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Abstract
Brain-computer interface (BCI) technologies have developed as a game changer, altering how humans interact with com-
puters and opening up new avenues for understanding and utilizing the power of the human brain. The goal of this research 
study is to assess recent breakthroughs in BCI technologies and their future prospects. The paper starts with an outline of 
the fundamental concepts and principles that underpin BCI technologies. It examines the many forms of BCIs, including as 
invasive, partially invasive, and non-invasive interfaces, emphasizing their advantages and disadvantages. The progress of 
BCI hardware and signal processing techniques is investigated, with a focus on the shift from bulky and invasive systems to 
more portable and user-friendly options. Following that, the article delves into the important advances in BCI applications 
across several fields. It investigates the use of BCIs in healthcare, particularly in neurorehabilitation, assistive technology, and 
cognitive enhancement. BCIs’ potential for boosting human capacities such as communication, motor control, and sensory 
perception is being thoroughly researched. Furthermore, the article investigates developing BCI applications in gaming, 
entertainment, and virtual reality, demonstrating how BCI technologies are growing outside medical and therapeutic set-
tings. The study also gives light on the problems and limits that prevent BCIs from being widely adopted. Ethical concerns 
about privacy, data security, and informed permission are addressed, highlighting the importance of strong legislative 
frameworks to enable responsible and ethical usage of BCI technologies. Furthermore, the study delves into technological 
issues such as increasing signal resolution and precision, increasing system reliability, and enabling smooth connection with 
existing technology. Finally, this study paper gives an in-depth examination of the advances and future possibilities of BCI 
technologies. It emphasizes the transformative influence of BCIs on human-computer interaction and their potential to alter 
healthcare, gaming, and other industries. This research intends to stimulate further innovation and progress in the field of 
brain-computer interfaces by addressing problems and imagining future possibilities.

Keywords Digital health · Brain-computer interface · Health professional education · Health · mobile health · Technology 
integration · Medical biophysics

Introduction

Communicating is a vital component of daily life, and it is 
achieved through a variety of methods such as conversing, 
writing, and using computer interfaces, which are becoming 
an increasingly important means of interacting with others 
through channels such as e-mail and text messaging.

However, there are conditions such as stroke, amyotrophic 
lateral sclerosis (ALS), or other injuries or neurologic disor-
ders that can cause paralysis by damaging the neural path-
ways that connect the brain to the rest of the body, frequently 
limiting one’s ability to relate and communicate to people.

Brain-computer interfaces (BCIs), by translating cerebral 
activity into control signals for assistive communication 
devices, have the potential to restore communication for 
people with tetraplegia and anarthria.

Humans can now use electrical signals generated by brain 
activity to interact with, influence, or change their surround-
ings. Individuals who are unable to speak or use their limbs 
may be able to communicate or operate assistive devices 
for walking and manipulating objects thanks to the emerg-
ing field of BCI technology. The public is very interested in 
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brain-computer interface research. News articles in the lay 
media demonstrate intense curiosity and interest in a field 
that, hopefully, will one day soon dramatically improve the 
lives of many disabled people affected by a variety of disease 
processes (Jerry et al. 2012).

With the rapid advancement of technology, the gap 
between humans and machines has begun to close. Our fantas-
tic science fiction stories about “mind control” have gradually 
become a reality thanks to machines. These new approaches’ 
frontiers include BCIs and artificial intelligence (AI). Typi-
cally, experimental paradigms for BCIs and AI were devel-
oped and deployed independently of one another. However, 
scientists now prefer to combine BCIs and AI, which makes it 
possible to efficiently use the brain’s electric signals to maneu-
ver external devices (Bell et al. 2008).

AI, which can advance the analysis and decoding of neu-
ral activity, has turbocharged the field of BCIs. Over the past 
decade, a wide range of BCI applications with AI assistance 
have emerged (Xiayin et al. 2020).

BCIs, which represent technologies designed to communicate 
with the central nervous system, and neural sensory organs can 
provide a muscle independent communication channel for peo-
ple with neurodegenerative diseases, such as amyotrophic lateral 
sclerosis, or acquired brain injuries (Kübler et al. 1999).

Fortunately, recent advances in AI methodologies have made 
great strides, verifying that AI outperforms humans in decoding 
and encoding neural signals (Xiayin et al. 2020). This gives AI 
a huge possibility to be an excellent assistant in analyzing sig-
nals from the brain before they reach the prosthesis (Patel et al. 
2009). When AI works within BCIs, internal parameters are 
provided to the algorithms constantly, such as pulse durations 
and amplitudes, stimulation frequencies, energy consumption 
by the device, stimulation or recording densities, and electrical 
properties of the neural tissues (Silva 2018).

If brain-computer interface and artificial intelligence suc-
ceed, it has great benefit for people with neurological disorders 
and will be a great upgrade in the health sector. There are, 
however, certain challenges that may be encountered in achiev-
ing this great feat. Some of the challenges are patient’s inabil-
ity to effectively use this technology and sometimes its inva-
siveness. This publication addresses some key advantages that 
BCIs hold as well as challenges that may impede its progress.

Also, BCIs, even though trying to evolve to solve all these neu-
rological issues, still has a long way to go to help patients that use it.

Methods

Literature search

We conducted a systematic literature search using multi-
ple electronic databases, namely PubMed, IEEE Xplore, 
ScienceDirect, and Scopus, to identify studies related to 

BCI technologies. The search was carried out in June 2022 
and included all studies published since the inception of 
BCI technology to present time. We used a combination 
of keywords and Boolean operators such as “brain-com-
puter interface,” “BCI,” “brain-machine interface,” “neural 
prosthetics,” “brain signal processing,” “electroencepha-
lography,” and “brain imaging.” The search was limited 
to English-language studies published in peer-reviewed 
journals and conference proceedings.

Selection criteria

We included studies that investigated the advancements 
and future prospects of BCI technologies in various appli-
cations, as well as those reporting on the development of 
new algorithms, novel techniques, or improved hardware 
for BCI. We excluded studies that focused only on basic 
neuroscience research or animal studies that were not 
related to BCI applications. Review articles, editorials, 
and other non-empirical studies were also excluded.

Data extraction and analysis

Two authors independently screened the titles, abstract, 
and full text of the identified studies to determine their 
eligibility for inclusion in this review. Any discrepancies 
were resolved through consensus discussion. We used a 
standardized data extraction form to collect information on 
the study design, participants, sample size, BCI technol-
ogy used, application area, and main findings.

Data were analyzed using a narrative synthesis 
approach, where we summarized, compared, and con-
trasted the findings of the included studies. We identified 
key themes and sub-themes from the studies and organized 
them in a coherent and meaningful way. We also provided 
a critical evaluation of the quality of the included studies 
and the limitations of the BCI technologies reviewed.

Results

Brain‑computer interface

Communication has always been the most important tool 
to interact with our environment and the people in it. The 
pursuit for interaction between a computer and a person 
has long piqued the interest of researchers and scientists. 
BCI has solved the issue of communication between the 
human brain and its surrounding environment. These intel-
ligent systems can decipher brain signals using five con-
secutive stages: signal acquisition, pre-processing, feature 
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extraction, classification, and control interface as shown in 
Fig. 1 (Nicolas-Alonso and Gomez-Gil 2012). According to 
Mridha (Mridha et al. 2021), the BCI system employs the 
user’s brain activity signals as a medium for communica-
tion between the person and the computer, translated into 
the required output, and it enables users to operate exter-
nal devices that are not controlled by peripheral nerves or 
muscles via brain activity. Furthermore, BMIs can be either 
classified as motor, sensory, and sensorimotor, or they can 
be categorized as invasive or non-invasive depending upon 
which part of the brain they tap into or which part they 
are implanted in respectively (Salahuddin and Gao 2021). 
Today, an average computer processor can solve up to 1.8 
billion calculations per second (cps) (Moravec 1998), while 
the human brain 1000 trillion (Mead and Kurzweil 2006) 
can exceed this number by far and wide. According to Sala-
huddin (Salahuddin and Gao 2021), it is noted the current 
interfaces being used to connect to the digital world, such 
as typing or voice commands, have very low bandwidth and 
throughput which hinders the market disruption of commer-
cial BMI products. Brain-computer interface has recently 
become a fascinating topic of scientific investigation and a 
viable means of showing a direct link between the brain and 
technology. This notion has been utilized in several research 
and development projects, and it has also become one of the 
fastest growing sectors of scientific inquiry.

Brain‑computer interface in use

Stroke is the most important application for BCI. Accord-
ing to Orban (Orban et al. 2022), stroke has become one 
of the main reasons for abnormal human death. According 
to global disease research records, more than 10 million 
patients worldwide suffer from stroke and up to 116 million 
people are left with disabilities. This disability affects the 
patient and the patient’s family’s daily life (Lozada-Mar-
tínez et al. 2021). Damage to the central nervous system 
results from stroke. Loss of limb motion is one of the ail-
ments that is most frequently anticipated. Training in reha-
bilitation is essential for stroke sufferers. The survival rate 

of stroke patients has noticeably increased in recent years. 
The notion of BCI rehabilitation devices is becoming more 
widely available, but there is still a significant need for cut-
ting-edge rehabilitation techniques to shorten the recovery 
time and enhance motor recovery in post-stroke patients. 
Brain-computer interfaces have been given priority usage 
over the conventional neuromuscular pathways because they 
enable stroke patients to communicate with the surrounding 
environment using their brain signals, overcoming the move-
ment disability of the limbs (He et al. 2020). This advantage 
caused a growing attraction in the field of rehabilitation. 
Additionally, the ability to decode the desires of patients 
diagnosed with motor disability has governed the usage of 
an external rehabilitative or assistive device. It has proved 
the ability of BCI systems to apply the neural plasticity con-
cept using neurofeedback (Mrachacz-Kersting et al. 2016).

Evolution of brain‑computer interfaces: milestones

BCIs are technological systems that facilitate direct commu-
nication between the human brain and external devices. BCIs 
have evolved significantly over the years, with advancements 
in technology and our understanding of the brain (Kawala-
Sterniuk et al. 2021). This section will provide an overview 
of the evolution of BCIs, including their history, major mile-
stones, and current state of research.

History of BCIs

It is important to look at the relatively recent history and 
initial development of BCIs to better understand the neces-
sity for study and development in this area. However, it 
was not until the twentieth century that the development 
of BCIs gained momentum. In the 1920s, German neuro-
scientist Hans Berger invented the electroencephalogram 
(EEG), which allowed for the recording of electrical activ-
ity in the brain (Tudor et al. 2005). This laid the foun-
dation for the development of BCIs that could interpret 
brain signals. In 1956, Lilly implanted a multielectrode 
array in a monkey’s cortical area for electrical stimulation 

Fig. 1  Schematic illustration of 
a brain machine interface using 
five stages including signal 
acquisition, signal processing, 
feature extraction, data classifi-
cation, control, and feedback
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(Salahuddin and Gao 2021). Later in 1976, Wyrwicka and 
Sterman recorded brain signals in cats which they later 
translated into sensory feedback for the same animals to 
increase the generation of those brain signals (sensorimo-
tor rhythms). The term “brain-computer interface” was 
first coined by Jacques Vidal in 1973 and he successfully 
converted brain signals into computer-controlled signals. 
In the 1990s, Nicolelis and Chapin mastered one dimen-
sional neural control of robotic limbs using laboratory rats 
(Chapin et al. 1999).

The same team later worked on robotic arm control and 
created BMIs for bimanual movement and locomotion pat-
terns. Most recently, (Donoghue et al. 2007) implanted inva-
sive multielectrode arrays on humans to show BMI con-
trol of computer cursor (Hochberg et al. 2006) and robotic 
manipulator (Hochberg et al. 2012).

Major milestones in BCI evolution

The evolution of BCIs can be divided into several key mile-
stones that have shaped the field:

Early BCI developments In the 1960s and 1970s, research-
ers made progress in developing rudimentary BCIs that 
could detect brain signals and control simple tasks, such 
as moving a cursor on a computer screen (Chengyu and 
Weijie 2020). These early BCIs relied on invasive tech-
niques, such as implanted electrodes, and were limited in 
their capabilities.

Non‑invasive BCIs In the 1980s and 1990s, researchers began 
to explore non-invasive methods for BCI development, such 
as using EEG to detect brain signals from the scalp without 
the need for invasive implants (Kawala-Sterniuk et al. 2021). 
This opened up the possibility of developing BCIs that were 
more user-friendly and had broader applications.

Motor restoration In the 2000s, significant progress was 
made in using BCIs to restore motor function in individu-
als with paralysis or limb loss. For example, research-
ers developed BCIs that allowed paralyzed patients to 
control robotic arms and perform basic tasks, such as 
grasping objects (Meng et al. 2016). This represented a 
major breakthrough in BCI research and demonstrated 
the potential of BCIs for enhancing human capabilities.

Cognitive enhancement In recent years, there has been 
increasing interest in using BCIs for cognitive enhance-
ment, such as improving memory or cognitive processing 
speed. Researchers have developed BCIs that can stimulate 
specific areas of the brain to enhance cognitive function, 
although these technologies are still in the early stages of 
development (Daly and Huggins 2015).

Summary of major milestones

YEARS MILESTONE IN BCI

1960s and 1970s Development of invasive methods for BCIs that 
could detect brain signals and control simple 
tasks, e.g., moving a mouse cursor.

1980s and 1990s Development of non-invasive techniques for BCI 
such as EEG.

2000s Development of BCI used for restoring motor 
function of paralyzed or physically challenged 
individuals, e.g., using BCIs to control robotic 
arms.

Recent years Development of BCIs for cognitive enhancement 
such as improving memory or cognitive process-
ing speed.

Current state of BCI research

Today, BCIs are a rapidly growing field of research with diverse 
applications, ranging from medical and clinical uses to con-
sumer applications. Researchers continue to make advancements 
in BCI technology, with a focus on improving their usability, 
accuracy, and safety. Some of the current areas of research in 
BCI development include the following:

Neural implants: Researchers are exploring new materials 
and designs for neural implants to improve their long-term 
stability and biocompatibility. Advances in nanotechnology 
and materials science are enabling the development of smaller 
and more reliable implants that can interface with the brain for 
extended periods of time (Pampaloni et al. 2018).

Non-invasive BCIs: Non-invasive BCIs, such as those that 
use EEG, continue to be a popular area of research. Efforts are 
being made to improve the accuracy and reliability of non-inva-
sive BCIs, as well as develop new signal processing techniques 
to extract more information from brain signals (Salahuddin and 
Gao 2021).

Machine learning and artificial intelligence: Machine 
learning and artificial intelligence techniques are being 
integrated into BCIs to improve their performance and ena-
ble more complex tasks (Zhang et al. 2020). For example, 
researchers are using machine learning algorithms to decode 
brain signals and translate them into handwritten text. The 
next section of this article focuses on the implementation of 
artificial intelligence in BCIs.

Artificial intelligence in brain‑computer 
interfaces

Introduction

The goal of AI is to replicate human cognitive functions. 
It is ushering in a paradigm shift in healthcare, fueled by 



1355Biophysical Reviews (2023) 15:1351–1358 

1 3

the increased availability of healthcare data and the rapid 
advancement of analytics tools. BCIs and AI are at the 
forefront of these emerging techniques. The use of AI in 
BCIs has gained significant attention in recent years due to 
its potential to improve the accuracy and reliability of BCI 
systems. Typically, experimental paradigms for BCIs and 
AI were conceived and implemented independently of one 
another. According to Bell (Bell et al. 2008), scientists now 
prefer to combine BCIs and AI, which makes it possible 
to efficiently use the brain’s electric signals to maneuver 
external devices. For severely disabled people, the develop-
ment of BCIs could be the most important technological 
breakthrough in decades (Lee et al. 2019). BCIs, which rep-
resent technologies designed to communicate with the cen-
tral nervous system and neural sensory organs, can provide 
a muscle independent communication channel for people 
with neurodegenerative diseases, such as amyotrophic lateral 
sclerosis, or acquired brain injuries (Kübler et al. 1999). The 
history of BCIs is intimately related to the effort of develop-
ing new electrophysiological techniques to record extracel-
lular electrical activity, which is generated by differences 
in electric potential carried by ions across the membranes 
of each neuron (Birbaumer et al. 2006). Fortunately, recent 
advances in AI methodologies have made great strides, veri-
fying that AI outperforms humans in decoding and encoding 
neural signals (Li and Yan 2014). This gives AI a fantastic 
possibility to be an ideal assistant in processing brain signals 
before they reach the prosthesis.

According to Patel (Patel et al. 2009), AI is a set of 
general approaches that uses a computer to model intel-
ligent behavior with minimal human intervention, which 
eventually matches and even surpasses human performance 
in task-specific applications. When AI works within BCIs, 
internal parameters are provided to the algorithms con-
stantly, such as pulse durations and amplitudes, stimulation 
frequencies, energy consumption by the device, stimulation 
or recording densities, and electrical properties of the neu-
ral tissue (Silva 2018). After receiving the information, AI 
algorithms can identify useful parts and logic in the data 
and then simultaneously produce the desired functional 
outcomes (Li et al. 2015).

According to Zhang (Zhang et al. 2020), at the dawn of 
technological transformation, a tendency to combine BCIs 
and AI has also attracted our attention. Here, we review 
current applications with a focus on the state of BCIs, the 
role that AI plays and future directions of BCIs based on 
AI (Fig. 2).

History of AI in neurology (brain network)

The history of AI stems back to the 1950s with the intro-
duction of the perceptron model (Minsky et al. 2017); 
however, it was not until the 1990s that machine-learning 

techniques became more widely utilized (Crevier 1993). 
The development of machine-learning tools including sup-
port vector machine and recurrent neural networks (Sarle 
1994; Cortes and Vapnik 1995; Kohavi 1995) allowed sci-
entists to leverage the computational power available in 
this era to build statistical models robust to data variation, 
and to make new inferences about real-world problems 
(Obermeyer and Emanuel 2016). However, arguably, the 
biggest advances in AI to date have come in the last dec-
ade, as massive scale data and hardware suitable to pro-
cess these data have become available, and sophisticated 
deep-learning methods—that aim to imitate the working 
of the human brain in processing data—became computa-
tionally feasible (Ngiam et al. 2011; LeCun et al. 2015). 
Deep learning is now widely regarded as the foundation of 
contemporary AI (Sejnowski 2020).

There are preliminary examples of the value of AI in 
neurology, for example in detecting structural brain lesions 
on MRI (Brosch et al. 2014; Korfiatis et al. 2016). A com-
mon limitation of clinical AI studies is the amount of avail-
able data with high-quality clinical outcome labels, rather 
the availability of robust AI algorithms and computational 
resources.

Applications of AI in BCIs

The implementation of AI in BCIs has numerous applications, 
including medical, communication, and control systems. In 
medical applications, AI-BCI systems have been used for the 
treatment of neurological disorders such as epilepsy, Parkin-
son’s disease, and stroke. For instance, AI-based BCI systems 
have been developed for detecting epileptic seizures and pro-
viding timely intervention to prevent or reduce the severity of 
the seizure (Akkus et al. 2017). Additionally, AI-based BCI 
systems have been developed for the diagnosis and treatment 
of Parkinson’s disease, which affects the nervous system and 
causes tremors and difficulty in movement. Such systems use 
AI algorithms to analyze brain signals and provide feedback 
to the patient (Zhao et al. 2017).

In communication applications, AI-BCI systems have 
been developed for individuals with speech and motor 
impairments, such as those with amyotrophic lateral scle-
rosis (ALS) or locked-in syndrome. Such systems use AI 
algorithms to decode the user’s brain signals and translate 
them into text or speech output.

In control systems, AI-BCI systems have been devel-
oped for controlling external devices such as prosthetic 
limbs or robots. For instance, an AI-based BCI system 
developed by researchers at the University of Pittsburgh 
enabled a monkey to control a robotic arm using its brain 
signals (Collinger et al. 2013). Similarly, AI-based BCI 
systems have been developed for controlling prosthetic 
limbs in amputees, enabling them to perform complex 
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movements such as grasping objects or writing (Li et al. 
2017).

Advantages of AI in BCIs

The implementation of AI in BCIs offers several advantages 
over traditional BCI systems. One of the main advantages is 
increased accuracy and reliability. AI algorithms can ana-
lyze large amounts of brain data and identify patterns that 
may not be visible to the human eye. This enables AI-BCI 
systems to detect and interpret brain signals more accurately, 
resulting in higher performance and fewer errors.

Another advantage of AI in BCIs is adaptability. Tra-
ditional BCI systems require calibration before each use, 
which can be time-consuming and inconvenient for the user. 
AI algorithms, on the other hand, can adapt to changes in the 
user’s brain signals over time, reducing the need for frequent 
calibration. This makes AI-BCI systems more user-friendly 
and practical for long-term use.

Furthermore, AI in BCIs can improve the speed of infor-
mation processing. Traditional BCI systems may require 

several seconds or even minutes to process and interpret 
brain signals, which can be too slow for real-time applica-
tions. AI algorithms, however, can process and analyze brain 
signals in real-time, enabling faster and more efficient com-
munication between the brain and external devices.

Challenges of AI in BCIs

Despite its potential benefits, the implementation of AI in 
BCIs also presents several challenges. One of the main chal-
lenges is the need for large amounts of training data. AI 
algorithms require large datasets to train and improve their 
performance. In the case of BCIs, this means collecting large 
amounts of brain data from human subjects, which can be 
difficult and time-consuming. Additionally, the quality and 
consistency of the data can affect the performance of the 
AI algorithm, as inaccurate or inconsistent data can lead to 
incorrect predictions and unreliable results.

Another challenge of AI in BCIs is the issue of inter-
pretability. AI algorithms can be difficult to interpret, 
as they often rely on complex mathematical models that 
can be difficult to understand or explain. This can be 

Fig. 2  Schematic description of BCIs based on AI. The circuit can 
be described as follows. First, micro-electrodes detect signals from 
the human cerebral cortex and send them to the AI. Second, the AI 
takes charge of signal processing, which includes feature extraction 

and classification. Third, the processed signals are output to achieve 
the abovementioned functions. Finally, feedback is sent to the human 
cortex to adjust the function (Zhang et al. 2020)
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a problem in applications such as medical diagnosis or 
decision-making, where it is important to understand how 
the AI algorithm arrived at its conclusions. Research-
ers are working on developing methods to improve the 
interpretability of AI algorithms, such as visualizing the 
decision-making process or using explainable AI models 
(Rudin 2019).

Another challenge is the issue of privacy and secu-
rity. BCIs involve the collection of sensitive personal 
information, such as brain activity data, which can be 
vulnerable to data breaches or unauthorized access. 
Additionally, the use of AI algorithms can introduce 
new security risks, such as adversarial attacks or data 
poisoning, where an attacker can manipulate the data 
to produce incorrect predictions or results (Hung et al. 
2020). Researchers are developing methods to improve 
the security of AI-BCI systems, such as using encryption 
or authentication methods to protect the data.

Conclusion

In conclusion, the implementation of AI in BCIs has 
numerous applications and potential benefits, includ-
ing increased accuracy and reliability, adaptability, and 
improved speed of information processing. However, 
the implementation of AI in BCIs also presents several 
challenges, such as the need for large amounts of training 
data, interpretability, and privacy and security concerns. 
Researchers are working to address these challenges and 
improve the performance and usability of AI-BCI systems, 
paving the way for future advancements in this field. Inter-
disciplinary cooperation between neuroscientists, engi-
neers, computer scientists, and medical professionals are 
required to overcome these hurdles and progress the area of 
BCIs. Collaborations of this type can spur innovation, bet-
ter knowledge of brain processes, and hasten the translation 
of BCI technology from the lab to real-world applications.

Finally, the developments and future prospects of BCI 
technology offer significant chances to improve the quality of 
life for people with impairments while also opening up new 
avenues for human-computer connection. BCIs have the poten-
tial to revolutionize various aspects of our life and reshape the 
future of technology with further research and development.
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