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Abstract
We present a brief review of our recent computational studies of hydrogen bonds (H-bonds) in helical secondary structures 
of proteins, α-helix and 310-helix, using a Negative Fragmentation Approach with density functional theory. We found that 
the depolarized electronic structures of the carbonyl oxygen of the ith residue and the amide hydrogen of the (i + 4)th resi-
due cause weaker H-bond in an α-helix than in an isolated H-bond. Our calculations showed that the H-bond energies in 
the 310-helix were also weaker than those of the isolated H-bonds. In the 310-helices, the adjacent N–H group at the (i + 1)
th residue was closer to the C=O group of the H-bond pair than the adjacent C=O group in the 310-helices, whereas the 
adjacent C=O group at the (i + 1)th residue was close to the H-bond acceptor in α-helices. Therefore, the destabilization of 
the H-bond is attributed to the depolarization caused by the adjacent residue of the helical backbone connecting the H-bond 
donor and acceptor. The differences in the change in electron density revealed that such depolarizations were caused by the 
local electronic interactions in their neighborhood inside the helical structure and redistributed the electron density. We also 
present the improvements in the force field of classical molecular simulation, based on our findings.

Keywords  Hydrogen bond · Secondary structure · Density functional theory · Negative fragment approach · α-Helix · 310-
Helix

Introduction

Proteins are found in all living organisms and are involved 
in almost all biological activities such as catalysis, molecu-
lar recognition, and material transport (Liljas et al. 2017; 
Branden and Tooze 2012). Since protein functions are 
strongly correlated with their three-dimensional structures, 
understanding the three-dimensional structure of proteins 
and their dynamic behaviors is essential for various scientific 

fields including chemistry, biology, medicine, agriculture, 
and food industry.

Proteins are biopolymers consisting of a large number 
of amino acids held together by peptide bonds. Protein 
structures are hierarchical, with distinct levels of structures 
(Holde Van et al. 1998), which represent increasing levels 
of complexity and include primary, secondary, tertiary, and 
quaternary structures. Secondary structure is the local and 
regular structure of a protein, including α- and 310-helices, 
β-strands, and β- and γ-turns. These secondary structures are 
properly assembled to form tertiary structures. Thus, sec-
ondary structures can be considered the building elements 
of protein structures.

In secondary structures, a helix (e.g., α-helix and 
310-helix) is a group of residues that repeatedly rotate and 
rise along an axis. It is the most observed secondary struc-
ture. We can classify it into different helical conformations. 
The α-helix is found in 31% of all secondary structures and 
is the most widely recognized helical structural element in 
fibrous and globular proteins (Barlow and Thornton 1988). 
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The second most common helical structure is the 310-helix, 
which occupies 4% of the secondary structures.

These helices are stabilized by hydrogen bonds (H-bonds) 
formed between the amide hydrogens (the H-bond donors) 
and the carbonyl oxygens (the H-bond acceptors) of pep-
tide bonds. H-bonds are one of the most important nonco-
valent interactions for chemical and biological phenomena 
(Saleh et al. 2012; Tantardini 2019; Tantardini et al. 2020). 
The significance of H-bonds in the secondary structures of 
proteins was recognized early (Pauling et al. 1951; Eisen-
berg 2003). The α-helix has 3.6 residues per turn and is 
a right-handed helix. In the α-helix, a H-bond is formed 
between the peptide carbonyl group at residue i and the pep-
tide amino group at residue i + 4. In contrast, the 310-helix 
has three residues per turn and is a right-handed helix. It 
has a H-bond between the peptide carbonyl group at resi-
due i and the peptide amino group at residue i + 3, result-
ing in a tighter packing of the backbone compared with the 
α-helix (Fig. S1). Many computational chemists have studied 
H-bonds in secondary structures at various levels of theoreti-
cal depth. Wieczorek and Dannenberg (2003a, b) investi-
gated H-bond cooperativity and the energetics of α-helices, 
suggesting that various factors contribute to their stability. 
Morozov et al. (2006) evaluated the origin of cooperativity 
in forming α-helices. Wu and Zhao (2001) studied the role 
of cooperativity in the formation of α-helices by performing 
theoretical calculations on α-helix models constructed using 
a simple repeating unit method. Parthasarathi et al. (2007) 
studied H-bond interactions in an α-helix model using the 
atom-in-molecules method. Ismer et al. (2008) investigated 
the temperature dependence of the stability of α-, π-, and 
310-helices compared with a fully extended structure using 
density functional theory (DFT) and harmonic approxima-
tion. However, a simple physicochemical theory accounting 
for helical secondary structural features of proteins is still 
immature.

An accurate and quantitative evaluation of H-bonds 
is also important for molecular dynamics (MD) simula-
tions to investigate the dynamical behavior and folding 
process of proteins. Historically, it has been noticed since 
many years ago that each force field used in classical MD 
simulations shows a specific tendency to form an α-helix 
or a β-strand. For example, the AMBER C96 force field, 
which was developed just after the original AMBER force 
field (Cornell et al. 1995), preferred extended structures 
contrast to the α-helical preference of the latter one as 
mentioned by Kollman et al. (1997). This phenomenon 
has been repeatedly reported by many authors (Sakae and 
Okamoto 2003; Yoda et al. 2004a, b; Best et al. 2008; Best 
and Hummer 2009; Piana et al. 2011). Usually, this pref-
erence for force fields on the secondary structure forma-
tion is not a significant problem in the MD simulations of 
rigid globular protein structures. However, it has become 

a critical issue in understanding functionally important 
conformational changes (Higo et al. 2011; Shirai et al. 
2014; Chebaro et al. 2015; Nishigami et al. 2016) in the 
folding simulations of flexible disordered regions (Higo 
et al. 2011; Chebaro et al. 2015) and long loops between 
secondary structures (Shirai et al. 2014; Nishigami et al. 
2016). Yoda et al. (2004a, b) performed MD simulations 
to compare the secondary structural properties of com-
monly used force fields, finding that MD simulations with 
the AMBER ff94 (Cornell et al. 1995) and ff99 (Wang 
et al. 2000) force fields were in remarkable agreement 
with experimental data for α-helical polypeptides but not 
for β-hairpin polypeptides. Numerous attempts have been 
made to overcome this problem, such as increasing the tor-
sional energies, rearrangements (Kamiya et al. 2005; Buck 
et al. 2006; Fujitani et al. 2009; Robustelli et al. 2018), 
and developing polarized charge models (Patel and Brooks 
2004; Lopes et al. 2009). Regardless, the reasons behind 
the use of these methods remain unclear, and elucidation 
requires understanding the energy of hydrogen bonding in 
the secondary structure.

Here, we briefly review our computational studies of 
H-bonds in helical secondary structures of proteins, α-helix 
and 310-helix, using a Negative Fragmentation Approach 
(NFA) with DFT (Kondo et al. 2019, 2022). We will also 
discuss the modification of the force field, approximating the 
H-bond energies, revealed by our findings.

Model constructions and computational 
method

Model constructions

We constructed whole-helix (WH) models of an α-helix 
and a 310-helix, denoted as WHalpha-n and WH3_10-n 
models, respectively. In the model construction, we used 
poly-alanine amino acids capped with an acetyl group 
(ACE) and an N-methyl amide group (NME), denoted 
as ACE–(Ala)n–NME (n = 2–7 for the 310-helices and 
n = 3–8 for the α-helices). The backbone torsion angles, 
φ and ψ, of the WHalpha-n and WH3_10-n models were 
set to their ideal values, as described in biochemistry 
textbooks, namely, φ =  − 57° and ψ =  − 47° for the 
WHalpha-n models and φ =  − 49° and ψ =  − 26° for the 
WH3_10-n models (Arnott and Dover 1967; Petsko and 
Ringe 2004; Kuster et al. 2015). These structures were 
optimized in the gas phase by fixing the backbone dihe-
dral angles at the aforementioned values and minimiz-
ing the total electronic energies. One to six backbone 
H-bonds exist in the optimized WHalpha-n and WH3_10-n 
models. The sth H-bond in these models, counting from 
the N-terminus, is represented by n-s.
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To understand the characteristics of the H-bond ener-
gies in α-helices and 310-helices, we constructed two 
types of simplified models. One is a single-turn (ST) 
model, denoted as the STalpha-n and ST3_10-n model 
composed of ACE-(Ala)3-NME and ACE-(Ala)2-NME, 
respectively. In this model, the H-bond donor and accep-
tor are linked with the helical backbone atoms. The other 
is a minimal H-bond (MH) model, denoted as MHalpha-n 
and MH3_10-n models comprising two separated N-methyl 
acetamide molecules and mimicking a single H-bond 
between the C=O and N–H groups in the backbone. In 
the MHalpha-n and MH3_10-n models, the two peptide 
groups forming a H-bond, hydrogen donors and accep-
tors, were separated without linking the helical backbone 
atoms. The atomic positions of these simplified models 
were the same as those of the corresponding WHalpha and 
WH3_10 models, except for the N- and C-terminal capping 
groups. Figure 1a shows the molecular structures of the 

WHalpha-5, STalpha-5, and MHalpha-5 models for an α-helix 
and those of the WH3_10-4, ST3_10-4, and MH3_10-4 mod-
els for a 310-helix as examples. The individual H-bond 
energy for these models was calculated in the same man-
ner as that for each backbone H-bond in the WH models, 
as described below. The H-bond energies of these models 
were then compared to each other.

Validity of DFT exchange–correlation functionals 
for the calculation of H‑bond energy of secondary 
structure

In recent years, DFT has become accepted as an alterna-
tive approach for the post Hartree–Fock (HF) methods such 
as Møller–Plesset perturbation theory (Head-Gordon et al. 
1988) and coupled cluster theory (Scuseria and Schaefer 
1989). In previous studies (Takano et  al. 2011, 2012), 
we showed the importance of assessing the validity of 

Fig. 1   a Structures of the 
WHalpha-5, STalpha-5, and 
MHalpha-5 models for an α-helix 
and those of the WH3_10-4, 
ST3_10-4, and MH3_10-4 models 
for a 310-helix as examples. b 
Fragment structures and sche-
matic picture for calculations 
of H-bond energy of 3–1 of the 
WHalpha-3 model with NFA
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various DFT exchange–correlation functionals. The DFT 
exchange–correlation functionals was also validated for the 
H-bond energies of the ACE-(Ala)n-NME system. We chose 
the B97D (B97 functional with Grimme’s D2 dispersion 
schemes) exchange–correlation functional (Grimme 2006) 
with 6–31+G(d) basis sets because it provided the H-bond 
energies of an ACE–(Ala)n-NME dimer comparable with 
the MP2 method in the calculation of the H-bond interaction 
energies of the ACE–(Ala)n-NME system in the gas phase 
(Takano et al. 2016). This method was applied to H-bond 
energy calculations of the helical secondary structures com-
posed of ACE–(Ala)n-NME.

Negative fragmentation approach

Since it is not straightforward to calculate a H-bond energy 
of a molecule, where the donor and acceptor atoms are 
linked through covalent bonds, we utilized the NFA, which 
is the modified version of the Molecular Tailoring Approach 
(MTA) developed by Deshmukh and Gadre (2009). As 
shown in Fig. 1b, each H-bond energy, EHB , in ACE-(Ala)n-
NME is calculated by the following equation in the NFA:

Esys , EnoA , EnoD , and EnoAD represent the total electronic 
energy of the entire system, the system lacking the acceptor 
group, the system without the donor group, and the system 
lacking both the acceptor and donor groups, respectively.

In the NFA, we used the total electronic energy of the 
entire system 

(

ETotal

)

 as Esys (Kondo et al. 2019, 2022), while 
the energy of the entire system was estimated using the ener-
gies of all fragments in the original MTA (Deshmukh and 
Gadre 2009). The total energies of the WHalpha-n models 
estimated by MTA 

(

EMTA

)

 coincided well with the ETotal val-
ues of these models. The differences in the calculated values 
of ETotal and EMTA , EMTA − ETotal , were less than 0.09 kcal/
mol. These differences are similar to that obtained in the 
previous study (Deshmukh and Gadre 2009) for the 310-helix 
(0.11 kcal/mol).

In addition to the H-bond energies, the NFA can approxi-
mately represent the change of electronic structures upon 
H-bond formation. The change in electron density upon 
H-bond formation, Δ�HB , was evaluated as follows (Kondo 
et al. 2019, 2022):

To examine the difference in the H-bond energy between 
the WH and MH models and between the ST and MH 
models in the context of their electronic structures, the 

(1)EHB = Esys − EnoA − EnoD + EnoAD

(2)Δ�HB = �sys − �noA − �noD + �noAD

differences in the change in electron density were computed 
using Eqs. 3 and 4, respectively:

As an advantage of NFA, no modifications of program 
code are required, though multiple calculations are needed. 
It indicates that we can utilize the NFA with any quantum 
chemical calculation programs.

For comparison and improvement of the force field, we 
also computed the H-bond energies based on the molecu-
lar mechanics (MM) with the AMBER ff99SB force field 
parameters (Wang et al. 2000), EMM

HB
 , for the corresponding 

H-bonds as in the following equation:

where i and j are the atoms constituting the peptide group 
of an acceptor and a donor of an H-bond, respectively: {C, 
O, N, and H}. Aij and Bij are the Lennard–Jones coefficients, 
rij is the distance between atoms i and j, and qi is the atomic 
partial charge of the atom i.

H‑bond energies in helical model systems

In order to understand the effects of the helical secondary 
structures on the H-bond energies, we compared the H-bond 
energies for the WHalpha-n, STalpha-n, and MHalpha-n models 
of α-helices and the WH3_10-n, ST3_10-n, and MH3_10-n mod-
els of the 310-helices. Since the H-bond energies strongly 
depend on the spatial arrangement of the H-bond donor and 
acceptor atoms, we plotted the H-bond energies of the WH 
and ST models against those of the MH models for the α- 
and 310-helices in Fig. 2a and b, respectively, to cancel out 
the effect of the orientations of H-bond donor and accep-
tor (Kondo et al. 2022).

The H-bond energies obtained by the WH-n and ST-n 
models, EWH

HB
 and EST

HB
 , remarkably deviated from those cal-

culated by the MH models. In the α-helices, the STalpha-n 
model reproduced the H-bond energies of the WHalpha-n 
model. In contrast, the MHalpha-n model provided more 
stable H-bond energy than the WHalpha-n model (Fig. 2a), 
indicating that the adjacent residues covalently connecting 
the H-bond donor and acceptor destabilized the H-bond in 
the WHalpha-n model. In the 310-helices, the ST3_10-n mod-
els also destabilized the H-bond as well as the α-helices 
compared to the MH3_10-n models but failed to provide the 

(3)ΔΔ�WH−MH
HB

= Δ�WH
HB

− Δ�MH
HB

(4)ΔΔ�ST−MH
HB

= Δ�ST
HB

− Δ�MH
HB

(5)

EMM
HB

=
∑

i,j∈{C,O,N, and H}

qiqj

rij
+
∑

i,j∈{C,O,N, and H}

(

Aij

r12
ij

−
Bij

r6
ij

)
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equivalent H-bond energies of the WH3_10-n. In particular, 
the H-bond pairs adjacent to the N- or C-terminal H-bond of 
the WH3_10-n models were strongly destabilized compared to 

those of the ST3_10-n models, resulting in the worse correla-
tion of the WH3_10-n and ST3_10-n models. Details are dis-
cussed in our previous study (Kondo et al. 2022). It suggests 

Fig. 2   Correlations of the H-bond energies of the WH (black filled cir-
cle), ST (red open circle), and MM (blue open triangle) models ver-
sus those of the MH model in a the α-helices and b the 310-helices. 
The dashed line shows a guide where the longitudinal axis values 
have identical H-bond energies (Kondo et al. 2022). Electron density 
changes upon H-bond formation, c Δ�WHalpha

HB
 and d Δ�WH3_10

HB
 , for 5-2 of 

the WHalpha-5 model and for 4-2 of the WH3_10-4 model. The yellow 
surfaces represent the contour surfaces at −0.001 au, and the magenta 
ones are those at +0.001 au. The atoms in the whole WH models are 
shown by green wire and those in the MH models are shown using the 
stick model with CPK colors. The difference in the change in electron 
density between the WH and ST models, ΔΔ�WHalpha−MHalpha

HB
 for e 5-2 of 

the WHalpha-5 model and ΔΔ�WH3_10−MH3_10

HB
 for f 4-2 of the WH3_10-4 

model. The difference in the change in electron density between the 
ST and MH models, ΔΔ�STalpha−MHalpha

HB
 for g 5-2 of the WHalpha-5 model 

and ΔΔ�ST3_10−MH3_10

HB
 for h 4-2 of the WH3_10-4 model. The dark-green 

surfaces are the contour surfaces at −0.00015 au, and the orange ones 
are those at +0.00015 au. The black dotted line is the H-bond between 
the oxygen atom of the C=O group at the ith residue and the hydro-
gen atom of the N-H group at the (i + 4)th residue. The corresponding 
hydrogen bond is surrounded by a dashed rectangle. Figures d, f, and 
h were slightly modified from the original figures, which appeared in 
the previous paper by Kondo et al. (2022)
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that the destabilization of the H-bond of the 310-helices is 
partly due to the helical backbone atoms linking the H-bond 
donor and acceptor. However, there should also be other fac-
tors leading to unstable H-bond energies.

We compared QM ( EWH
HB

 ) and MM ( EMM
HB

 ) calculations for 
the H-bond energies of the WHalpha-n and WH3_10-n mod-
els (Fig. 2a, b). In the WHalpha-n models, the EWH

HB
 values 

strongly correlated with the EMM
HB

 values, but the MM cal-
culations overestimated the stability of the H-bond energies 
by ~ 1 kcal/mol. The EMM

HB
 values of the WHalpha-n models 

almost coincided with the H-bond energies calculated by 
the MH models, EMH

HB
 . This is because the current force field 

parameters of amino acids are adjusted based on the amino 
acid monomer. In contrast, the H-bond energies evaluated 
with the QM calculations were closer to those with the MM 
calculations for the WH3_10-n models than for the WHalpha-n 
models. However, the correlation between the QM and MM 
calculations was weak, unlike the WHalpha-n models. In con-
trast to α-helices, the EMH

HB
 values were more stable than the 

EMH
HB

 values in 310-helices. This is because the H-bonds in 
the MH3_10-n are much shorter than those in the MHalpha-n 
models, thus having stronger quantum nature that the clas-
sical force field cannot describe.

Electronic structures around the H‑bond 
donors and acceptors

The electron density changes for the WHalpha-5 and WH3_10-5 
models, Δ�WHalpha

HB
 and Δ�WH3_10

HB
 , were calculated with Eq. 2 

and are shown in Fig. 2c and d, respectively. Here, yellow 
and magenta colors show the negative and positive contour 
surfaces, respectively. From the Δ�WHalpha

HB
 values, the elec-

tron density increased around the oxygen atom of the C=O 
group at the ith residue and decreased around the hydrogen 
atom of the N–H group at the (i + 4)th residue, as shown in 
Fig. 2c. The Δ�WH3_10

HB
 values showed that the electron density 

increased in the vicinity of the oxygen atom of the C=O 
group at the ith residue and that it decreased in the vicin-
ity of the hydrogen atom of the N–H group at the (i + 3)th 
residue, as illustrated in Fig. 2d. The Δ�WHalpha

HB
 and Δ�WH3_10

HB
 , 

thus, implied the formation of the H-bond.
In Fig. 2e and g, the differences in electron density change 

between the WHalpha-5 and MHalpha-5 models and between 
the STalpha-5 and MHalpha-5 models, ΔΔ�WHalpha−MHalpha

HB
 and 

ΔΔ�
STalpha−MHalpha

HB
 , respectively, were shown for the α-helical 

turn 5-2. Here, green and orange colors show the negative and 
positive contour surfaces, respectively. The electron density 
changes near the oxygen atom of the C=O group at the ith resi-
due in both the WHalpha and STalpha models were smaller than 

that in the MHalpha model, implying that the negative polariza-
tion of the oxygen atom was weakened by the backbone atoms 
linking the H-bond donor and acceptor. In contrast, the elec-
tron density near the hydrogen atom of the N–H group at the 
(i + 4)th residue increased in the WHalpha and STalpha models, 
as compared with that in the MHalpha model. In addition, the 
ΔΔ�

WHalpha−MHalpha

HB
 value was similar to the ΔΔ�STalpha−MHalpha

HB
 

values. It indicates that the weaker positive polarization of 
the hydrogen atom is mainly due to the adjacent residues con-
necting the H-bond donor and acceptor. We found that the 
distances between the oxygen atoms in the carbonyl group of 
the ith and (i + 1)th residues in the H-bond pairs were short 
(3.510 ± 0.144 Å). In addition, those between the hydrogen 
atoms in the amide group of the (i + 3)th and (i + 4)th resi-
dues were also short (2.676 ± 0.038 Å). These short distances 
caused the depolarization of both the carbonyl oxygen of the 
ith residue and the amide hydrogen of the (i + 4)th residue, as 
revealed in Fig. 2e and g. The depolarized electronic structures 
around the carbonyl oxygen of the ith residue and the amide 
hydrogen of the (i + 4)th residue generally resulted in weaker 
H-bond energies for the α-helix, as in the WHalpha and STalpha 
models, than for the separated H-bonds, as in the MHalpha 
model. Such depolarizations redistributing the electron den-
sity were caused by the local electronic interactions in their 
neighborhood inside the α-helical structure.

Figure  2f  and h show ΔΔ�
WH3_10−MH3_10

HB
 and 

ΔΔ�
ST3_10−MH3_10

HB
 values for the 310-helical turn 4–2. The 

ΔΔ�
WH3_10−MH3_10

HB
andΔΔ�

ST3_10−MH3_10

HB
 values indicated 

depolarization of the oxygen atom of the C=O group at the ith 
residue and the hydrogen atom of the N–H group at the (i + 3)
th residue in the WH3_10 and ST3_10 models. However, in con-
trast to the ΔΔ�WHalpha−MHalpha

HB
 and ΔΔ�STalpha−MHalpha

HB
 values, the 

ΔΔ�
WH3_10−MH3_10

HB
 values for the 310-helical turn 4–2 were remark-

ably different from the ΔΔ�ST3_10−MH3_10

HB
 values, implying other 

factors besides the helical backbone atoms linking the H-bond 
pairs that caused the depolarization of the H-bond donor and 
acceptor in the 4–2 pair. We now discuss why the H-bonds in the 
ST3_10-n model were destabilized in comparison to those in the 
MH3_10-n model. We found that the C=O group at the ith residue 
and the N–H group at the (i + 3)th residue of the H-bond were 
depolarized in the ST3_10-n model, as shown in Fig. 2h. This depo-
larization could be caused by the helical backbone atoms linking 
the H-bond pair. Whereas the C=O group at the (i + 1)th residue 
was involved in depolarization in α-helices, the C=O group of the 
H-bond pair was closer to the adjacent N–H group at the (i + 2)th 
residue (2.799 ± 0.033 Å), than to the adjacent C=O group at the 
(i + 1)th residue (3.442 ± 0.025 Å) in the 310-helices. Therefore, in 
the 310-helices, the adjacent N–H group may cause the depolariza-
tion of the H-bond acceptor, resulting in only little destabilization 
of the H-bond.
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Toward improvement of the H‑bond energy 
by the classical force field

Our calculations for α-helices and 310-helices with the NFA 
revealed that their H-bond energies are affected by depo-
larization and polarization due to the local dipole of the 
neighboring backbone peptide groups. Based on our results, 
we constructed a model for the classical force field, in which 
the atomic partial charges ( qi

N
 , qi

H
 , qi

C
 , and qi

O
 ) of the N–H 

and C=O groups of the ith peptide group were not con-
stant but were changed by the neighboring peptide groups, 
respectively.

where q0
N

 , q0
H

 , q0
C
 , and q0

O
 are the original atomic partial 

charge, and the amounts of changes in the atomic partial 
charges of the ith peptide group; �i

N
 , �i

H
 , �i

C
 , and �i

O
 , are func-

tions depending on the backbone structure of the neighbor-
ing peptide group. This change may be represented by the 
interaction energy of the classical mechanics, U

(

�⃗𝜇
i

X
, �⃗𝜇

j

Y

)

 
between the ith backbone dipole, �⃗𝜇i

X
 (X = NH or CO), and 

the neighboring backbone dipole, �⃗𝜇j

Y
 (Y = NH or CO) 

( j ≠ i ). To avoid double counting interaction energies 
already taken in contributions in the restrained electrostatic 
potential (RESP) approach (Bayly et al. 1993; Cieplak et al. 
1995), the following formula was used to obtain the change 
in the original atomic partial charge.

where �HO , �HH , �OO , and �OH are fitting parameters. To 
ensure that the overall charge does not change, local neu-
trality conditions were imposed, and �i

N
 and �i

C
 are defined 

as follows.

We determined the parameters �HO , �HH , �OO , and 
�OH , by using the H-bond energies calculated with NFA, 

(6)qi
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= −�i

H
q0
H

(13)�i
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= −�i
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EWH
HB

 , for both α-helices and 310-helices, and those of 
the AMBER ff99SB force field parameters (Wang et al. 
2000), EMM

HB
 . Using the determined fitting parameters, 

we modified the MM values of the H-bond energies, 
denoted as EMMmodif ied

HB
 , and plotted the EMMmodif ied

HB
 versus 

EWH
HB

 (open symbols), together with the original EMM
HB

 

Fig. 3   Correlations of the E
MMmodified

HB
 and EWH

HB
 (open symbols), 

together with those of the EMM
HB

 and EWH
HB

 (small filled symbols) for 
both in the α-helices (circles) and the 310-helices (triangles). The 
dashed line shows a guide where the longitudinal axis values from 
NFA have the identical H-bond energies by the MM and MMmodified 
methods. The detail of the latter modification is as follows: the modi-

fied H-bond energy EMMmodified

HB
=
∑

ij

qiqj

rij
+
∑

ij

�

Aij

r12
ij

−
Bij

r6
ij

�

 was com-

puted from the modified charges, qN, qH, qC, and qO, given by Eqs. 
(6)–(9) as the changes from the original charges, q0

N
 , q0

H
 , q0

C
 , and q0

O
 , 

which were −0.4157, 0.2719, 0.5973, and −0.5679, respectively, 
taken from the AMBER ff99SB force field (Wang et  al. 2000). The 
parameters modifying charges, �i

N
 , �i

H
 , �i

C
 , and �i

O
 , in Eqs. (6)–(9) 

were computed by Eqs. (10)–(13), where the fitting parameters λHO, 
λHH, λOO, and λOH were the coefficients of the interaction energies 
between the ith backbone dipole, �⃗𝜇i

X
 (X = HN or CO), and the neigh-

boring backbone dipole, �⃗𝜇j

Y
 (Y = HN or CO) (j ≠ i), as in Eqs. (10) 

and (11): U
(

�⃗𝜇
i

X
, �⃗𝜇

j

Y

)

=
��⃗𝜇i
X
��⃗𝜇j

Y

r3
ij

−
3
(

𝜇⃗
i

X⃗
rij

)(

𝜇⃗
j

Y⃗
rij

)

r5
ij

 . Here, rij is the distance 
between the center of the ith backbone dipole and that of the jth 
dipole. The local dipole moments were given as 
�⃗𝜇
k

CO
=

1

2

(

qk
C
− qk

O

)

(

r⃗
k

C
− r⃗

k

O

)

 and �⃗𝜇k

HN
=

1

2

(

qk
H
− qk

N

)

(

r⃗
k

H
− r⃗

k

N

)

 (k = 
i or j), as indicated in Kondo et al. (2019). The four parameters λHO, 
λHH, λOO, and λOH were determined by minimizing the square of the 
difference between EMMmodified

HB
 and EWH

HB
 simultaneously for H-bond 

energies of 21 WHalpha values of α-helices (Kondo et al. 2019) and for 
those of 21 WH3_10 values of 310-helices (Kondo et  al. 2022). The 
resulted parameters were λHO = −11.535, λHH = 38.517, λOO = 
16.967, and λOO = 4.587, respectively, where the unit was all (kcal/
mol)
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versus EWH
HB

 (small filled symbols) in Fig. 3. The root 
mean square deviation of the original EMM

HB
 from the EWH

HB
 

values was evaluated to be 0.78 kcal/mol, and that of 
the EMMmodif ied

HB
 from the EWH

HB
 values was calculated to be 

0.28 kcal/mol, much smaller than the original one. It 
suggests that this modification of the classical MM force 
field could well approximate the H-bond energies pro-
vided by NFA. In particular, those for the α-helices were 
remarkably improved, as shown in Fig. 3. For extended 
structures, the amounts of changes in the atomic par-
tial charges should be small because the dipole–dipole 
interaction quickly decreases in inverse proportion of the 
cube of the distance between the dipole pair.

Concluding remarks

We have briefly reviewed our recent computational stud-
ies of hydrogen bonds (H-bonds) in helical secondary 
structures of proteins, α-helix and 310-helix, using a 
Negative Fragmentation Approach (NFA) with density 
functional theory (DFT). Our computation showed that 
the H-bond energies of the α-helix are generally weaker 
than those of the separated H-bonds due to the depolar-
ized electronic structures around the carbonyl oxygen of 
the ith residue and the amide hydrogen of the (i + 4)th 
residue. The H-bond energies of the 310-helix are also 
weaker than those of the separated H-bonds, but the 
effects are not so large as those for the α-helix. Whereas 
the adjacent C=O group is involved in the depolarization 
of the H-bond acceptor in α-helices, the C=O group of 
the H-bond pair is closer to the adjacent N–H group than 
to the adjacent C=O group in the 310-helices. Therefore, 
the weak destabilization of the H-bond is attributed to 
the balance of the depolarization and polarization caused 
by the adjacent N–H group and the C=O group. Based 
on the findings from our computational results, a model 
was constructed in which the atomic partial charges 
of the N–H and C=O groups of the backbone peptide 
groups forming H-bonds are changed by the neighboring 
peptide groups, respectively. This modified MM model 
well reproduced the H-bond energies of α-helices and 
310-helices given by the NFA computation. We expect 
that this modification could lead to more reliable MD 
simulations in the future.
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