
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12551-022-00989-9

REVIEW

Photobiology of lipofuscin granules in the retinal pigment epithelium 
cells of the eye: norm, pathology, age

T. B. Feldman1,2  · A. E. Dontsov2 · M. A. Yakovleva2 · M. A. Ostrovsky1,2

Received: 7 June 2022 / Accepted: 26 July 2022 
© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Lipofuscin granules (LGs) are accumulated in the retinal pigment epithelium (RPE) cells. The progressive LG accumulation 
can somehow lead to pathology and accelerate the aging process. The review examines composition, spectral properties and 
photoactivity of LGs isolated from the human cadaver eyes. By use of atomic force microscopy and near-field microscopy, 
we have revealed the fluorescent heterogeneity of LGs. We have discovered the generation of reactive oxygen species by 
LGs, and found that LGs and melanolipofuscin granules are capable of photoinduced oxidation of lipids. It was shown that 
A2E, as the main fluorophore (bisretinoid) of LGs, is much less active as an oxidation photosensitizer than other fluorophores 
(bisretinoids) of LGs. Photooxidized products of bisretinoids pose a much greater danger to the cell than non-oxidized one. 
Our studies of the fluorescent properties of LGs and their fluorophores (bisretinoids) showed for the first time that their 
spectral characteristics change (shift to the short-wavelength region) in pathology and after exposure to ionizing radiation. 
By recording the fluorescence spectra and fluorescence decay kinetics of oxidized products of LG fluorophores, it is possible 
to improve the methods of early diagnosis of degenerative diseases. Lipofuscin (“aging pigment”) is not an inert “slag”. The 
photoactivity of LGs can pose a significant danger to the RPE cells. Fluorescence characteristics of LGs are a tool to detect 
early stages of degeneration in the retina and RPE.
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Introduction

Lipofuscin granules, or age pigment, are accumulated with 
aging in retinal pigment epithelium (RPE) cells of human 
eye and remain there to the end of life, occupying up to 20% 
of cell cytoplasmic volume (Feeney–Burns et al. 1984; Jung 
et al. 2077; Yin 1996). The mechanism of LG formation is 
related to the physiological functions of the retina and RPE.

The retina is the light-sensitive tissue of the eye (Fig. 1a). 
It consists of several layers of neurons interconnected by 
synapses (Fig. 1b). The primary light-sensing cells in the 
retina are the photoreceptor cells, rods and cones. The RPE is 
the pigmented single-cell layer just outside the retina, firmly 
attached to the underlying choroid and is in close contact 

with the photoreceptor cells (Fig. 1b, c). The RPE has several 
crucial functions for vision, namely, scattered light absorp-
tion, epithelial transport, spatial ion buffering, visual cycle, 
phagocytosis of photoreceptor outer segment membranes, 
secretion and immune modulation (Strauss 2005).

With exposure to light during rhodopsin photolysis, 
retinoid side products can be produced in photoreceptor 
cells. Biogenesis of these products occurs when two mol-
ecules of all-trans retinal condense with one molecule of 
phosphatidylethanolamine (Fig. 2) in the photoreceptor 
membrane (Wolf 2003). Evolution has developed a power-
ful mechanism that prevents the accumulation of retinoid 
side products in terminally differentiated photoreceptor 
cells (Young 1967). Throughout life, the debris of the pho-
toreceptor outer segment apical part, are phagocytized and 
digested by the RPE cells, while new photoreceptor discs 
with rhodopsin molecules are synthesized by the pho-
toreceptor inner segments (Kennedy et al. 1995). How-
ever, the lysosomal enzyme system of the RPE cell is not 
effective in degrading of the photoreceptor outer segment 
debris, because the latter are supposed to contain modified 
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retinoid side products of rhodopsin photolysis as well as 
modified lipids and proteins. In other words, the lysoso-
mal enzyme system of the RPE cell cannot recognize such 
modified molecules and do not digest them (Feeney 1973). 
As a consequence, lipofuscin granules (LGs), containing 
retinoid derivatives, are formed in the RPE cells (Fig. 1c).

LGs have been long believed to be just a cell metabo-
lism by-product. It turned, however, that they are photo-
chemically active. As we have shown in the early 1990s, 
LGs can generate oxygen reactive species (ROS) upon 
photoexcitation with visible light, which account for their 
phototoxicity (Boulton et al. 1993). The main photo-induc-
ible generators of ROS in LGs are retinoid side products. 
The features of these compounds, such as photosensitizing, 
have been studied in detail (Boulton et al. 1993; Sparrow 
et al. 2000; Rozanowska et al. 1995, 1998, 2005; Avalle 
et al. 2005). There is the correlation between LG accumu-
lation in the RPE cells and development of degenerative 
retinal diseases, including such a severe and widespread 
retinopathy as age-related macular degeneration AMD 
(Holz et al. 2004; Katz 2002; Sparrow and Boulton 2005).

Fig. 1  Scheme of ocular exposure to light (a), the retina and retinal pigment epithelium (RPE) (b), and RPE cell containing LGs (c). Figure was 
modified from Yakovleva et al. (2022b)

Fig. 2  Scheme of N-retinyl-N-retinylidenethanolamine (A2E) for-
mation. ATR — all-trans retinal; PE —phosphatidylethanolamine; 
APE — N-retinylidenephosphatidylethanolamine; A2PE — N-retinyl-
N-retinylidenephosphatidylethanolamine
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LGs are heterogeneous, composed of mixtures of pro-
teins and lipids, including more than 21 different fluo-
rescent compounds (Warburton et al. 2005; Bazan et al. 
1990; Eldred and Katz 1988; Ng et al. 2008; Sparrow et al. 
2009). The structure and fluorescence properties of LGs 
were analyzed by atomic force microscopy (AFM) and 
near-field microscopy (Yakovleva et al. 2016; Petrukhin 
et al. 2005; Warburton et al. 2005; Clancy et al. 2000). 
Figure 3a shows an image of aggregated LGs. Single LGs 
were found to be approximately 0.7–1.0 μm in diameter, 
with a fairly uniform density. Figure 3b shows the fluores-
cence emission spectra of aggregated LGs, as determined 
by near-field microscopy, at the two points marked on 
Fig. 3a. The LG fluorescence emission spectrum 1 at point 
1 (Fig. 3a) is broad and has several emission maxima, 
ranging approximately from 570 to 625 nm, that corre-
lates with the fluorescence properties of LGs in suspension 
(Feldman et al. 2015; Boulton et al. 1990; Haralampus-
Grynaviski et al. 2003).

Major sources of LG fluorescence are retinoid side 
products (Kennedy et al. 1995; Sparrow et al. 2012). They 
are bisretinoids (BisRets) and their oxidation and degra-
dation derivatives (BisRets-OX) (Lamb and Simon 2004; 
Sakai et al. 1996; Sparrow et al. 2008, 2012; Wang et al. 
2006a, b; Wu et al. 2010; Kim et al. 2007; Feldman et al. 
2015). N-retinyl-N-retinylidenethanolamine (A2E) (Fig. 2) 
is the most widely studied BisRet (Lamb and Simon 2004; 
Sakai et al. 1996; Sparrow et al. 2008).

LGs exhibit distinct fluorescence in the visible region. 
Based on its measurement, fundus autofluorescence (AF) 
imaging is a modern noninvasive diagnostic method for 
revealing age-related base changes and degenerative reti-
nal and RPE pathology. AF allows assessment of the con-
dition, integrity and viability of the photoreceptor/RPE 
complex (Schmitz-Valckenberg et al. 2007).

This review considers the phototoxic properties of 
BisRets in LGs, as well as the cytotoxic properties of the 

BisRets-OX. The review also examines the fluorescent 
properties of LGs in health and disease for the use of this 
knowledge in expanding the capabilities of the fundus AF 
method for diagnosing degenerative diseases of the retina 
and RPE.

Phototoxic properties of LGs in the RPE cell

It is well known that LGs in the RPE cells under the influ-
ence of visible light stimulate the oxidation of both lipids 
(Yin 1996; Wassel et al. 1999; Dontsov et al. 1999; Dont-
sov et al. 2005; Dontsov et al. 2012; Nowak 2013) and pro-
teins (Wassell et al., 1999; Rozanowska et al., 2002; Wiktor 
et al., 2018). This is due to the ability of LGs to produce 
ROS under the action of visible light (Boulton et al. 1993; 
Rozanowska et al. 1995, 1998, 2002). LGs most effectively 
photogenerate ROS in the blue-green region of the spec-
trum (400–520 nm) (Boulton et al. 1993, 2004; Dontsov 
et al. 2012). Figure 4 demonstrates data on oxidation of 
4,7,10,13,16,19-docosahexaenoic acid (DHA) induced by 
blue-green light irradiation and sensitized with LG and mel-
anolipofuscin granules from human RPE cells. Both types 
of granules containing lipofuscin stimulated DHA peroxida-
tion, but LGs were more active in this respect.

The ROS generation by LGs in the RPE under the action 
of blue light can explain the “blue light hazard” phenom-
enon for the retina (Rozanowska et al. 1995; Boulton et al. 
2004). It has been shown, for example, that in the RPE cells 
loaded with LGs in vitro and irradiated with blue-green 
light, there is a significant increase in lipid and protein oxi-
dation, accompanied by such morphological changes as loss 
of lysosome integrity (Brunk et al. 1995; Nilsson et al. 2003; 
Sparrow and Boulton 2005; Shamsi and Boulton 2001), 
damage to the cell membrane and increased vacuolization 
of the cytoplasm compared to the RPE cells irradiated with 
long-wavelength (> 550 nm) light (Boulton 2001). LGs in 

Fig. 3  Atomic force microscopy 
(AFM) image of aggregated 
LGs on a cover slip (a) and 
near-field microscopy analysis 
of the fluorescence emission 
spectra (b). The excitation 
wavelength was 420 nm. Emis-
sion spectrum 1 was recorded 
from point 1 (a) and corre-
sponded to the aggregated LGs, 
whereas emission spectrum 2 
was recorded from point 2 (a) 
and corresponded to the part 
of the slide glass without LGs. 
OZ represents the height (μm) 
of the sample (Yakovleva et al. 
2016)
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the RPE are also capable of photogeneration of singlet oxy-
gen, the efficiency of which decreases monotonically with 
increasing wavelength of excitation light (Rozanowska, et al. 
1998, 2004; Avalle et al. 2005).

The phototoxicity of LGs is associated with the presence 
in them of bisretinoid fluorophores that absorb light in the 
blue region of the spectrum. One of the main LG bisreti-
noids, A2E, has been shown to be localized not only in LGs, 
but also in other RPE cell compartments. Although the main 
amount of A2E is found mainly in lysosomes (Eldred and 
Lasky 1993; Sparrow et al. 1999; Holz et al. 1999; Schutt 
et al. 2007), but to a lesser extent, A2E accumulates in the 
mitochondria, Golgi apparatus, and cytoplasmic membrane 
(Schutt et al. 2007). The amount of A2E in the RPE cells 
in vivo can reach 800 pmol/eye (Parish et al. 1998). This 
level of BisRets in the RPE cells can be obtained in vitro by 
incubating cells with 15–30 μM A2E (Sparrow et al. 1999; 
Roberts et al. 2002; Lakkaraju et al. 2007). The RPE cells 
from donors older than 50 years have significantly higher 
concentration of A2E (2–3 times more) compared to young 
donors (Bhosale et al. 2009). Due to chemical structure, 
A2E can exhibit dark toxicity, acting as an amphiphilic 
detergent capable of destroying phospholipid membranes 
(Eldred and Lasky 1993; De and Sakmar 2002; Lakkaraju 
et al. 2007; Sokolov et al. 2007; Dontsov et al. 2012) and 
induce cell apoptosis in the dark (Suter et al. 2000). A2E 
exposed to blue light sensitizes lipid peroxidation (Dontsov 

et al. 2005, 2012, 2016), causes destruction of lysosomal 
membranes (Schutt et al. 2000a, b), and inhibits mitochon-
drial cytochrome oxidase (Suter et al. 2000). The mechanism 
of the phototoxic action of A2E is associated with its ability 
to photoproduce ROS. It is known that A2E can photogen-
erate superoxide radicals (Pawlak et al. 2002, 2003; Gail-
lard et al. 2004; Broniec et al. 2005) and singlet oxygen 
(Ragauskaite et al. 2001; Cantrell et al. 2001; Pawlak et al. 
2003). However, the efficiency of these processes is not very 
high compared to other RPE chromophores (all-trans retinal, 
protoporphyrins) (Bynoe et al. 1998; Pawlak et al. 2003; 
Maeda et al. 2009; Wielgus et al. 2010). Moreover, A2E 
is a much less potent sensitizer than LGs in the RPE cells 
(Rozanowska et al. 1998; Pawlak et al. 2002; Boulton et al. 
2004; Dontsov et al. 2005). Apparently, the higher photo-
sensitizing activity of LGs is associated with the presence 
of other photoreactive substances in them.

A2E in the presence of oxygen is easily oxidized by irra-
diation with the formation of numerous oxidation products 
(see below). Photobleached A2E loses its ability to enhance 
photoinduced lipid peroxidation (Fig. 5).

Figure 5 demonstrates that non-irradiated A2E is a much 
more effective sensitizer of photooxidation of the outer seg-
ments of photoreceptor cells than photobleached A2E. As is 
known, in the RPE cells, in addition to lipofuscin-containing 
granules, there are melanin-containing organelles — mela-
nosomes. If the former exhibit photosensitizing properties, 
enhancing the production of ROS when exposed to blue 
light, then melanosomes, on the contrary, serve to protect 

Fig. 4  DHA (4,7,10,13,16,19-docosahexaenoic acid) peroxida-
tion produced by photoactivation of lipofuscin and melanolipofus-
cin RPE pigment granules. The argon ion laser was used to gener-
ate blue-green light (488.1 nm and 514.5 nm; granule concentration 
was 1.5 × 10.7 granules/mL). Figure was modified from Dontsov et al. 
(1999)

Fig. 5  Photoinduced peroxidation of bovine photoreceptor outer 
segments (POS) with non-irradiated and pre-irradiated bisretinoid 
A2E. TBA (thiobarbituric acid) — active products. The concentra-
tion of A2E was 100 µM. The samples were irradiated with visible 
light (390–700 nm) with an energy of 100 mW/  cm2. Photobleached 
A2E was prepared by irradiating the original bisretinoid with an LED 
source (wavelength 450 nm) for 60 min. Concentration of POS was 
0.2  mg of rhodopsin per 1  mL. Figure was modified from Dontsov 
et al. (2012)
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the RPE cells from the damaging effects of light and ROS 
(Ostrovsky et al. 1987; Wang et al. 2006a, b; Ostrovsky and 
Dontsov 2019). Age-related changes occurring in the RPE 
cells contribute to the enhancement of photooxidative pro-
cesses induced by LGs. This is mainly due to an increase in 
the number of lipofuscin-containing granules in the RPE 
cell, as well as a significant drop in the concentration of 
melanin (Feeney–Burns et al. 1984, 1990; Sarna et al. 2003; 
Yacout et al. 2019). This leads to weakening of the protec-
tive effect of melanin, which includes screening of photo-
sensitive cell structures from excess light (Ostrovsky et al. 
2018), antioxidant and antiradical protection (Ostrovsky 
et al. 1987; Wang et al. 2006a, b; Ostrovsky and Dontsov 
2019), as well as the binding of BisRets into inactive com-
plexes (Dontsov et al. 2013; Sakina et al. 2013). A decrease 
in the effectiveness of antioxidant protection of melanin in 
the RPE cells with age is apparently associated with its pho-
tooxidative destruction in melanolipofuscin granules under 
the action of superoxide radicals and the formation of deg-
radation products that do not have antioxidant activity and, 
on the contrary, exhibit prooxidant properties (Zareba et al. 
2006; Dontsov et al. 2017; Mahendra et al. 2020; Olchawa 
et al. 2021).

Cytotoxic properties of LGs in the RPE cell

In the presence of oxygen, LG BisRets themselves can be 
photo-oxidized to form various products, consisting primar-
ily of epoxides, peroxides, aldehydes, and ketones, which 
are potentially cytotoxic (Wu et al. 2010; Ben-Shabat et al. 
2002; Feldman et al. 2015; Sparrow et al. 2012; Yakovleva 
et al. 2006; Dontsov et al. 2009; Yoon et al. 2012). The cyto-
toxic properties of BisRets-OX in LGs have not been fully 
investigated. The role of these compounds in pathological 
processes of the RPE remains controversial. Some studies 
have suggested that highly reactive cytotoxic carbonyl com-
pounds, aldehydes and ketones, are formed during photo-
oxidation of BisRets in LGs (Schütt et al. 2000; Sparrow 
et al. 2000; Wang et al. 2006a, b). By contrast, other studies 
(Murdaugh et al. 2010, 2011) suggest that BisRet-OX inter-
acts with itself or with A2E, forming products with a higher 
molecular weight inside LGs. Most of these compounds are 
also hydrophobic and remain inside LGs, resulting in the 
concomitant diminution of its reactivity in vivo. Clarifying 
the roles of BisRets-OX is important to delineate the mecha-
nisms of pathological ocular diseases, especially AMD.

Our prior findings have demonstrated that LG BisRet-
OX content is higher in AMD eyes than in normal eyes, 
which was indicated by changes in the characteristics of 
LG fluorescence spectra and in the parameters of fluores-
cence decay kinetic curves (Feldman et al. 2018). Spe-
cifically, the fluorescence excitation at 488 nm of samples 

from eyes with AMD increases the fluorescence intensity 
of the band at 556 nm, and the contribution of BisRets-OX 
to total fluorescence increases. However, the pathophysi-
ological, or protective, properties of these products remain 
controversial, as prior studies have suggested conflicting 
roles (Murdaugh et al. 2010, 2011), and as BisRets-OX 
could also potentially become a neutral product eventually. 
Investigating the potential release of BisRets-OX from 
LGs into the RPE cell cytoplasm and the assessment of 
their toxicity to cellular structures is thus fundamental to 
understanding the pathogenesis of retinal diseases.

The chemical characteristics of BisRets-OX in LGs, which 
were obtained from healthy donor eyes, have been studied 
(Yakovleva et al. 2022a). Raman spectroscopy and Time-
of-Flight secondary ion mass spectrometry (ToF–SIMS) 
analysis identified the presence of free-state aldehydes and 
ketones within LGs (Fig. 6). It has been shown, that these 
substances are formed as a result of Bis-Ret photooxidation 
and can accumulate in LGs. This is consistent with prior find-
ings (Wu et al. 2010; Wang et al. 2006a, b).

Together, fluorescence spectroscopy, high-performance 
liquid chromatography, and mass spectrometry revealed that 
BisRets-OX have both hydrophilic and amphiphilic proper-
ties, allowing their diffusion through LG membrane into the 
RPE cell cytoplasm (Yakovleva et al. 2022a). These products 
contain cytotoxic carbonyls, which are thiobarbituric acid 
(TBA)-active products (Fig. 7).

There are a number of works (Schutt et al. 2003; Ye et al. 
2016; Hyttinen et al. 2018; Rózanowska and Rózanowski 
2022) where it was shown that the source of TBA-active 
products in LGs is lipid peroxidation end-products i.e., 
highly reactive electrophilic aldehydes like malondialdehyde 
(MDA) and 4-hydroxynonenal (HNE). Some recent studies 
have shown that LG BisRets are involved in the development 
of photoinduced glycative stress, not only in RPE tissue, but 
also in adjacent tissues, in particular, in Bruch’s membrane 
(Zhou et al. 2015; Thao et al. 2014). It was suggested that 
the development of glycative stress in the RPE cells is largely 
associated with the photooxidative destruction of LG Bis-
Rets, leading to the formation of water-soluble reactive car-
bonyls which are extremely cytotoxic molecules (Schleicher 
et al. 2001). They are assumed to be the main precursors of 
advanced glycation end products (AGEs) formation (Rowan 
et al. 2018; Lin et al. 2016) and can be formed by direct oxi-
dative decay of BisRets (Kim et al. 2021). In our work (Dont-
sov et al. 2022), we have shown that water-soluble carbonyl 
compounds formed during A2E photooxidation cause modi-
fication of serum albumin and hemoglobin. The antiglycation 
agent, aminoguanidine, has inhibited the process of protein 
modification. It is assumed that these carbonyl products can 
initiate the inflammatory processes in the retina and RPE.

It should be noted that BisRets-OX can be formed not 
only during BisRet photo-oxidation, but also during the 
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oxidative destruction of BisRets in the dark via non-lipo-
fuscin ROS (Yakovleva et al. 2022a, b). Thus, a significant 
change in the fluorescent properties of retinoids in the retina 
and RPE from mouse eye exposed to ionizing radiation (IR) 
was detected (Yakovleva et al. 2022b). Such changes occur 
when retinoids are oxidized, suggesting that IR induce oxida-
tion and degradation of retinoids, similar to photo-oxidation 

of BisRets in the human RPE (Feldman et al. 2015, 2018). 
However, in the case of IR, in the absence of light, the source 
of ROS is different. For example, these can be ROS-gen-
erated by mitochondria, caused by IR, or water radiolysis 
(Kobashigawa et al. 2011; Azzam et al. 2012; Belli and 
Indovina 2020). Thus, LGs can have a damaging effect on 
the RPE cell through the BisRets-OX formation. Therefore, 

Fig. 6  a Averaged Raman spectra for LG suspensions before (solid 
line) and after (dotted line) visible light irradiation for 100 min. Three 
independent experiments were conducted. In each experiment, 25 
spectra were obtained (p < 0.05). (b) ToF–SIMS analysis of LG sus-
pensions before irradiation (1) and after visible light irradiation for 2 
(2), 10 (3), 40 (4), 100 (5), and 160 (6) min. On the abscissa axis, the 

numbers correspond to the mass of positive fragment ions, contain-
ing carbonyl groups (29: CHO + ; 43: C2H3O + ; 60: C2H4O2 + ; 69: 
C4H5O +). On the ordinate axis, the relative intensities of the cor-
responding positive fragment ions are plotted as relative units. Data 
are presented as means ± SD from nine independent experiments. * 
p < 0.01 (Yakovleva et al. 2022a)

Fig. 7  a Concentrations of TBA-active products in samples of the 
supernatants from the original LG suspension (1), LG suspension 
irradiated with visible light for 60 min (2), or LG suspension oxidized 
by superoxide radicals (3). (b) Fluorescence spectra of the superna-
tants (the spectrum numbers correspond to the sample numbers in 

panel A). The fluorescence excitation wavelength was 365  nm. (c) 
Supernatant content of TBA-active products from LG suspension 
irradiated with visible light for 90  min (1), and in the aqueous (2) 
and chloroform (3) fractions. Data are presented as means ± SD from 
three independent experiments. * p < 0.05 (Yakovleva et al. 2022a)
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BisRets-OX are a likely aggravating factor in the progression 
of various senile eye pathologies.

The RPE cells are constantly exposed to (photo)oxidative 
stress. This is facilitated by high oxygen consumption and 
prolonged exposure to light (Beatty et al. 2000). An important 
factor contributing to the increase in oxidative stress in the 
RPE cells is the progressive age-related accumulation of LGs 
(Feeney–Burns et al. 1984; Wing et al. 1978; Delori et al. 
2001) and a decrease in the content of melanosomes (Schmidt 
and Peisch 1986; Sarna et al. 2003; Dontsov et al. 2017; 
Yacout et al. 2019). These processes lead to the appearance 
of damaged and modified cellular proteins, lipids, and DNA 
(Kohen and Nyska 2002). Oxidative stress and inflammation 
are of great importance in the development of degenerative 
processes in the RPE cells. So, it is believed that oxidative 
stress plays a central role in the development of AMD (Beatty 
et al. 2000; Datta et al. 2017; Abokyi et al. 2020; Ruan et al. 
2021). It has been shown that in the RPE cells from donor eyes 
with AMD, compared with normal eyes, there are increased 
levels of TBA-active products, protein carbonyls (Totan et al. 
2009), a high content of carboxyethylpyrrole in Bruch’s mem-
brane (Crabb et al. 2002; Lu et al. 2009), as well as oxida-
tive damage and dysfunction of mitochondria (Terluk et al. 
2015; Blasiak et al. 2013; Golestaneh et al. 2018). Also, in 
AMD, the accumulation of damaged proteins and disruption 
of the autophagy process are noted (Mitter et al. 2014). The 
modified and damaged proteins formed as a result of oxidative 
stress, which are incapable of repair by heat shock proteins, 
are directed to the proteasome for purification. However, if the 
activity of the proteasome is reduced (Zhang et al. 2008; Fer-
nandes et al. 2008), proteins aggregate and can be degraded 
by autophagy (Fig. 8).

Autophagy is also used by the RPE cells to digest dam-
aged mitochondria (mitophagy). A decrease in the activity 
of lysosomal enzymes as a result of oxidative stress (Brunk 
et al. 1995; Nilsson et al. 2003; Sparrow and Boulton 2005) 
leads to inhibition of the autophagy process. ROS also 
destroy the integration relationship with proteasomes and 
autophagy, which ultimately leads to increased accumulation 
of toxic aggregates, development of chronic inflammation, 
activation of the complement system, formation of extracel-
lular drusen, and death of the RPE cells (Kinnunen et al. 
2012; Ferrington et al. 2016; Moreno-García et al. 2018).

Fluorescence characteristics of LGs as a tool 
to detect early stages of degeneration 
in the retina and RPE

LGs exhibit distinct fluorescence in the visible region. 
BisRets and BisRets-OX are major sources of LG fluo-
rescence. Fundus autofluorescence (FAF) imaging is a 
noninvasive, prospective diagnostic method based on the 

detection of LG fluorescence in the RPE cells (Von Ruck-
mann et al. 1997; Holz et al. 2007; Sparrow et al. 2010a, b). 
FAF is excited by a wavelength of 488 nm, yielding mono-
chromatic images in the long-wavelength region, starting 
at 500 nm, resulting from the fluorescence of BisRets and 
BisRets-OX. FAF can detect early phenotypic changes 
in RPE, occurring prior to the progression of disease. 
Analysis of FAF patterns can provide detailed qualitative 
information that allows the detection of areas of pathol-
ogy, thereby differentiating among different types of ocular 
disease. At present, however, it is not possible to quantify 
the detected changes. The degree of disease progression 
must be assessed subjectively by an expert, who compares 
patterns with those of normal eyes.

Efforts are underway to expand the capabilities of this 
diagnostic method, based on knowledge about the spectral 
characteristics of LG fluorophores. Increased blue-green 
autofluorescence of the Bruch’s membrane, relative to the 
yellow-orange autofluorescence of RPE-associated lipo-
fuscin, is associated with AMD (Marmorstein et al. 2002). 
In addition, with the use of fluorescence lifetime imag-
ing ophthalmoscopy (FLIO) in vivo, healthy eyes were 
shown to exhibit different patterns than those of AMD 
eyes (Sauer et al. 2018a, b, c; Schweitzer et al. 2009). Spe-
cific patterns were also detected for retinitis pigmentosa 
(Andersen et al. 2018; Dysli et al. 2018), Stargardt disease 
(Dysli et al. 2016), macular telangiectasia type 2 (MacTel) 
(Sauer et al. 2018a, b, c), and other diseases (Sauer et al. 
2018a, b, c). Changes from normal fluorescence param-
eters have also been observed in the eyes of patients with 
diabetes (Schweitzer et al. 2015) and Alzheimer’s disease 
(Jentsch et al. 2014; Sadda et al. 2019). However, it should 
be noted that none of these publications have explained 
the nature or underlying mechanism of these differences. 
Nevertheless, these findings, especially in AMD, were 
confirmed by experimental research, which has demon-
strated that the quantitative and qualitative properties of 
LG fluorophores change during pathologic development 
(Feldman et al. 2015, 2018; Wu et al. 2010).

The main drawback of these experimental studies is the 
inability to analyze LG fluorophore composition in vivo, 
as more than 20 fluorophores, bisretinoids, and their deriv-
atives have been identified to date. Nevertheless, one of 
the main objectives of in vivo FAF and FLIO methods is 
to determine differences in the fluorescence characteristics 
of the fundus between individuals with ocular pathology 
and those with healthy eyes.

Recently, we have shown that the content of BisRets-OX 
increases with the development of AMD (Feldman et al. 
2018). Because, the fluorescence can show the accumula-
tion of BisRets-OX in LGs, therefore BisRets-OX may be 
an indicator of AMD progression. Changes in the quantita-
tive and qualitative composition of fluorophores and their 
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spectral characteristics are determined only by the presence 
or absence of pathological changes in the RPE, but are inde-
pendent of age. These patterns have characteristic and repro-
ducible features that can be used as diagnostic indicators of 
visual pathology (Fig. 9a).

Moreover, the fluorescence lifetimes were measured by 
picosecond-resolved time correlated single photon count-
ing technique (Feldman et al. 2018; Yakovleva et al. 2020) 
(Fig. 9b). It was shown that BisRets-OX exhibited a longer 
fluorescence lifetime (average value approximately 6 ns) 
and a shorter wavelength maximum (530–580 nm). Further, 
these products significantly contributed (more than 30%) to 
total fluorescence compared to the other fluorophores in 
LGs. Thus, the contribution of BisRets-OX to autofluores-
cence decay kinetics is an important characteristic for fluo-
rescence lifetime imaging microscopy data analysis (Feld-
man et al. 2018; Yakovleva et al. 2020).

Based on the data obtained, we can deduce that the spe-
cific pattern observed in AMD eyes in vivo using FLIO 
could be due to accumulation of BisRets-OX in LGs (Sauer 
et al. 2018a, b, c; Schweitzer et al. 2009). Thus, we sug-
gest this as an additional approach to expand the diagnostic 
capabilities of the FLIO method. Instead of using the aver-
aged fluorescence lifetimes for different eye tissues with 
fluorescence excitation at 468 nm (Schweitzer et al. 2007), 
we propose to focus only on LG fluorophores from the RPE 
with fluorescence excitation at 488 nm (similar to the FAF 
method) in order to determine the contribution of BisRets-
OX to total fluorescence or determine the averaged fluores-
cence lifetime, because the higher BisRet-OX content in 
the RPE from AMD eyes increased the average fluorescence 
lifetime (Feldman et al. 2018; Yakovleva et al. 2020).

Earlier, we have shown that LG BisRets can be oxi-
dized not only in the presence of light, but also by ROS of 

Fig. 8  Schematic illustration 
of LG role in the development 
of photooxidative stress in the 
RPE cell
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a non-lipofuscin nature (Yakovleva et al. 2022a, b). In other 
words, the spectral properties of LG fluorophores can be 
markers of oxidative stress which can initiate degenerative 
processes in the retina and RPE. Thus, our findings contrib-
ute to progress in the creation of rapid testing of the oxida-
tive stress development in living organisms, and contribute 
to development of a predictive criterion for increased AMD 
risk in future.

Thus, there is a possibility to improve the FAF and 
FLIO techniques to obtain additional information from the 
total fluorescence patterns. Quantitative determination of 
increases in BisRets-OX in LGs may be used to establish 
quantitative diagnostic criteria for degenerative processes in 
the retina and RPE even in the absence of visible manifesta-
tion of the disease.

Conclusion

Lipofuscin was discovered by Virchow R. as early as 1847, 
and the term “lipofuscin” itself has been used since 1912. 
Earlier, lipofuscin was traditionally referred to as intracellu-
lar and inert “slag” as a marker of aging. It is known that the 
progressive accumulation of lipofuscin can somehow lead 

to pathology and accelerate the aging process. However, the 
mechanism of pathogenetic action of lipofuscin remained 
unknown until recently.

The nature of the lipofuscin accumulation in cells is asso-
ciated with the destruction of cell organelles that have not 
been utilized by lysosomes. In the case of the RPE, these 
are mainly nondigested fragments of phagocytosed outer 
segments of photoreceptors. The accumulation of LGs is 
explained by the absence of enzymes in the cell that can 
degrade it. So far, there are no effective ways to both slow 
down the LG accumulation in the cell and remove it from 
the cell. Despite some encouraging experimental results on 
the removal of LGs from RPE cells, they have not reached 
clinical use.

Significant interest in the pathogenetic role of lipofuscin 
arose in the early nineties after we discovered the photoac-
tivity of lipofuscin granules isolated from human cadaver 
eyes (Ostrovsky et al. 1992; Boulton et al. 1993). It turned 
out that LGs are not an inert “slag”, but extracellular struc-
tures capable of ROS generating under the action of visible 
light.

Approximately, at the same time and later, active develop-
ment and improvement of optical methods for recording fun-
dus autofluorescence began. It was about short-wavelength 

Fig. 9  a Comparative statistical analysis of spectral characteristics 
of the RPE cell suspensions from cadaver eyes without (Norm) and 
with (Pathology) signs of AMD. Fluorescence spectra were aver-
aged for 19 normal eyes (from donors aged 27–74 years), and for 12 
AMD eyes (from donors aged 59–88  years). The excitation wave-
length was 488 nm, with emission spectra normalized at 592 nm. (b) 
Fluorescence decay kinetic curves (normalized) of LG fluorophores 

of the RPE cells from human cadaver eyes. The samples of the RPE 
cell suspensions were from normal eyes (Norm) from a 74-year-
old donor, and the other from eyes with AMD (Pathology) from a 
75-year-old donor. Fluorescence was excited at 485 nm (pulse dura-
tion, 30 ps), and kinetic curves were recorded at 540 nm. Figure was 
modified from Feldman et al. (2018)
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autofluorescence as a non-invasive diagnostic method for 
detecting LGs, a by-product of the visual cycle, which accu-
mulates in the RPE cells with age or disease.

Over the past decades, we have conducted research both 
in the direction of the action of light on LGs, and in the 
direction of changes in the spectral characteristics of the LGs 
fluorescence in pathology and under the action of ionizing 
radiation. The results of these studies significantly expanded 
our understanding of both the photoactivity and fluorescence 
of LGs and the fluorophores (bisretinoids) contained in 
them. The main results of these studies are as follows.

First, our studies of the structure and fluorescence proper-
ties of LGs by AFM and near-field microscopy revealed the 
fluorescent heterogeneity of LGs. This means that twenty or 
more LG fluorophores are unevenly distributed in the gran-
ule. It would of course be interesting to compare this dis-
tribution in non-photooxidized (normal) and photooxidized 
(pathological) LGs.

Secondly, our study of the phototoxicity of LGs which are 
photo-inducible generators of ROS, showed the following. 
LGs and melanolipofuscin granules of human RPE cells are 
capable of photoinduced oxidation of lipids. At the same 
time, LGs are more active than melanolipofuscin granules. 
Another rather unexpected result is that A2E, as the main 
fluorophore (BisRet) of LGs capable of photogeneration of 
ROS, was much less active as an oxidation photosensitizer 
than other fluorophores (BisRets) of LGs. In this regard, it 
would be important to establish which BisRet or group of 
BisRet fluorophores represent the greatest danger in terms 
of phototoxicity. Fundamentally important for understand-
ing the mechanisms of LG phototoxicity is the fact that 
BisRets-OX pose a much greater danger to the cell than, 
non-oxidized products. Moreover, the BisRets-OX formed 
in the dark as a result of BisRet oxidative degradation also 
have significant toxicity for the cell.

Thirdly, our studies of the fluorescent properties of LGs 
and their fluorophores (BisRets and BisRets-OX) showed 
for the first time that their spectral characteristics change, 
namely, they shift to the short-wavelength region, in 
pathology (AMD) and after exposure to ionizing radiation 
(gamma-rays and protons).

It is important to emphasize the promise of recording not 
only changes in the spectra, but also the decay kinetics of 
FAF for the early diagnosis of degenerative diseases of the 
retina. These changes are associated precisely with the for-
mation and accumulation of LG BisRets-OX. In other words, 
by recording the fluorescence decay kinetics of oxidized 
products of LG BisRets-OX, it is possible to significantly 
improve the methods of early diagnosis of degenerative dis-
eases, primarily AMD.

Thus, there is no need to talk about any inertness of 
lipofuscin (“aging pigment”) as an inert “slag”. The pho-
toactivity of lipofuscin can pose a significant danger to 

the RPE cells. Based on this, it is necessary to observe the 
well-known light hygiene measures for the senile and dis-
eased eye (sunglasses, colored intraocular lenses, etc.). The 
search for pharmacological agents that prevent the toxicity 
of LG fluorophores (BisRets)  and their oxidation products is 
extremely relevant. It would also be very important to find a 
drug capable of delaying the formation of LGs into the cells 
or removing (destroying) LGs from the cell.
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