Barber et al., 

2016; Bohlig, 2013; Ross & Mirowsky, 2001). Disadvantage 
is posited to influence health through its negative impact 
on access to and availability of health-promoting resources 
and local institutions that support neighborhood stability 
(Ross, 2000; Ross & Mirowsky, 2001). Affluence, a socio-
logical construct distinct from disadvantage, is defined by 
the concentration of neighborhood resources that influence 
the viability of local institutions, maintain informal social 
control, and promote the health and economic infrastruc-
ture of a community (Browning & Cagney, 2003). Research 
exploring the effect of neighborhood structural context has 
shown disadvantage and affluence to be significant predic-
tors of health outcomes regardless of individual characteris-
tics (Browning & Cagney, 2003; Carpiano et al., 2009; Kane 
et al., 2017). These two constructs are posited to exist on a 
continuum, where less affluence means more disadvantage 
and vice versa.

Disadvantage measures those factors that negatively 
impact the community health-promoting capacity; thus, it 
is more commonly used to explore community disparities 
in health outcomes (Lillis, 2009; Schieman, 2005; Yakubo-
vich et al., 2020). However, there is research to support the 
role of affluence as a key predictor. For example, affluence 
has been found to be more strongly associated with self-
reported health, objectively measured health status and birth 
outcomes with an effect that persists when disadvantage and 
its related indicators are included (Browning & Cagney, 
2003; Carpiano et al., 2009; Kane et al., 2017; Yourkavitch 
et al., 2018). Both indicators have a distinct impact on health 
outcomes at the individual level. Therefore, including disad-
vantage and affluence in a single multidimensional measure 
would add to the existing literature that has explored them 
as separate indicators.

Identity-based social and economic marginalization and 
its interaction with time and place combine to create Neigh-
borhood Vulnerability. Neighborhood Vulnerability, a com-
bination of social and economic vulnerability, is defined as 
the risk of harm due to a group or individual’s social identity 
within the places they inhabit and the time in which they 
inhabit them (Brennan, 2017; Adger, 2006). Social vulner-
ability is the risk of adverse life outcomes and experiences 
resulting from social stigma (stereotypes, prejudice and dis-
crimination) that expose a group to potential harm based on 
perceived social characteristics (gender, race, age etc.); as 
such, it limits their ability to cope with and recover from 
this harm (Williams, 2016, Phelan and Link, 2015). Eco-
nomic vulnerability is the risk of adverse life outcomes and 
experiences resulting from socioeconomic status (income, 
education, and occupation) that expose a group to potential 
harm based on their access to resources (money, wealth, 
social networks, education, healthcare, etc.) and limits their 
ability to cope with and recover from this harm (Brennan, 
2017; Adger, 2006; Link & Phelan, 1995).
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Neighborhood Vulnerability can be captured using a 
combination of social and economic characteristics of the 
population (i.e., education, income, poverty, race, gender). 
Previous studies have measured exposure to place-based risk 
using multiple definitions of neighborhood (i.e., census tract, 
community area, self-defined geographical community) to 
compute index measures that include various aspects of 
community context (i.e., income, education, employment, 
poverty, racial composition). Many indexes are computed by 
synthesizing decennial census data using different combina-
tions of the following indicators: level of income, poverty, 
unemployment, public assistance, female-headed house-
holds, educational attainment, and employment in profes-
sional or managerial positions (Pickett & Pearl, 2001; Ponce 
et al., 2005; Chuang et al., 2005; Wang et al., 2007; Scott 
et al., 2009; Wen, 2009; Matthews & Yang, 2010; Yang & 
Matthews, 2010; Moore et al., 2013). Census tract meas-
ures are often combined using some method of summing or 
averaging, with limitations and sources of bias that are well 
documented (Song et al., 2013). Of the few studies that use 
factor analysis, most estimate a unidimensional construct 
measured at a single time point (Bird et al., 2010; Freed-
man et al., 2008; Morenoff et al., 2007). The dependence of 
Neighborhood Vulnerability on fluctuating social and eco-
nomic factors across time and place means the most accurate 
measure quantifying exposure must be identity, place, and 
time specific. Neighborhood Vulnerability indicators are 
intended to represent perceptible manifestations of latent 
relationships between interacting neighborhood attributes 
shaped by differences in political power, concentration of 
resources, and structures of systemic marginalization that 
shape what opportunities and services people can access in 
the places they live (Berg et al., 2020).

The objective of this paper is to compute a Neighborhood 
Vulnerability Index (NVI) that combines multiple indicators 
of neighborhood risk into one composite score that is spe-
cific to race, gender, time and place using census tract data 
linked to a longitudinal sample of U.S. adults over a 25-year 
period. Since this is the one of the first papers to combine 
disadvantage and affluence into one composite measure, this 
paper will test two alternative measurement models for the 
NVI. While previous analyses have created neighborhood 
disadvantage and affluence indices at a national level, they 
have not been estimated specifically for race and gender sub-
groups of the population followed prospectively over time. 
This paper contributes to our understanding of which groups 
of the population are systematically exposed to neighbor-
hood vulnerability by computing race/gender specific NVI 
for a national sample of over 3,000 Black and white Ameri-
cans followed over adulthood (1986–2010). We hypothesize 
there will be more exposure to neighborhood vulnerability 
among racial and gender minorities, with disparities that 
persist over time.

Previous studies using index measures computed using 
factor analysis assume the relationships between variables 
among different groups are similar and scores are unbiased, 
or that the measure is invariant (Wodtke et al., 2011; Clarke 
et al., 2014; Berger et al., 2017; Li et al., 2019). Factorial 
invariance refers to the equivalence of the relationships 
between indicators used to define a theoretical construct 
such as neighborhood vulnerability and can inform whether 
comparisons of mean differences in scores between groups 
are valid and unbiased (Putnick & Bornstein, 2016). The 
estimation of the NVI in this study, therefore, includes an 
assessment of factorial invariance tested longitudinally and 
between race/gender groups. We then examine changes in 
Neighborhood Vulnerability over time and identify stark 
race and gender inequities in which Americans are persis-
tently exposed to neighborhood vulnerability over a 25-year 
period.

Methods

Data come from the American’s Changing Lives (ACL) 
survey (House et al., 1990; 1994; 2005), a stratified, multi-
stage area probability sample of non-institutionalized adults 
age 25 and older, living in the coterminous United States, 
and followed over a 25-year period. Black Americans and 
adults over age 60 were oversampled. The first wave of 
the study was conducted in 1986 with 3,617 adults (68% 
sample response rate for individuals). Surviving respond-
ents were re-interviewed in 1989, 1994, 2001–2002, and 
2011–2012. A sixth wave of data collection is currently in 
the field. This analysis focuses on the 3497 respondents 
who self-reported their race as Black (34%) or White (66%). 
We exclude 130 respondents of other racial identifications 
(e.g., Asian, Native American, and Hispanic) due to small 
sample size. The ACL data are appropriately weighted to 
adjust for (a) differential initial selection probabilities, (b) 
survey non-response, and (c) post-stratification adjustments 
to the 1986 age-race-sex-region-specific Census Bureau esti-
mates of the U.S. population. For each later wave, additional 
weights adjust for panel non-response using predictor vari-
ables from prior waves (Lepkowski & Couper 2002). These 
weights make the ACL sample representative of the age, 
gender, and race distribution of the U.S. population in 1986. 
Except for differences due to post-1986 immigration and 
outmigration, the sample is also representative of American 
residents in the originally sampled age cohorts as they aged 
over 25 years (House et al., 1990).

Each respondent’s address at each wave was geocoded 
and linked to data from the U.S. Decennial Census and the 
American Community Survey for each year. Because cen-
sus tract boundaries can change over time, tract boundaries 
were normalized to the 2010 tract boundaries using the 
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Longitudinal Tract Database (Logan et al., 2014). With 
these five waves of data, a composite measure of expo-
sure to Neighborhood Vulnerability was estimated for all 
respondents using confirmatory factor analysis, and scores 
were compared by gender and race subgroups over time.

Measures

The ACL dataset contains U.S. Census Bureau data on the 
social and economic characteristics of U.S. census tracts 
linked to each participant at each wave. Census tracts have 
on average about 4000 people and are designed to capture 
homogenous areas that roughly map to neighborhoods. For 
Wave 1, the value of each tract variable was interpolated 
based on the 1980 and 1990 Census data to estimate values 
for 1986. The same process was used to estimate Wave 3 
(1994) values using the 1990 and 2000 census. Wave 2 
(1989) and Wave 4 (2001) values correspond to the 1990 
and 2000 U.S. Census survey data, respectively. Wave 5 
(2011) tract data come from the 2010 American Com-
munity Survey.

A set of nine tract-level sociodemographic variables 
were selected a priori as indicators of three subconstructs 
of neighborhood vulnerability: affluence (AF), disadvan-
tage (DA), and social vulnerability (SV). Distinct from 
simply being the absence of neighborhood disadvantage, 
neighborhood affluence is associated with higher levels of 
socioeconomic advantages and leverage over local insti-
tutions that can foster neighborhood environments with 
more opportunities for health and well-being (Browning & 
Cagney, 2003). Disadvantage represents the co-absence of 
economic, social, and employment resources in the neigh-
borhood (Ross & Mirowsky, 2001). Social vulnerability 
captures the susceptibility of a neighborhood to margin-
alization and disinvestment based on the presence of race 
and gender minorities (Zha, 2019).

Affluence

Affluence is measured using tract-level proportions of 
(a) adults with 16 or more years of education (EDU), (b) 
households with income greater than or equal to $75,000 
per year (INC), and (c) workers in professional employ-
ment (PRF). Professional employment is defined as those 
occupations in the executive, managerial, technology, and 
professional industries that require a high degree of exper-
tise and training. Categories for professional employment 
are based on the U.S. Bureau of Labor Statistics six-digit 
Standard Occupation Code system used for the decennial 
census (1990, 2000) and ACS (2010) (Scopp, 2003).

Disadvantage

Disadvantage is measured using tract-level proportions of 
(a) adult unemployment (UNE), (b) adults in receipt of pub-
lic assistance income (PBA), and (c) households in poverty 
(POV). Unemployment is defined as not working, currently 
looking for work and available to accept a job. Public Assis-
tance is defined as financial resources (direct cash assistance 
and/or vendor payments) given to persons contingent upon 
their need from a government-operated welfare program. 
Households in poverty are defined as those who fall below 
federal income thresholds determined by household size and 
composition.

Social Vulnerability

Social vulnerability is measured using tract-level propor-
tions of non-Hispanic Black residents (NHB), female-headed 
households (FHH), and female-headed households with kids 
(FHK). Female-headed households with kids are defined as 
those with an unmarried female head of household and chil-
dren. These variables were chosen to account for gender 
and race as social indicators of exposure to neighborhood 
vulnerability.

All observed sociodemographic variables were continu-
ously measured and represent census tract percentages rang-
ing from 0 to 100%.

Analysis

Measuring Neighborhood Vulnerability

Maximum likelihood (ML) estimation assumptions in 
confirmatory factor analysis (CFA) include independence 
of observations, normally distributed indicator variables, 
and correct specification of the model (Kline, 2005, Hoyle, 
2012). Due to moderate normality violations and missing 
data, models were estimated using a robust version of maxi-
mum likelihood estimation (MLR) which provides param-
eter estimates with corrections to standard errors and fit 
indices that are robust to non-normality and equivalent to 
maximum likelihood (Brown, 2014; Yuan & Bentler, 2000; 
Satorra & Bentler, 1994; Curran, 1996).

Confirmatory factor analysis was used to estimate the 
three latent subconstructs describing neighborhood vulner-
ability (disadvantage, affluence, social vulnerability) in R 
(version 3.6.6) lavaan package. CFA model identification 
requires the selection of a scaling variable to identify the 
mean and variance of each latent variable. The lavaan pack-
age automatically constrains the intercept and factor load-
ing of the first indicator variable specified; models were 
respecified for scaling to be based on the indicator with the 
highest factor loading (Little et al., 2006). Each CFA model 
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estimates (1) a matrix of factor loadings for the relation-
ship between each observed variable and corresponding 
latent construct; (2) a vector of intercepts for each observed 
variable; (3) a vector of means of each latent variable; (4) a 
matrix of variances and covariances of each latent variable; 
and (5) a matrix of residual variances and covariances for 
the observed variables.

Three measurement models estimating the three sub-
constructs of NVI were compared and a final model was 
selected based on established thresholds for multiple indi-
cators of absolute (standardized root-mean-square resid-
ual (SRMR) < 0.08, akaike information criterion (AIC)), 
parsimonious (root-mean-square error of approximation 
(RMSEA) < 0.08) and comparative fit (Comparative Fit 
Index (CFI) > 0.95, Tucker–Lewis Index (TLI) > 0.95) 
(Brown, 2014). Chi-square tests were also reported but not 
used to assess model fit due to the large sample size (West 
et al., 2012). Modification indices and residuals were exam-
ined in conjunction with theoretical and practical interpre-
tation to guide model modification (Hayduk, 1990; Kaplan, 
1989; 1991). In the final model building step, neighborhood 
vulnerability was added as a second-order latent variable and 
factor scores for neighborhood vulnerability were estimated 
for each participant at each wave.

Testing Measurement Invariance

The first level of invariance is configural invariance, which 
tests whether structure, or the set of census tract variables 
used to measure the NVI, is the same between groups. If 
configural invariance holds, the stability of metric invari-
ance, or whether each census tract indicator corresponds 
to the NVI to a similar magnitude across groups, can be 
assessed. If the NVI demonstrates configural and metric 
invariance, scalar invariance, or whether mean differences 
in census tract indicators are captured by the NVI, can be 
assessed (Steenkamp & Baumgartner, 1998; Rudnev et al., 
2018). If the NVI demonstrates full scalar invariance, it can 
be meaningfully compared across timepoints and race/gen-
der groups with less concern for false conclusions due to 
biased scores.

Measurement invariance was assessed to test the con-
figural, metric, and scalar invariance of the NVI. Invariance 
was tested between waves (time invariance), race (Black 
American and white), gender (men and women), and race-
by-gender groups using the standard iterative method com-
paring constrained models (Millsap, 2011). Since full scalar 
invariance of the measure is necessary for meaningful com-
parison of scores between groups (and/or across time) partial 
measurement invariance was not assessed (Brown, et al., 
2017; Edwards et al., 2018; Steinmetz, 2013). Invariance at 
the configural level means that the structural organization of 
the latent variables (i.e., number of loadings on affluence and 

social disadvantage) is applicable to each group. At the met-
ric level, invariance means each census tract indicator con-
tributes to the latent variable (affluence or social disadvan-
tage) to a similar magnitude across groups. Scalar invariance 
means that mean differences in the latent variables capture 
all mean differences in the shared variance of the indicators 
for affluence and social disadvantage (Millsap, 2011).

Configural invariance was tested using a multi-group 
CFA, which simultaneously estimates the model separately 
in each group. Invariance at the configural level was assessed 
by examining the overall fit of the multi-group model. If con-
figural invariance was upheld, metric invariance was tested 
by adding equality constraints on the factor loadings of the 
census tract indicators to the multi-group model. If both con-
figural and metric invariance were upheld, scalar invariance 
was tested by additionally imposing equality constraints on 
the indicator intercepts while retaining the factor loading 
constraints. Model fit indices and CFI ≥ 0.95 were used to 
determine whether conditions for configural invariance were 
met. For metric and scalar invariance, comparisons of nested 
models using likelihood ratio tests and a change in CFI less 
than 0.02 were used to determine whether invariance was 
upheld (Pentz and Chou, 1994; Putnick & Bornstein, 2016).

Results

Descriptives

Table 1 shows baseline descriptive characteristics of all ACL 
participants by gender and race. The analytic sample con-
sisted of all 3497 participants at baseline residing in 412 
U.S. census tracts. Of them, 2185 (62%) were women and 
1,129 (32%) were Black. In the overall sample, most had at 
least a high school diploma (62%), were married (54%) and 
employed at least part time (51%). Table 2 shows means and 
standard deviations of each indicator variable at each wave. 
Census tract social disadvantage indicators appear to remain 
stable between 1986 and 1994, and then decreased in 2000 
followed by an increase in 2012. Mean values of affluence 
indicators increased gradually throughout the course of the 
study.

Measuring Exposure to Neighborhood Vulnerability

The process of identifying the best measurement model for 
NVI involved estimating a set of two theoretically alterna-
tive CFA models (Fig. 1) in which fit indices are detailed in 
Table 3. The initial estimation of Model A showed a nega-
tive variance for Female-Headed Households, indicating 
high multicollinearity between this and other indicators of 
social vulnerability (Kolenikov & Bollen, 2012, Heywood, 
1931). Model B represents the re-specification of Model A 
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to include social disadvantage, a new latent variable combin-
ing the indicators of social vulnerability, and disadvantage 
after removing female-headed households due to high cor-
relation with female-headed households with kids. Model 
B was selected as the final best-fitting model based on fit 

indices (χ2 1000.48, df 15, RMSEA 0.07, SRMR 0.02, CFI 
0.98, TLI 0.97, AIC 751,272), factor loadings, and standard-
ized variances. 

All factor loadings for tract indicators fell within an 
acceptable range (> 0.5), indicating a moderate to strong 

Table 1   Baseline characteristics of race and gender subgroups in ACL (1986–2012)

Baseline descriptive statistics for ACL study sample by race and gender subgroup. Means are unstandardized
SD standard deviation, % percent

Variable Mean (SD) or %

Black women
(n = 752)

Black men (n = 377) White women (n = 1433) White men
(n = 935)

All groups
(n = 3497)

Age (in years) (range 25–96) 52.42 (17.14) 52.62 (17.40) 54.31 (17.88) 55.12 (17.50) 53.94 (17.59)
Education (%)
 Less than high school (0–11 years) 38.1 36.3 36.2 38.2 37.2
 High school diploma (12 years) 28.6 29.7 31.0 27.4 29.3
 Some college (13–15 years) 18.2 19.4 20.0 20.6 19.7
 College degree or more (16 or more years) 15.0 14.5 12.7 13.6 13.6

Marital status (%)
 Married 54.8 52.3 53.8 56.0 54.4
 Separated/divorced 17.8 17.3 16.0 15.1 16.3
 Widowed 16.0 19.4 18.9 18.9 18.3
 Never married 11.4 11.1 11.3 9.9 11.0

Employment status (%)
 Employed 54.6 53.0 50.0 50.2 51.3
 Unemployed 4.7 6.1 4.0 3.7 4.3
 Retired 21.1 19.9 25.8 26.7 24.4
 Disabled 3.1 4.0 3.7 4.5 13.7
 Other 16.5 17.0 16.5 14.9 6.3

Annual household income (%)
  < $10,000 32.3 35.8 32.5 31.4 32.4
 $10,000–$29,999 39.8 36.9 41.7 41.0 40.6
 $30,000 or higher 27.9 27.3 25.7 27.8 26.9

Table 2   Mean (SD) of census tract sociodemographic variables, ACL (1986–2012)

All variables are continuously measured and represent census tract percentages ranging from 0–100%. Means are unstandardized
UNE unemployment, POV poverty, PBA public assistance, EDU 16 or more years of education, INC annual income greater than $75,000, PRF 
professional employment, NHB non-Hispanic Black residents, Female-headed households with kids, FHH female-headed households, SD stand-
ard deviation

Tract variable Wave 1 Wave 2 Wave 3 Wave 4 Wave 5

Disadvantage UNE 8.25(5.26) 8.41(6.11) 8.15(5.72) 6.23(4.68) 6.35(3.40)
POV 17.29(13.72) 17.64(14.74) 17.21(14.03) 12.95(10.61) 16.42(12.06)
PBA 11.02(9.57) 10.94(10.07) 9.82(9.37) 3.66(3.86) 14.78(11.86)

Affluence EDU 14.91(11.55) 16.23(12.77) 17.13(12.71) 21.91(15.39) 25.49(17.54)
INC 9.08(8.39) 14.30(12.86) 16.14(13.40) 25.07(17.68) 38.52(20.40)
PRF 23.76(10.70) 25.20(11.63) 25.85(11.73) 33.95(13.92) 33.54(14.16)

Social vulnerability NHB 25.24(32.60) 25.71(33.24) 25.25(32.29) 18.62(28.70) 20.79(29.57)
FHK 24.48(18.01) 26.17(19.64) 26.50(18.85) 24.35(16.75) 13.07(10.48)
FHH 20.94(14.90) 22.60(16.20) 22.66(15.73) 20.17(14.29) 12.51(10.06)
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influence of each observed variable on the variation of each 
latent construct (Harrington, 2008). The final measurement 
model is presented in Fig. 2. Factor loadings for public 
assistance (0.90) and poverty (0.90) were especially high, 
indicating a strong influence on the variance in exposure to 
social disadvantage between tracts. The loadings for unem-
ployment and female-headed households with kids were 
also relatively strong (0.82 and 0.79, respectively) while the 
proportion of non-Hispanic Black residents (0.65) had the 
lowest loading of the five indicators. The three indicators of 
affluence had very similar loadings, with education (0.94) 
and professional employment (0.93) explaining more of 
the common variance in census tract affluence than income 
(0.83).

To estimate NVI scores, both lower-order constructs 
(affluence and social disadvantage) were loaded onto 
a higher-order factor, neighborhood vulnerability. As 
expected, affluence was negatively correlated with exposure 
to neighborhood vulnerability while social disadvantage was 

positively correlated. Results show that indicators of afflu-
ence have a stronger influence on the variance in exposure to 
neighborhood vulnerability compared to social disadvantage 
with factor loadings of − 0.96 and 0.59, respectively. The 
addition of neighborhood vulnerability as a higher-order 
latent variable resulted in minor changes to model fit (χ2 
1000.48, df 15, RMSEA 0.07, SRMR 0.02, CFI 0.98, TLI 
0.97, AIC 751,272), and factor scores for the NVI were 
estimated for each ACL respondent based on this model. 
Neighborhood Vulnerability Index scores ranged from 19.9 
to -36.2 with lower, more negative scores indicating less 
exposure to vulnerability. Men had lower NVI scores across 
all waves compared to women in the overall sample and 
within racial groups. Fig. 3 shows cross-wave trajectories of 
NVI scores by gender, race, and race-by-gender subgroups 
in the ACL study. Overall, exposure to neighborhood vul-
nerability decreased for the full ACL sample and for each 
gender and racial group between 1986 and 2011. Table 4 
shows NVI scores for each ACL subgroup at each wave. 
Disparities remained persistent between race and gender 
groups, with women and Black Americans having consist-
ently higher scores compared to their race/gender counter-
parts at every wave.

Testing Measurement Invariance

Measurement invariance tests were conducted between 
waves, race, gender, and race-by-gender subgroups to 
assess whether the relationships among census tract vari-
ables were influenced by group membership or time. Table 5 
shows each series of models, where the fit of model 1 test-
ing configural invariance was compared to model 2 testing 
metric invariance. If conditions for invariance were met, 
the fit of model 2 was compared to model 3 testing scalar 
invariance. Configural (CFI 0.986), metric (ΔCFI = 0, LRT, 
p < 0.01), and scalar (ΔCFI = 0, LRT p < 0.001) invariance 
were upheld between gender groups. Race invariance was 
validated at the configural (CFI: 0969, LRT p < 0.001) and 
metric (ΔCFI = 0.002, LRT p < 0.001) levels, but scalar 
invariance (pertaining to item intercepts) was not upheld 
(ΔCFI = 0.038, LRT p < 0.001). Similarly, race-by-gender 
group invariance was upheld at the configural (CFI 0.975) 

Fig. 1   Alternative measurement models for neighborhood vulnerabil-
ity. Two and three factor theoretical models for the measurement of 
neighborhood vulnerability. PV Proportion of census tract residents 
living in poverty, UE proportion of census tract residents who are 
unemployed, PA proportion of census tract resident receiving public 
assistance, NB proportion of census tract residents who are non-His-
panic Black, FK proportion of census tract female-headed households 
with kids, IN proportion of census tract residents with annual income 
greater than or equal to $75,000, ED proportion of census tract resi-
dents with 16 or more completed years of education, EM proportion 
of census tract residents with professional employment

Table 3   Goodness-of-fit indexes 
for final first-order CFA models, 
American’s changing lives study 
(n = 3497)

All models estimated using MLR
df degrees of freedom, RMSEA root-mean-square error of approximation, SRMR standardized root-mean-
square residual, CFI comparative fit index, TLI Tucker–Lewis Index, AIC Akaike information criterion
* Significant at the p < 0.001 level. **Significant at the p < 0.05 level

Model χ2 df RMSEA (90%CI) SRMR CFI TLI AIC

A 1692.90* 21 0.11** (0.10, 0.11) 0.024 0.97 0.95 636,887
B 1000.48* 15 0.07** (0.06, 0.07) 0.020 0.98 0.97 751,272
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and metric (ΔCFI = 0.01) levels only. The NVI did not meet 
conditions for any level of time invariance.

Discussion

This analysis is one of the first to examine race/gender 
inequities in exposure to neighborhood vulnerability over 
time and one of very few studies to assess invariance of a 
tract-based measure. Using an index derived from contex-
tual aspects of U.S. census tracts at five timepoints between 
1986 and 2011, the findings highlight stark inequities in 
which groups are exposed to neighborhood vulnerability 
in this national sample of U.S. adults. Exposure to neigh-
borhood vulnerability is disproportionately experienced by 
Black Americans compared to whites across all time points. 
While results show exposure to neighborhood vulnerabil-
ity decreased over time in the sample overall, the rates of 
decline were attenuated for census tracts where Blacks 
lived compared to whites (and to a lesser extent for women 

compared to men), resulting in widening disparities in 
exposure to neighborhood vulnerability across this 25-year 
period. Furthermore, race-by-gender trajectories show the 
compounding effect of race and gender on neighborhood 
vulnerability, where Black women navigate the most vulner-
able environments. The results highlight the persistent and 
reinforcing pattern of inequitable neighborhood conditions 
along racial and gender lines in the United States.

The Neighborhood Vulnerability Index (NVI) consists 
of 8 indicators of social disadvantage and affluence using 
data from a nationally representative longitudinal popula-
tion-based sample. Study results show a two-dimensional 
model of neighborhood vulnerability is a good fit for this 
sample of U.S. adults ages 25 and older at baseline. The 
final model for NVI measures this construct based on two 
underlying dimensions—affluence and social disadvantage. 
As expected, affluence and social disadvantage have oppo-
site influences on exposure to neighborhood vulnerability. 
In addition, affluence accounts for a higher amount of vari-
ance in neighborhood vulnerability compared to social dis-
advantage. This is supported by research on the social and 
economic capital of affluent communities, specifically how 
they have the ability to generate exclusive resources in ways 
that spatially segregated impoverished communities do not 
(Reardon & Bischoff, 2011). For example, a study relocating 
low-income families to more affluent neighborhoods showed 
those who lived in well-resourced areas for a longer period 
had better employment, education, and health outcomes 
(Ludwig, et al., 2008). On the contrary, when groups of 
affluent individuals move into disadvantaged neighborhoods, 
they are unlikely to lose their affluence, in fact, it is more 
likely their presence will shift the makeup of the neighbor-
hood towards their own interests and income through pro-
cesses such as cultural displacement, political displacement, 
and gentrification (Golding, 2016; Hyra, 2014). These obser-
vations suggest the strong longitudinal influence of living 
in a “high opportunity” area given its ability to reverse the 
impact of prolonged exposure to disadvantage over time.

Based on invariance tests, the NVI measured the same 
theoretical construct in each group (configural invariance) 
and the tract indicators had a similar contribution to its vari-
ance at each timepoint (metric invariance). However, the 
NVI did not meet conditions for scalar invariance by race 
or race-by-gender groups. However, these violations are 
more informative than invalidating and serve as a guide to 
practical interpretation of the NVI. Scalar non-invariance 
(pertaining to factor intercepts) may be indicative of the 
impact of racial segregation on exposure to neighborhood 
vulnerability, and the combined impact of race and gender 
for Black women. In other words, NVI intercepts are heav-
ily influenced by racial group membership while this effect 
was not observed in the gender invariance tests. This pattern 
of results is consistent with the well-established influence 

Fig. 2   Measurement model for neighborhood vulnerability, Ameri-
can’s Changing Lives Study (1986–2011). Fit indices: χ2 1000.48 
(p < 0.001), df 15, CFI 0.98, TLI 0.97, RMSEA 0.07 (CI 0.06, 0.07), 
SRMR 0.02, χ2 Chi-square, df degrees of freedom, RMSEA root-
mean-square error of approximation, SRMR standardized root-mean-
square residual, CFI comparative fit index, TLI Tucker–Lewis Index. 
All factor loadings are standardized.  Indicators: POV proportion of 
census tract residents living in poverty, UNE proportion of census 
tract residents who are unemployed, PBA proportion of census tract 
resident receiving public assistance, NHB proportion of census tract 
residents who are non-Hispanic Black, FHK proportion of census 
tract female-headed households with kids, INC proportion of census 
tract residents with annual income greater than or equal to $75,000, 
EDU proportion of census tract residents with 16 or more completed 
years of education, PRF proportion of census tract residents with pro-
fessional employment
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of race on the type of neighborhood in which people live 
and a negligible influence of gender alone. These results are 
also consistent with previous research as scalar invariance 

is often unachievable and rare in large-scale studies (Marsh 
et al., 2017). Similarly, longitudinal non-invariance is com-
mon in assessments of tract-based indexes as context is 

Fig. 3   Neighborhood vulnerability index trajectories by group, Amer-
ican’s Changing Lives Study (1986–2011). BW black women, BM 
black men, WW white women, WM white women. Trajectories based 

on the mean of model estimated neighborhood vulnerability index 
scores for each group at each wave. ACL American’s Changing Lives 
Study analytic sample

Table 4   Model predicted 
mean (SD) neighborhood 
vulnerability index scores for 
subgroups in ACL, waves 1–5

Unstandardized mean (standard deviation) of neighborhood vulnerability estimates for population sub-
groups at each wave of the ACL study. Lower, more negative scores indicate less exposure to neighborhood 
vulnerability

1986 1989 1994 2000 2012

Women 3.2(5.3) 1.3(6.9) 0.36(6.9) − 5.4(7.9) − 6.6(10.7)
Men 2.6(5.2) 0.49(6.9) − 0.48(7.0) − 6.6(7.9) − 8.5(10.2)
Black 5.9(4.6) 4.5(5.9) 3.8(5.8) − 1.3(5.4) − 1.05(9.2)
White 1.6(4.9) − 0.78(6.6) − 1.8(6.7) − 7.4(8.1) − 10.2(9.8)
Black women 6.2(4.6) 4.9(5.8) 4.2(5.7) − 0.79(5.1) − 0.41(9.3)
Black men 5.4(4.7) 3.8(6.1) 3.1(6.0) − 2.6(5.7) − 2.5(9.1)
White women 1.6(4.9) − 0.65(6.6) − 1.7(6.7) − 7.1(8.0) − 9.9(9.9)
White men 1.4(5.1) − 0.98(6.8) − 2.1(6.8) − 7.7(8.1) − 10.7(9.8)
All ACL 3.0(5.9) 1.0(6.9) 0.1(6.9) − 5.9(7.9) − 7.4(10.5)
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expected to shift over time (Berg et al., 2020; Miles et al., 
2015).

The NVI can be interpreted as a measure of exposure 
to health risks based on neighborhood socioeconomic sta-
tus (education, income, employment), social characteristics 
(racial composition, gender dynamics), and time. Based on 
the distribution of NVI scores, there were differences in 
exposure to neighborhood vulnerability by group at each 
timepoint. Both gender- and race-impacted levels of vul-
nerability at each timepoint. Neighborhood vulnerability is 
decreasing overall, but a persistent gap exists between the 
decrease for men and women, with the gap widening after 
2000. A significant dip occurred between 1986 and 1990 fol-
lowed by another dip between 1995 and 2000. Score trajecto-
ries also show a gap in exposure to neighborhood vulnerabil-
ity between non-Hispanic Black and white Americans, with 
a disparity that widens over the course of the study. There 
is a more dramatic decrease for non-Hispanic whites than 
Blacks, with similar significant drops from 1986 to 1990 and 
1995 to 2000. The race-by-gender trajectories show a similar 
trend, with the disparity in exposure to neighborhood vul-
nerability between Black men and women being wider than 
the gap between white men and women, and Black women 
being exposed to the highest levels of vulnerability. Despite 
progress towards less vulnerability overall, these trends are 
indicative of worsening neighborhood inequities at the local 
neighborhood level between gender and race groups.

The decreases in exposure to neighborhood vulner-
ability parallel the period of economic expansion in the 

U.S. between 1991 and 2001, when there were consistent 
advancements in median household income, homeowner-
ship, poverty, and educational attainment (Sasson, 2016; 
Anthony, 2018; Marotta, 2020, Stiglitz, 2002). However, 
U.S. trends in socioeconomic gains did not equitably benefit 
all groups. The racial disparities in NVI scores that widen 
during this period are consistent with inequities in income, 
unemployment and poverty rates between Black and White 
Americans in the U.S. over the past several decades (Assari, 
2017; Caliendo, 2018; Herring & Henderson, 2016; Lichter, 
1989; Mason, 2011).

While overall exposure to neighborhood vulnerability 
declined, the health and well-being of Black Americans 
remained more vulnerable at all timepoints. This finding 
would suggest Black Americans continue to reside in dis-
tinct neighborhood contexts via residential racial segrega-
tion, which somewhat conflicts with segregation trends that 
show sharp declines in black segregation that overlap with 
this period (1960–2000) (Fischer et al., 2004). However, 
research has shown racial segregation has persisted over 
the past several decades (1990–2016) despite increases in 
integration in some areas (Stroub & Richards, 2013; Wil-
liams et al., 2018). In addition, affluent families have become 
increasingly more segregated, a trend that likely resulted in 
separation of socially mobile Black Americans from their 
less affluent counterparts. Since studies also show Black 
Americans who socioeconomically advance don’t always 
experience the same health and mortality protections as their 
white counterparts (Turner et al., 2017; Assari et al., 2018; 

Table 5   Results of race, gender, and race-by-gender and longitudinal invariance tests of first-order models of neighborhood vulnerability

Configural invariance was assessed using multi-group confirmatory factor analysis models. Metric invariance was assessed using multi-group 
models with factor loading equality constraints. Scalar Invariance was assessed using multi-group models with factor loading and intercept 
equality constraints
Bold: Invariance level not upheld
χ2 Chi square. df degrees of freedom, RMSEA root-mean-square error of approximation. SRMR standardized root-mean-square residual, CFI 
comparative fit index, ΔCFI change in CFI, TLI Tucker–Lewis Index, LRT likelihood ratio test
* Significant at the p < 0.001 level. **Significant at the p < 0.05 level

Group Models χ2 (df) RMSEA SRMR CFI ΔCFI LRT

Gender
(n = 2)

Model 1 g: Configural invariance 1025.52* (30) 0.07** 0.01 0.986 – –
Model 2 g: Metric invariance 990.90* (35) 0.07** 0.02 0.986 0 p < 0.01
Model 3 g: Scalar invariance 1040.89* (40) 0.07** 0.02 0.986 0 p < 0.001

Race
(n = 2)

Model 1r: Configural invariance 1321.95* (30) 0.08** 0.03 0.969 – –
Model 2r: Metric invariance 1691.59* (35) 0.08** 0.05 0.967 0.002 p < 0.001
Model 3r: Scalar invariance 3667.28* (40) 0.12** 0.09 0.929 0.038 p < 0.001

Race by Gender
(n = 4)

Model 1rg: Configural invariance 1424.16 (60) 0.08** 0.03 0.975 – –
Model 2rg: Metric invariance 1781.65 (75) 0.08** 0.05 0.966 0.009 p < 0.001
Model 3rg: Scalar invariance 3853.48 (90) 0.11** 0.09 0.926 0.04 p < 0.001

Longitudinal
(n = 5)

Model 1t: Configural invariance 2783.35* 0.17** 0.04 0.95 - -
Model 2t: Metric invariance – – – – – –
Model 3t: Scalar invariance – – – – – –
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Assari, 2018), further exploration of the health impacts of 
residential racial integration during this time would be an 
informative future direction.

The NVI is comparable to other indexes using census 
tract indicators to describe community health risks. For 
example, the Neighborhood Socioeconomic Status (NSES) 
index, a time-invariant measure of longitudinal exposure 
to census tract socioeconomic factors, was created using a 
unidimensional CFA model and similar variables (Miles et. 
al, 2015). The NVI builds on the NSES by including vari-
ables that capture additional aspects of the neighborhood 
risk environment, suggesting two dimensions (social dis-
advantage and affluence) that influence exposure in oppo-
site directions. In addition, linking the NVI to a nationally 
representative longitudinal sample of U.S. adults allows for 
describing exposure to neighborhood vulnerability by race 
and gender at different time points to show inequities in 
exposure to neighborhood vulnerability over time.

The NVI also corresponds to other community-based 
indexes that have been used for various purposes in health 
research, public health prevention and urban planning. For 
example, the Child Opportunity Index (COI) was developed 
to identify communities with limited educational, health, 
environmental and socioeconomic resources (Noelke et al., 
2020). Similarly, the Community Vulnerability Index (CVI) 
is used to measure the potential impact of infectious disease 
outbreaks to advise public health resource allocation both in 
the U.S and abroad (Surgo Foundation, 2020). While these 
indexes incorporate a variety of neighborhood characteris-
tics (transportation, food access and healthcare availability, 
etc.), their comparability to the NVI demonstrates the ways 
in which neighborhood factors can be used to characterize 
and quantify the underlying factors that contribute to suscep-
tibility to health risks at the environmental level.

Strengths and Limitations

This analysis has many strengths. The use of factor analysis 
(compared to summing or averaging indicators) to estimate 
the NVI limits measurement bias and allows each indicator 
to make a unique contribution to the variance of the overall 
measure. In addition, the use of a longitudinal nationally 
representative dataset allows for a description of the his-
tory of exposure to neighborhood vulnerability among U.S. 
adults at the local level. The trends in exposure to neighbor-
hood vulnerability between groups replicate previous find-
ings on the differences in exposure to neighborhood context 
by race and gender (Browning et al., 2013; Dozier, 2010; 
Karriker-Jaffe et al., 2012; Schieman, 2005), while adding 
additional evidence to support moving beyond disadvantage 
to include affluence in analyses of neighborhood effects 
(Browning & Cagney, 2003). Finally, invariance tests of the 

NVI met conditions for race (configural, metric) and gender 
(configural, metric, scalar) invariance, validating the use of 
the measure to describe between group NVI inequities at 
any time point.

Some limitations should also be noted. Census tract 
indexes are limited to variables available in publicly acces-
sible census data, and all limitations of the source of the data 
will persist throughout the NVI. While these data are the 
most feasible to use for longitudinal measures of environ-
mental characteristics, census tracts are arbitrary boundaries 
that may not fully represent socio-spatial exposures (Kramer, 
et al., 2010). Furthermore, census tract indicators were inter-
polated for intercensal years; however, in the neighborhood 
literature, these data are consistently used (Merkin et al., 
2009; Cerdá et al., 2010; Clarke et al., 2014).

The NVI also did not meet conditions for full scalar invar-
iance by race or race-by-gender groups or time invariance. 
Small deviations from invariance do not necessarily preclude 
subsequent group analyses, and there is no clear consensus 
on standards for the cutoffs for small violations (Putnick & 
Bornstein, 2016; Reise et al., 1993). Consequently, future 
cross-race or -gender analyses using NVI may still be valid, 
but longitudinal applications should be limited. Finally, the 
decreases in exposure to neighborhood vulnerability could 
be partially due to the survival of those who were less vul-
nerable at baseline. If study attrition did result in systematic 
differences in the tracts represented in the model, this may 
have had an impact on the distribution of the NVI and con-
clusions drawn from this analysis (Halamová et al., 2019). 
Replication of this analysis in other nationally representative 
samples and further exploration of invariance are needed to 
address the limitations within this study.

Conclusions and Future Research

This analysis has expanded the literature on measuring 
neighborhood exposure to risk and vulnerability in a number 
of ways. Based on the final model, exposure to neighborhood 
vulnerability is declining in the overall sample and between 
race and gender groups. However, we observe a persistent 
racial and gender disparity in exposure at each time point. 
Results support the experience of distinct socio-structural 
contexts for marginalized groups of U.S. adults over time, 
which has implications for the persistence of health and soci-
oeconomic disparities (Williams & Collins, 2001; Do et al., 
2008; Wen and Kowalski-Jones, 2012; White et al., 2012; 
Kravitz-Wirtz, 2016). The differences in access to neighbor-
hood resources and opportunities between race and gender 
groups are reflected in the clustering of minoritized groups 
in socially disadvantaged environments. Moreover, the lack 
of affluence (a combination of education, income, and pro-
fessional employment) is a stronger driver of neighborhood 
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vulnerability, indicating the potential benefit of equitable 
resource allocation in vulnerable communities. Black and 
White Americans live in vastly different census tracts, which 
speaks to the potential power of neighborhood equity in 
reducing health inequities in society more broadly (Ioana et. 
al, 2018). The impact of racial and income segregation is 
compounded by race and gender, as evidenced by the NVI 
disparities between men and women in all groups. Measures 
such as the NVI provide a new method of accounting for 
structural exposure to health risks that is otherwise unac-
counted for by focusing on the individual.

Future studies should seek to validate the NVI in other 
population-based samples. In addition, repeated analyses 
in more diverse samples would allow for additional racial/
ethnic group comparisons and provide the ability to further 
examine patterns of exposure to neighborhood vulnerability 
among U.S. adults over time. Assessing whether the NVI 
is a significant predictor of health outcomes could provide 
evidence of a direct link between structural factors and 
health, further supporting the need to shift local policies, 
systems, and environments to reduce racial health inequities. 
There is also a need to explore approaches to addressing 
neighborhood vulnerability, such as local advocacy to shift 
the socio-structural environment through civic engagement 
and political action. Addressing the upstream social deter-
minants of health at the neighborhood level may prove to be 
more effective than interventions at the individual level in 
addressing health inequities.
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