
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12551-021-00925-3

REVIEW

Aquaporin ion conductance properties defined by membrane 
environment, protein structure, and cell physiology

Sam W. Henderson1  · Saeed Nourmohammadi1  · Sunita A. Ramesh2  · Andrea J. Yool1 

Received: 22 October 2021 / Accepted: 9 December 2021 
© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Aquaporins (AQPs) are multifunctional transmembrane channel proteins permeable to water and an expanding array of 
solutes. AQP-mediated ion channel activity was first observed when purified AQP0 from bovine lens was incorporated 
into lipid bilayers. Electrophysiological properties of ion-conducting AQPs since discovered in plants, invertebrates, and 
mammals have been assessed using native, reconstituted, and heterologously expressed channels. Accumulating evidence 
is defining amino acid residues that govern differential solute permeability through intrasubunit and central pores of AQP 
tetramers. Rings of charged and hydrophobic residues around pores influence AQP selectivity, and are candidates for further 
work to define motifs that distinguish ion conduction capability, versus strict water and glycerol permeability. Similarities 
between AQP ion channels thus far include large single channel conductances and long open times, but differences in ionic 
selectivity, permeability to divalent cations, and mechanisms of gating (e.g., by voltage, pH, and cyclic nucleotides) are 
unique to subtypes. Effects of lipid environments in modulating parameters such as single channel amplitude could explain 
in part the variations in AQP ion channel properties observed across preparations. Physiological roles of the ion-conducting 
AQP classes span diverse processes including regulation of cell motility, organellar pH, neural development, signaling, 
and nutrient acquisition. Advances in computational methods can generate testable predictions of AQP structure–function 
relationships, which combined with innovative high-throughput assays could revolutionize the field in defining essential 
properties of ion-conducting AQPs, discovering new AQP ion channels, and understanding the effects of AQP interactions 
with proteins, signaling cascades, and membrane lipids.
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Introduction

Aquaporins (AQPs) are multifunctional proteins known for 
their capacity to facilitate water flux across cell membranes. 
They are governed by a diverse array of physiologically rel-
evant control mechanisms, including phosphorylation, pH, 
 Ca2+ and osmotic gradients (Tyerman et al. 2021). In addi-
tion to facilitating water flux, AQPs across phyla have an 
unexpected breadth of roles in transporting gases such as 
carbon dioxide  (C02) and oxygen  (02); ions such as sodium 
 (Na+), potassium  (K+) and chloride  (Cl–); signaling agents 

such as hydrogen peroxide  (H2O2), purines and pyrimidines; 
metabolites and nutrients including glycine, lactic acid, urea, 
ammonia  (NH3), glycerol, polyols and more, contributing 
much more than simple water permeation to cells and tis-
sues (Conde et al. 2010; Hachez and Chaumont 2010; Wag-
ner et al. 2021; Ishibashi et al. 1994; Hara-Chikuma et al. 
2015; Bienert et al. 2008; Jahn et al. 2004; Uehlein et al. 
2003). Preceding the first discovery that AQPs mediated 
transmembrane water permeability (Preston et al. 1992), 
the bovine (Bos taurus) Major Intrinsic Protein of lens fiber 
26 (MIP26, now classified as AQP0), was shown to con-
duct ions using black lipid membrane (BLM) bilayer elec-
trophysiological techniques (Ehring et al. 1990; Shen et al. 
1991; Zampighi et al. 1985). Since then, more subtypes of 
AQPs have been identified as either anion or cation perme-
able channels, including two classes from human, one from 
Drosophila melanogaster and four from plants. Emerging 
evidence supports the physiological relevance of AQP ion 
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channel functions in motility, volume regulation, and adap-
tive responses to environmental stimuli. In silico and micro-
organism-based approaches are promising tools that could be 
used for characterizing AQP ion channel activity that, with 
electrophysiological approaches, could help address remain-
ing knowledge gaps of AQP-mediated ion channel function.

AQP ion channel activity in native, 
heterologous and recombinant expression 
systems

Ion conduction properties are evident from published stud-
ies of AQP channels across different phyla, with continuing 
work beginning to identify the structural components that 
regulate ion conduction through AQP monomeric and tetra-
meric pores. Three of the classes of ion-conducting AQPs 
have been tested in bilayers as well as expression systems; 
these are described below, summarizing ion selectivity, 
mechanisms of activation, and regulation of function.

1. Major intrinsic protein of lens tissue (MIP)

Bovine MIP (MIP26, referred to here as BtAQP0) was 
the first cloned mammalian AQP (Gorin et al. 1984), later 
redesignated AQP0 (Agre et  al. 1993). AQP0 is highly 
expressed in ocular lens fibre cells, and was initially con-
sidered to be a gap junction protein, not a water channel. 
Cloned BtAQP0 cDNA was predicted to encode a 26 kDa 
protein comprising six transmembrane segments that formed 
a channel-like pore (Gorin et al. 1984), features later con-
firmed as ubiquitous across the AQP family. Ion chan-
nel activity was evident within 5 to 10 min after purified 
BtAQP0-enriched lens membrane proteins were added to a 
preformed planar lipid bilayer (Zampighi et al. 1985). Chan-
nels were voltage dependent with a single channel amplitude 
of 200 pS in 100 mM KCl (Zampighi et al. 1985). HPLC-
purified BtAQP0 was relatively anion selective in planar 
bilayers  (PCl–/PK+ approximately 1.8) and showed two main 
conductance states (160 and 380 pS) plus multiple sub-
conductance states in 100 mM KCl (Ehring et al. 1990). 
Further experiments using spectrometry in liposomes and 
electrophysiology in planar bilayers showed that BtAQP0 
was permeable to  K+, sucrose, and  Na+ (Shen et al. 1991). 
The open probability of the channel was inversely propor-
tional to voltage, and  Cs+ reduced the mean channel open-
ing time (0.13 s) but did not decrease the single-channel 
conductance in 100 mM KCl (Shen et al. 1991), implying 
that BtAQP0 gating but not pore permeation is modulated by 
cations. Phosphorylation of BtAQP0 at serine-243 located 
near the C-terminus is required for voltage-dependent clo-
sure of the channels, reconstituted into planar lipid bilay-
ers (Ehring et al. 1992). Sucrose permeability of BtAQP0 

reconstituted into liposomes, measured by osmotic swell-
ing, was blocked in the presence of  Ca2+ and calmodulin 
(CaM);  Mg2+ had no effect (Girsch and Peracchia 1985). 
Membranes from chicken lens enriched in a MIP homolog 
(originally named MIP28, referred to here as GdAQP0) 
also formed channels with functional properties similar to 
those of BtAQP0 (Modesto et al. 1990); two prominent uni-
tary conductances (60 and 290 pS in symmetric 150 mM 
KCl) were voltage-dependent, closing at ± 80 mV. Chan-
nels were relatively anion preferring, with a permeability 
ratio  (PCl–/PK+) of 1.87; open probability was reduced in 
the presence of 5 mM  Ca2+ (Modesto et al. 1996). However 
unlike BtAQP0, GdAQP0 channels were not phosphorylated 
at the C-terminus. A C-terminal truncated variant generated 
by partial hydrolysis, lacking the equivalent serine-243 of 
BtAQP0, retained conductance and voltage sensitivity prop-
erties similar to those of the full-length GdAQP0 channel 
(Modesto et al. 1996). These studies showed in liposomes 
and planar bilayers that AQP0 proteins are non-selective 
ion channels with long open and closed times, and multiple 
conductance states that are modulated by phosphorylation 
(in BtAQP0) and  Ca2+.

Although the original studies showed robust and repro-
ducible ion channel activity in artificial bilayers, no currents 
associated with BtAQP0 expression were detected in Xeno-
pus laevis oocytes using the two-electrode voltage clamp 
(TEVC) technique (Mulders et al. 1995). This work did con-
firm that BtAQP0-expressing oocytes showed a 4- to fivefold 
increase in water permeability as compared to water-injected 
control oocytes (Mulders et al. 1995). The water channel 
activity of BtAQP0 expressed in oocytes showed positive 
correlations with the concentrations of  Ca2+ and protons 
 (H+) (Németh-Cahalan et al. 2013). Each BtAQP0 monomer 
was suggested to act cooperatively in the tetrameric AQP0 
channel (Németh-Cahalan et al. 2013). A comparison of the 
single channel properties of AQP0 in oocytes with those pre-
viously determined in BLMs would be interesting to assess 
details of  Ca2+ and pH modulation, and possible effects of 
membrane lipid environments.

2. Nodulin-26

Nodulin-26 (NOD26) is the major protein present in 
peribacteroid membranes of the nitrogen-fixing root nod-
ules in soybean Glycine max (Fortin et al. 1987). Cloned 
GmNOD26 was noted to show amino acid sequence similar-
ities to AQP0 and AQP1, and proposed to facilitate nutrient 
fluxes between the plant and the symbiotic bacteria living 
within the root nodules (Miao and Verma 1993). The first 
functional characterisation involved the incorporation of 
purified native GmNOD26 from soybean root membranes 
into BLMs, revealing GmNOD26 was an ion channel with 
a large unitary conductance (3.1 nS) in 1 M KCl (Weaver 
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et al. 1994). Weakly selective for anions, as indicated by a 
permeability ratio  (PCl–/PK+) of 1.21, GmNOD26 displayed 
channel open times ranging from 1 to 50 ms, and subcon-
ductance states ranging from 0.5 to 2.5 nS. Recombinant 
poly-histidine tagged GmNOD26 protein produced in E. 
coli showed almost identical biophysical properties to native 
GmNOD26 in BLMs (Lee et al. 1995). A Ser-262-Asp phos-
phomimetic mutant of GmNOD26 showed more frequent 
closure and preferential occupancy of lower subconduct-
ance states than wild type, which indicated phosphorylation 
modulates NOD26 ion conductivity (Lee et al. 1995). The 
physical properties of GmNOD26 in planar lipid bilayers 
are strikingly similar to those of MIP channels measured in 
the same system.

Using Xenopus oocytes and proteoliposomes, GmNOD26 
was later shown to be a water channel with a relatively low 
transport rate, as well as a glycerol facilitator (Dean et al. 
1999; Rivers et al. 1997). Treatment of GmNOD26-express-
ing oocytes with the phosphatase type 1 and 2A inhibitor 
okadaic acid, led to a fourfold increase in water permeability 
(Guenther et al. 2003). This suggested that  Ca2+-dependent 
protein kinase phosphorylation at Ser-262, which occurs 
in planta, stimulates GmNOD26 water channel activity 
(Guenther et al. 2003). It is interesting that phosphoryla-
tion at Ser-262 stimulated NOD26 water channel activity 
in oocytes, but inhibited its ion channel activity in BLMs. 
Supporting the originally proposed role of GmNOD26 in 
nutrient flux, the recombinant channel reconstituted into pro-
teoliposomes was shown to be  NH3 permeable.  NH3 uptake, 
protonation, and subsequent alkalinisation of the liposome 
interior were measured by monitoring decreased fluores-
cence of preloaded carboxyfluorescein using stopped-flow 
spectrophotometry (Hwang et al. 2010). Hence GmNOD26 
is now considered to be multifunctional.

3. Aquaporin 1 (AQP1)

The Channel-forming Integral Protein of 28  kDa 
(CHIP28) isolated from erythrocytes showed an amino acid 
similarity with BtAQP0 that prompted the idea it might have 
channel-like activity (Smith and Agre 1991). Expressed in 
Xenopus oocytes, CHIP28 showed constitutive water chan-
nel activity (Preston et al. 1992) and was renamed AQP1 
(referred to here as HsAQP1). A non-selective monovalent 
cationic conductance with a permeability sequence  K+ ≃ 
 Cs+  >  Na+  > tetraethylammonium  (TEA+) was shown using 
TEVC in HsAQP1-expressing oocytes, after indirect activa-
tion by forskolin or intracellular injection of protein kinase 
A catalytic subunit (Yool et al. 1996) via an H7-sensitive 
kinase signaling pathway proposed to enhance cGMP (Yool 
and Stamer 2004). Single HsAQP1 channels from inside-
out patches of oocyte membranes were directly activated 
by cGMP, and showed a unitary conductance of 150 pS in 

symmetrical 0.1 M  K+ with flickery subconductance states 
(Anthony et al. 2000). To assess native AQP1 ion channels, 
the rat (Rattus norvegicus) homolog (RnAQP1) was exam-
ined in primary cultured choroid plexus cells, patch-clamped 
in whole cell and excised patch configurations. A cGMP-
activated,  Cd2+-sensitive, monovalent cation conductance 
of 166 pS was characterized, with properties comparable 
to those of HsAQP1 channels expressed in oocytes (Boassa 
et al. 2006; Anthony et al. 2000). The cGMP-dependent 
AQP1-like channel activity was abrogated in cells trans-
fected with siRNA constructs to knock down RnAQP1 
expression (Boassa et al. 2006). However when purified 
native or recombinant HsAQP1 was reconstituted into planar 
lipid bilayers, cGMP activation gave rise to channel events 
with small unitary conductances of 2, 6, and 10 pS in 0.1 M 
 Na+ or  K+ (Saparov et al. 2001). The small unitary con-
ductances might reflect differences in the physical proper-
ties of the bilayers in reconstituted versus eukaryotic cell 
membranes. The recombinant HsAQP1 channels studied by 
Saparov et al. (2001) were assessed in bilayers formed with 
E. coli total lipids, consisting predominantly of phosphatidy-
lethanolamine (PE). Preliminary data in our lab (Henderson 
et al., unpublished) suggest that recombinant HsAQP1 pro-
duces high conductance single channels (~ 75 pS) with long 
open times when reconstituted into proteoliposomes made 
with soybean azolectin (Fig. 1) which consists predomi-
nantly of phosphatidylcholine (PC), as used successfully for 
studies of mechanosensitive and other ion channels (Marti-
nac et al. 2010). The difference in headgroups (ethanolamine 
or choline) between PE and PC can influence transmembrane 
protein structure, as shown for μ opioid receptors with con-
formational states controlled by lipid interactions (Angladon 
et al. 2019). Lipids affect properties of many channel types 
(see below), and might be expected to influence the structure 
and function of AQP channels as well. Patch-clamping pro-
teoliposomes with various defined lipid compositions should 
enable comparisons of environmental effects on ion channel 
activity of AQP1 and other AQPs to test the hypothesis that 
membrane lipids modulate AQP channel activity.

Differences in aquaporin channel properties 
could depend on membrane composition

Membrane protein activity (e.g., of mechanosensitive 
channels, KcsA  K+ channels, and nicotinic acetylcholine 
receptors) is affected by the physical properties of the 
surrounding lipid environment, including thickness, elas-
ticity, viscosity, and tension (Lee 2004). As summarized 
above, properties of ion conducting AQPs differ between 
membrane preparations. The sensitivity of AQPs to the 
lipid environment is supported by results of studies of 
water channel activity, which also show variability when 
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channels are reconstituted into proteoliposomes compris-
ing different lipid types and proportions. Single channel 
water fluxes in two reconstituted human AQP4 isoforms 
decreased with increasing membrane bilayer compressibil-
ity and thickness, induced by addition of cholesterol and 
sphingomyelin (Tong et al. 2012). Similarly, the unitary 
water permeability of purified BtAQP0 was lower in prote-
oliposomes containing high cholesterol or sphingomyelin 
(Tong et al. 2013). Liposomes made from 1,2-dioleoyl-
sn-glycero-3-phosphocholine (DOPC) showed high water 
permeability when reconstituted with AQPZ from E. coli; 
however, AQPZ did not enhance water permeability in 
liposomes made with 1,2-Dioleoyl-sn-glycero-3-phos-
phoglycerol (DOPG) (Zhao et al. 2013). The absence of 
cardiolipin, which is naturally prevalent in bacterial and 
mitochondrial membranes, was shown to reduce AQPZ 
water permeability in proteoliposomes (Laganowsky et al. 
2014). Another factor setting the optimal water perme-
ability of AQPZ was the lipid-to-protein ratio, which was 
maximal at 200:1 in proteoliposomes (Zhao et al. 2013).

The functional properties of several ion channels, for 
example  K+ ion channels and ligand-gated nicotinicoid 
receptors, are modified by the surrounding lipids or by 
direct lipid-protein interactions (Poveda et al. 2014; Till-
man and Cascio 2003). It is reasonable to postulate that 
AQP ion channel activity is also modulated by changes in 
the lipid environment surrounding the protein, and could 
explain the variability in single channel conductance values 
reported for the same AQP in different cell or lipid bilayer 
preparations (Table 1). Experiments to determine AQP ion 
channel modulation by lipid composition should be feasible 
with proteoliposomes and BLMs. Some ion channel AQPs 
thus far have been tested only in eukaryotic cells such as 
Xenopus oocytes or human embryonic kidney (HEK) cells, 
so the potential influence of bilayer composition on channel 
properties remains to be determined.

Other classes of ion channel AQPs

In addition to ion channel AQP classes presented in the 
“Introduction,” “AQP ion channel activity in native, heter-
ologous and recombinant expression systems,” and “Dif-
ferences in aquaporin channel properties could depend on 
membrane composition” sections above, several other sub-
types have been shown to mediate macroscopic ion currents 
in expression systems, primarily Xenopus oocytes, but have 
not yet been characterized in purified reconstituted prepara-
tions. These classes are summarized below.

4. Aquaporin (AQP6)

Conflicting lines of evidence have been reported for the 
properties and gating of aquaporin 6 (AQP6). The human 
AQP6 coding sequence was first isolated from a kidney 
cDNA library, and denoted hKID (Ma et al. 1996). hKID 
mapped to the 12q13 locus, which also contained AQP0 
and AQP2. When expressed in Xenopus oocytes, hKID 
(referred to here as HsAQP6) elicited a 2.6-fold increase 
in osmotic water permeability, which was inhibited 72% 
by mercury  (Hg2+), in agreement with the precedent set for 
 Hg2+-inhibition of AQP1-mediated osmotic water perme-
ability (Preston et al. 1992). HsAQP6 expression in oocytes 
conferred no measurable glycerol or urea flux, suggesting 
that water was the only permeable substrate (Ma et al. 1996).

The homolog from rat (RnAQP6) initially could not be 
characterized (Ma et al. 1993) though subsequently was 
successfully expressed in oocytes. Unexpectedly, it was not 
blocked but was activated by  Hg2+, which enhanced both 
water and ion fluxes (Yasui et al. 1999a). The ion conduct-
ance but not water permeability of RnAQP6 also was acti-
vated by acidic pH, which unlike  Hg2+ has relevance as a 
physiological stimulus. A positive shift in Erev measured for 
acid-activated RnAQP6 when external  Cl– was replaced with 

Fig. 1  Single channel activity of recombinant histidine-tagged human 
AQP1 reconstituted into proteoliposomes measured using the patch-
clamp technique. (Left) Coomassie stained SDS-PAGE of purified 
recombinant HsAQP-His6. (Right) Upper trace is a patch from a con-
trol (empty) liposome showing no channel activity. Lower trace is a 

patch from an HsAQP1-His6 reconstituted liposome showing closing 
events (downward deflections, estimated unitary conductance 75 pS). 
Both patches were recorded in the presence of 10 µM CPT-cGMP at a 
holding potential of + 100 mV in symmetrical  K+. Dashed lines indi-
cate the zero current levels
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gluconate, but not when  Na+ was replaced with N-Methyl-
D-glucamine (NMDG) (Yasui et al. 1999a), suggested cur-
rents were carried by  Cl– not  Na+. However,  Hg2+-activated 
single channels measured in inside-out patches of RnAQP6-
expressing oocytes showed, in contrast, no change in Erev 
when either  Na+ or  Cl– were reduced, suggesting equal per-
meability to  Na+ and  Cl– (Hazama et al. 2002). The  Na+ 
permeability of  Hg2+-activated RnAQP6-expressing oocytes 
was validated with a 22Na radiotracer influx assay (Hazama 
et al. 2002). Similar tests showed fluxes of 14C-glycerol and 
14C-urea in  Hg2+-activated RnAQP6-expressing oocytes 
(Holm et al. 2004), highlighting a potentially remarkable 
substrate diversity, but also illustrating the diversity of 
conclusions that have been drawn from different studies. 
Experimental parameters that influence channel function 
and baseline membrane permeability apparently remain to 
be fully defined.

In mammalian cells, the intracellular vesicular localiza-
tion of RnAQP6 made electrophysiological analyses of ion 
channel activity difficult until a N-terminal GFP fusion con-
struct was found to localize to plasma membrane in trans-
fected HEK293 cells (Ikeda et al. 2002), enabling whole-
cell patch-clamp measurement of acid-activated RnAQP6 
currents. The GFP-RnAQP6 fusion protein showed per-
meability to halide anions with a permeability sequence: 
 NO3

– ≥  I– ≥  Br– ≥  Cl– (Ikeda et al. 2002). When Asn-60 was 
mutated to Gly, the anion permeability of RnAQP6 was 
abolished and the protein became highly water permeable 
in a  Hg2+-independent manner (Liu et al. 2005).

Differences in ionic selectivity of RnAQP6 when gated by 
 Hg2+ (selective to water, anions, cations, glycerol and urea) 
or pH (selective to anions) suggest that  Hg2+ and protons 
induce different structural changes that impact the AQP6 
monomeric pore (Yasui et al. 1999a). The relevance of acid 
activation of RnAQP6 anion fluxes aligns with the subcel-
lular localization of this channel in intracellular vesicles 
of acid-secreting cells of the kidney (Beitz et al. 2006a). 
Intriguingly, AQP6 anion channel activity has only been 
demonstrated for RnAQP6, and not for HsAQP6 despite 
high (77%) sequence identity. Opposing effects of  Hg2+ on 
the water permeability of HsAPQ6 and RnAQP6 warrant 
further clarification, since the cysteine residues that define 
the  Hg2+ sensitivity of RnAQP6 have been identified (Cys-
158 and Cys-193) (Yasui et al. 1999a), and are conserved in 
HsAQP6. Residues that determine pH-gating of RnAQP6 
remain an area of interest for future investigation.

5. Drosophila big brain

Drosophila BIB amino acid sequence similarities to the 
AQPs MIP26, NOD26, and the E. coli glycerol facilita-
tor GlpF led to speculation that BIB also was a channel-
like protein (Rao et al. 1990). Unlike orthologous AQPs, 

BIB showed no appreciable water channel activity when 
expressed in oocytes (Yanochko and Yool 2002). Con-
versely, BIB mediated a voltage-insensitive, nonselective 
cation conductance in oocytes with a permeability sequence 
of  K+  >  Na+  ≫  TEA+ (Yanochko and Yool 2002). The BIB 
ion conductance was blocked by divalent cations  Ba2+ and 
 Ca2+ but not  Mg2+ (Yanochko and Yool 2004). BIB currents 
were inactivated by tyrosine phosphorylation and activated 
by a tyrosine kinase inhibitor, consistent with regulated sign-
aling roles for BIB in early nervous system development in 
the fly (Yanochko and Yool 2004; Rao et al. 1990).

6. Plasma membrane intrinsic protein 2;1 (PIP2;1) and 
homologs

A renaissance of AQP ion channel research in plants 
was catalyzed by the characterization of Plasma membrane 
Intrinsic Protein 2;1 (PIP2;1) from the model plant Arabi-
dopsis thaliana as a non-selective cation channel when 
expressed in Xenopus oocytes, measured using TEVC (Byrt 
et al. 2017). Currents in AtPIP2;1-expressing oocytes resem-
bled a  Ca2+-sensitive cation conductance previously meas-
ured in isolated Arabidopsis root cell protoplasts but not 
identified at the protein level (Demidchik and Tester 2002). 
AtPIP2;1 is now thought to be the molecular mechanism for 
the leak current (Byrt et al. 2017). An ortholog, AtPIP2;2 
also elicited an ionic conductance when expressed in oocytes 
(Byrt et al. 2017). A homolog from barley, HvPIP2;8 in 
oocytes showed  Na+ and  K+ (but not  Cl–) conductances that 
were inhibited by divalent cations (Tran et al. 2020). Other 
plant ion-channel AQPs likely await discovery. Phosphoryla-
tion status regulates the ionic conductance of AtPIP2;1 in 
oocytes (Qiu et al. 2020), fitting the broad theme seen across 
diverse AQP ion channel types reviewed here. To date, het-
erologous expression in Xenopus oocytes has been the pri-
mary experimental system used for measuring ion channel 
activity of PIP-type AQPs. Further research on plant AQP 
ion channel properties using proteoliposome reconstitution 
is in progress.

In summary, AQP ion channels show a panel of simi-
lar features. They are generally permeable to monovalent 
anions and/or cations, blocked by divalent cations (except 
 Mg2+), can display large unitary conductances in permissive 
environments, with multiple conductance states and long 
open and closed times that are gated by subtype-specific 
signaling mechanisms (including for example pH, voltage, 
cyclic nucleotides, and phosphorylation). The activation of 
ion-conducting RnAQP6 intrasubunit pores by  Hg2+ and the 
block of intrasubunit water pores in other AQPs relies on 
covalent modification of cysteine residues likely inducing 
protein conformational changes, rather than electrostatic 
interactions that reversibly block the pores (seen for exam-
ple with  Ba2+ and  Ca2+). The cell type or membrane used 
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to measure AQP ion conductance can profoundly influence 
the observed ion channel activity. These properties are sum-
marized in Table 1. Application of classical biophysical 
approaches, such as reconstitution into artificial membranes, 
may help further elucidate the functional properties of AQP 
ion channels, and guide future structure–function studies.

The structural basis of AQP‑mediated 
transport activity

In addition to the signature asparagine-proline-alanine 
(NPA) motifs in loops B and E, AQPs also show high con-
servation of a Glu residue in M1, and a His residue proximal 
to the first NPA domain in loop B, found with few exceptions 
across the broad MIP family (Reizer et al. 1993), as illus-
trated in the subset of ion channel AQPs shown in Fig. 2. 
An in-depth analysis of the conserved Glu/His pair in the 
aquaglyceroporin HsAQP10 (Gotfryd et al. 2018) showed 
glycerol permeability of the intrasubunit pore was regu-
lated by a pH-dependent interaction of the M1 Glu residue 
with the conserved loop B His residue. Expressed in adipo-
cytes, AQP10 mediates an increased rate of glycerol flux 
in response to an acidic change in intracellular pH during 
lipolysis in response to beta-adrenergic stimulation, enabling 
the physiological release of glycerol. Molecular modeling by 
Gotfryd and colleagues indicated that protonation of H80 in 
HsAQP10 at low pH facilitated reorientation and interaction 
with E27, widening the diameter of the intrasubunit pore to 
allow glycerol flux, without changing the basal level of water 
flux. The presence of the Glu/His gate alone is not sufficient 
to endow glycerol permeability; a comparison with other 
AQPs which have identical amino acids in equivalent posi-
tions showed no glycerol permeability at any pH (for exam-
ple in the orthodox channel AQP2), or glycerol permeability 
at neutral not acidic pH in aquaglyceroporins AQPs 3, 7 and 
9 (Gotfryd et al. 2018). It is interesting to speculate that this 
Glu/His pair of residues could be a ubiquitous subcompo-
nent of complex AQP gating mechanisms that would appear 
to need involvement of other subtype-specific domains to 
achieve specialized mechanisms of action. A possible role 
in regulating ion channel AQPs, particularly subtypes such 
as RnAQP6 and DmBIB thought to allow ion permeation 
via the intrasubunit rather than the central pore (Yool and 
Campbell 2012; Yool 2007), remains to be determined.

Differential block of water and ion fluxes by pharmaco-
logical agents in mammalian AQP1 supports the presence of 
independent parallel permeation pathways that use the cen-
tral pore for ion conduction and intrasubunit pores for water 
(Pei et al. 2016; Kourghi et al. 2017b). In a subset of AQPs, 
sites have been identified for reversible block of water flux 
by extracellular  TEA+ at Tyr (Y), and covalent block by mer-
curic compounds at Cys (C), as noted in Fig. 2a and covered 

in prior reviews. Mutation of loop D residues changes ion 
channel activation and sensitivity to blockers of the ionic 
conductance (Kourghi et al. 2017b). A comparison of the 
level of sequence homology for the ion-conducting classes 
of AQPs is depicted as a phylogenetic tree (Fig. 2b), inter-
estingly showing that the anion-preferring subtypes AQPs 0 
and 6 are clustered together, as are the cation-preferring sub-
types human AQP1 and plant PIP2;1 along with insect BIB. 
More distantly related are human AQP8 and plant NOD26, 
which are both permeable to  NH3 (Hwang et al. 2010; Sap-
arov et al. 2007) and perhaps ammonium  (NH4

+) based on 
AQP8-induced rescue of  NH4

+-transporter-deficient yeast 
(Beitz et al. 2006b). The motifs that define the ion-conduct-
ing AQP subtypes are yet to be identified, but the process 
will be complicated for now by the likelihood that not all 
AQPs capable of conducting ions have been identified, and 
their potential activating stimuli remain unknown.

The substrate selectivity of the intrasubunit water pore 
is influenced by an electrostatic barrier formed by Asn 
side chains from the two NPA motifs, and by residues on 
the extracellular side of the NPA hourglass known as the 
aromatic/arginine selectivity filter that forms the narrow-
est section of the pore (Wang and Tajkhorshid 2007; Beitz 
et al. 2006b). The intrasubunit pore diameter is narrower 
in orthodox AQPs as compared with glycerol-permeable 
classes, accommodating single file water movement. The 
limiting diameter of the intrasubunit pore creates a selectiv-
ity filter, which in the water channel E. coli AQPZ, is framed 
by Phe and His as aromatic residues on one side, faced by 
a charged Arg on the opposite side. The aromatic residues 
at equivalent positions in the aquaglyceroporin E. coli GlpF 
are Trp and Phe, comparatively less polar than in the water-
selective channels. Combined mutations of residues H-180, 
R-195, and F-56 in HsAQP1 enhanced permeability to  NH3, 
urea or glycerol without altering water permeability, whereas 
mutations neutralizing the Arg charge appeared to allow the 
passage of protons, reinforcing the role of these residues 
in AQP substrate selectivity in the intrasubunit pore (Beitz 
et al. 2006b).

The central pore, located at the four-fold axis of sym-
metry in the tetramer, mediates cyclic GMP-dependent 
activation of a nonselective cation conductance in mamma-
lian AQP1, gated by the loop D domain (Yu et al. 2006). In 
crystal structures presumed to reflect the ion channel closed 
state, the central pore is lined by inner and outer rings of 
hydrophobic Leu and Val residues contributed by the M2 
and M5 domains of the four subunits. As well, at the intra-
cellular face of the central pore, the distal half (Leu, Gly, 
Gly) of the four loop D domains covers the cytoplasmic ves-
tibule, flanked by charged Arg-rich proximal half of the loop 
D domains which serve as the site of interaction with cyclic 
GMP (Fig. 2c). Binding of cGMP is proposed to facilitate a 
conformational change in loop D, opening the loops outward 
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Fig. 2  Amino acid sequence alignment and structure of ion chan-
nel aquaporins. a Amino acid sequence alignment of ion-conducting 
mammalian, plant and insect aquaporin channels. Transmembrane 
domains are M1 to M6 (yellow highlight). AQP channel gating 
regions are found in M1, loop B, and loop D (teal highlight). Circles 
(●) mark residues involved pH-dependent gating of glycerol flux 
through the intrasubunit pore. Diamonds (♦) show residues in the 
aromatic/arginine filter domain, which influences substrate selectiv-
ity of intrasubunit pores. Crossed circles ( ⊗) show sites for reversible 
block of water flux by extracellular tetraethylammonium at Tyr (Y), 
and covalent block by mercuric compounds at Cys (C). Squares (■) 
mark Asn 60 in AQP6 which when mutated to Gly was reported to 
eliminate  Hg2+-induced anion permeation and enhance otherwise low 
osmotic water flux (Liu et al 2005), and Lys 72 which when mutated 
to Glu changed ion selectivity from anionic to cationic. Amino 
acid sequences are from Homo sapiens NP_036196.1 (HsAQP0); 
NP_932766 (HsAQP1); NP_001643.2 (HsAQP6); NP_001160.2 

(HsAQP8); Arabidopsis thaliana P43286.1 (AtPIP2;1); Drosophila 
melanogaster NP_001260313.1 (DmBIB, 'Big Brain'), and Glycine 
max NP_001235870.2 (GmNOD26, nodulin-26). COBALT (https:// 
www. ncbi. nlm. nih. gov/ tools/ cobalt/) multisequence alignment was 
run at a 3 bit conservation setting (more stringent than default) to 
show strongly conserved residues (font red) and moderately con-
served residues (font blue). b Phylogenetic tree depicting levels of 
sequence similarities for ion conducting AQP channels by proxim-
ity of branchpoints, from COBALT results of the sequence align-
ment shown in (A). c Structural view using the human AQP1 homo-
tetramer (PDB ID 1IH5) as an example to illustrate locations of the 
different gating domains, generated using the National Center for 
Biotechnology Information interactive iCN3D viewer (https:// www. 
ncbi. nlm. nih. gov/ Struc ture), with gating regions E17, H74, and loop 
D depicted in space-fill format with charges indicated by color (red 
(-), blue ( +), gray (neutral))
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away from the center of symmetry. In silico modeling sug-
gests the loop D reorientation triggers the opening of the 
inner hydrophobic barrier, followed by pore hydration, open-
ing of the outer hydrophobic barrier, and  Na+ permeation. 
Site-directed double mutation of the first two Arg residues 
in the gating loop to Ala disrupted ion current activation 
by cGMP without altering osmotic water permeability, con-
firming the mutant channels were functional and targeted 
to the plasma membrane but lacked the Arg sites necessary 
for ion channel activation (Yu et al. 2006). The role of the 
central hydrophobic rings as barriers to ion permeation was 
tested by quadruple mutation of Val-50, Leu-54, Leu-170, 
Leu-174 all to Ala, which induced inward rectification and 
increased permeability to the bulky cation  TEA+ compared 
to wild type AQP1. In the same study, mutation of Lys-51 
to Cys at the external side of the central pore (in a cysteine-
less background) created de novo sensitivity of the ion con-
ductance to block by mercury (Campbell et al. 2012). The 
C-terminus was found to have a modulatory role for AQP1 
ion channel function (Boassa and Yool 2002). Phosphoryla-
tion of Tyr-253 in the carboxyl terminal domain, confirmed 
by Western blot, modulated the availability of the AQP1 
channels to be activated by cGMP, suggesting that tyros-
ine phosphorylation state acts as a master switch (Campbell 
et al. 2012), perhaps one of many layers of control that sets 
the proportion of the AQP channel population that are dual 
water-and-ion channels, versus electrically silent pathways 
for principally just osmotic water flux. Even if only a tiny 
proportion (< 0.002%) of AQP1 proteins were functional as 
ion channels in an epithelium, the outcome was predicted to 
have a meaningful physiological effect on net fluid and  Na+ 
transport, based on quantitative modeling of renal proximal 
tubule function (Yool and Weinstein 2002).

Other AQPs such as AQP6 have been proposed to use the 
intrasubunit pores as the ion conducting pathways, based on 
the effects of specific mutations near the intrasubunit NPA 
domain and correlated effects on water permeation. Asn 60 
in the AQP6 M2 domain (Fig. 2a) when mutated to Gly 
(characteristic of other AQP sequences at this position) was 
reported to eliminate the  Hg2+-induced anion permeation 
and enhance an otherwise low osmotic water flux as com-
pared with wild type AQP6 (Liu et al. 2005). Lys-72 on 
the proximal side of the loop B NPA motif (Fig. 2a) when 
mutated to Glu changed AQP6 ion selectivity from anionic 
to cationic (Yasui et al. 1999a). A similar possibility has 
been proposed for the insect DmBIB aquaporin, which does 
not mediate osmotic water flux, but carries a nonselective 
cation current with properties that are strongly influenced 
by mutations of the conserved M1 Glu residue involved in 
intrasubunit pore gating (Yanochko and Yool 2004; Yool and 
Campbell 2012; Yool 2007).

In addition to gating the central pore in channels such as 
mammalian AQP1, loop D domains found in plant AQPs 

such as spinach SoPIP2;1 are regulated by phosphoryla-
tion to control activity of the intrasubunit water pores, in 
response to changes in pH and salinity (Törnroth-Horsefield 
et al. 2006). The extended length of the SoPIP2;1 loop D 
domain allows it to interact in the unphosphorylated state, 
via H-bonds with the N-terminus, to occlude the intrasubu-
nit pore and impose a closed state. Supported by molecular 
modeling, phosphorylation was shown to disrupt tethering, 
unblocking the pore by releasing loop D from the cytoplas-
mic vestibule site, and also retracting a hydrophobic barrier 
in the pore-lining domain to promote water flux, as an open 
state (Törnroth-Horsefield et al. 2006).

In sum, aquaporin channels in the MIP family serve as 
key mechanisms for transport and homeostatic regulation of 
diverse processes in prokaryotes and eukaryotes, facilitating 
transmembrane fluxes of water, glycerol, urea,  CO2, nitric 
oxide, and other small solutes. Emerging evidence across 
mammalian, insect and plant classes of AQPs shows that 
subsets of these channels also can conduct ions, as has been 
shown thus far for AQPs 0, 1, and 6, Drosophila BIB, soy-
bean NOD26, and Arabidopsis AtPIP2;1. More classes are 
likely to be discovered.

Physiological relevance of AQP ion 
conductivity

The biological roles of the subset of aquaporins that can 
transport both water and ions is a fascinating area of work 
that has only begun to be explored. AQP0, expressed in lens 
fibers, functions as an adhesive protein forming thin mem-
brane junctions with low water permeability when expressed 
in Xenopus oocytes (Bloemendal and Hockwin 1982; Zam-
pighi et al. 1985), and has been linked to regulation of gap 
junction channels, cell–cell adhesion and maintenance of 
ocular lens transparency (Chandy et al. 1997; Chepelinsky 
2009). Reduced membrane expression of AQP0 channels 
due to missense mutations leads to impaired water flux and 
congenital cataracts in humans and mice (Berry et al. 2000; 
Varadaraj et al. 1999). Expression of AQP1 in the lens of 
 AQP−/− knockout mice only partially restored lens trans-
parency, which could reflect the additional role of AQP0 
in cell–cell adhesion (Varadaraj et al. 2010). AQP0 but not 
AQP5 null mice showed a reduced compressive load-bearing 
capacity in lens, suggesting the cell–cell adhesion function 
of AQP0 contributes to biomechanical properties (Sindhu 
Kumari et al. 2015). AQP0 permeability to ions has been 
demonstrated in bilayers, but the physiological function 
of the ion conductance remains to be defined. The role of 
AQP0 ion channels in maintaining optimal lens transparency 
could involve the generation of osmotic gradients or regula-
tion of transmembrane signals.
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In addition to normal physiological roles in fluid transport 
and homeostasis, some classes of AQPs have been impli-
cated in augmenting cancer cell invasion and metastasis, by 
mechanisms suggested to involve local volume regulation 
supporting membrane process extension and cytoskeletal 
assembly (De Ieso and Yool 2018; McLennan et al. 2020). 
Expression of HsAQP1 is upregulated in gliomas, mammary, 
lung and colorectal carcinomas, hemangioblastoma, glio-
blastoma, ovarian, and gastric cancers and multiple myeloma 
(Saadoun et al. 2002; El Hindy et al. 2013; Endo et al. 1999; 
Hoque et al. 2006; Moon et al. 2003; Vacca et al. 2001; Chen 
et al. 2006; Longatti et al. 2006; Nagashima et al. 2006; 
Verkman et al. 2008; Wang et al. 2020; Wei and Dong 2015; 
Zhang et al. 2012). AQP1 plays a significant role in tumor 
cell metastasis and invasion, which are critical in cancer 
progression (De Ieso and Yool 2018). Water flux mediated 
by AQPs has an important role in facilitating formation of 
lamellipodia involved in cell motility and migration (Oster 
and Perelson 1987). AQP1-mediated osmotic water flux 
could occur in response to solute influx and actin depolymer-
isation at the leading edges of migrating cells (Papadopou-
los and Verkman 2013). AQP1 facilitated water fluxes may 
also enable changes in cell shape and volume of migrating 
tumor cells, particularly relevant during movement through 
tight extracellular spaces (Papadopoulos et al. 2008). An 
‘osmotic engine model’ proposed by Stroka and colleagues 
linked the water flux and ion transport mediated by aqua-
porins and  Na+/H+ pumps as keys for rapid cell migration 
(Stroka et al. 2014). Polarized distributions of ion chan-
nels and transporters such as AQP1,  K+ and  Cl– channels 
in the leading edges of migrating cells are consistent with a 
direct role in osmotic fluid flow for membrane extension and 
motility (Schwab and Stock 2014; Stock and Schwab 2015). 
Inhibiting the AQP1 ion conductance with pharmacological 
blockers AqB011 and 5-hydroxymethyl furfural impaired 
invasiveness of colorectal (HT29) and breast cancer (MDA) 
tumor cells (De Ieso et al. 2019; Chow et al. 2020; Kourghi 
et al. 2016). Combined block of both ion and water fluxes 
mediated by AQP1 more potently inhibited cell migration 
in colon cancer cells than either alone (De Ieso et al. 2019). 
Both water flux and ion currents mediated by AQP1 con-
tribute to the acceleration of cell migration and invasion 
in subtypes of cancers that upregulate this class of channel 
during pathological cancer progression.

AQP6, in intracellular acid-secreting vesicles inter-
calated in the renal collecting duct, is co-localized with 
 H+-ATPase (Kwon et al. 2001; Yasui et al. 1999b). The 
V-type  H+-ATPase causes acidification of intracellular orga-
nelles in the kidney renal collecting duct; the  Cl– channel 
ClC-5 co-localized with  H+-ATPase is thought to provide 
electroneutral balance (Günther et al. 1998). Interestingly, 
ClC-5 deactivates at pH values below 6.5 while the anion 
conductance of AQP6 is turned on at pH values below 6.5, 

suggesting AQP6 and CLC-5 functions could be comple-
mentary (Rambow et al. 2014). AQP6 mediated  NO3

– per-
meation across the vesicle membrane could be linked to the 
regulation of  H+-ATPase activity in acid-secreting interca-
lated cells (Arai et al. 1989; Ikeda et al. 2002). AQP6 is 
expressed in some ovarian cancers and appears to have a pro-
tective role in certain viral pathologies but mechanisms and 
roles in these processes remain unknown (Ma et al. 2016; 
Molinas et al. 2016).

Big Brain in Drosophila, in parallel with the other neu-
rogenic genes Notch (transmembrane receptor) and Delta 
(ligand for Notch), regulates early development of the nerv-
ous system (Artavanis-Tsakonas et al. 1999), contributing 
to interactions that govern the neuroblast versus epidermal 
cell fate by a process of lateral inhibition (Doherty et al. 
1997; Rao et al. 1990). Loss of function mutations in this 
gene cause defects in cell fate determination during neuro-
genesis, and deleterious overgrowth of the nervous system 
(Lehmann et al. 1983; Brand and Campos-Ortega 1988; 
Artavanis-Tsakonas et al. 1999). BIB functions as a voltage 
insensitive non-selective monovalent cation channel when 
expressed in Xenopus oocytes, but unlike most AQPs shows 
no water permeability (Yanochko and Yool 2002; Yool and 
Stamer 2004). Ion conductance is decreased when oocytes 
expressing BIB are treated with insulin, and enhanced by 
the tyrosine kinase inhibitor lavendustin A. The level of BIB 
activity depends on the pattern of phosphorylation at mul-
tiple tyrosine kinase consensus sites in the long C-terminal 
domain. Tyrosine kinases downstream of growth factor 
receptors mediate multiple aspects of neural development; 
the cation conductance mediated by BIB has been proposed 
to lead to membrane depolarisation in turn influencing epi-
dermal cell fate determination (Yanochko and Yool 2002). 
Mutation of a glutamate residue in the first transmembrane 
domain to asparagine (E71N) in BIB abolishes ion channel 
activity, and when E71N is co-expressed with wild type BIB, 
it appears to impose a dominant-negative effect (Yool 2007).

Nitrogen is an essential plant macronutrient required 
for growth and reproduction. The ion-conducting AQP 
GmNOD26 in soybean could contribute to the essential 
role of the nodule in nitrogen fixation. The symbiosome 
compartment is acidic due to  H+-ATPase activity, which 
would compromise neutral  NH3 export out of the sym-
biosome (Masalkar et al. 2010). As  NH3 is protonated to 
ammonium  NH4

+, the movement of charged  NH4
+ across 

the symbiosome membrane is facilitated by the transmem-
brane potential generated by  H+-ATPase activity (Udvardi 
and Day 1997). A non-selective cation channel (NSCC) con-
ductance permeable to  NH4

+ was identified in symbiosome 
membranes in soybean and Lotus japonicus but the molecu-
lar identity remained unknown (Obermeyer and Tyerman 
2005; Roberts and Tyerman 2002; Tyerman et al. 1995). 
NOD26 has a binding site in the C-terminus for glutamine 
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synthetase (GS) which carries out the first enzymatic step in 
the  NH3 assimilation pathway, and uses  NH4

+ as a substrate. 
It is interesting to consider the idea that NOD26, if shown to 
be permeable to  NH4

+, could contribute to a protein complex 
which exports fixed nitrogen (such as  NH4

+) from the nodule 
into the host plant, supporting the symbiotic relationship 
(Eisenberg et al. 2000; Masalkar et al. 2010). The proposed 
role of NOD26 as the NSCC permeable to  NH4

+ remains to 
be explored.

Arabidopsis PIP2;1 in plant cell plasma membranes is 
highly permeable to water, and regulated by divalent cations, 
 Ca2+ and low pH (Alexandersson et al. 2005; Verdoucq et al. 
2008). Expression of AtPIP2;1 in Xenopus oocytes confers 
cation conductance  (Na+) also sensitive to  Ca2+ and low pH 
(Byrt et al. 2017). Two related PIPs AtPIP2;1 and AtPIP2;2 
from Arabidopsis and one from barley HvPIP2;8 also serve 
as ion-permeable channels (Qiu et al. 2020; McGaughey 
et al. 2018; Tran et al. 2020). The NSCC identified in roots 
(Demidchik and Tester 2002) appears to be mediated by the 
AtPIP classes of non-selective cation channels (Byrt et al. 
2017).

The adaptive benefits of dual ion and water transport by 
plant aquaporins are likely to include improved tolerance 
of salinity stress. Increased salinity leads to reduced phos-
phorylation, internalization of AtPIP2;1 into intracellular 
vesicles, and recycling in vacuoles (Boursiac et al. 2005; 
Ueda et al. 2016; Luu et al. 2012).  Na+ taken in during the 
endocytosis is sequestered in vacuoles as a mechanism to 
reduce  Na+ toxicity (McGaughey et al. 2018). Regulation 
of AQP ion and water conducting states via phosphoryla-
tion is likely to be a key mechanism for modulating relative 
ion fluxes  (Na+ and  K+) and water across cell membranes in 
response to salinity, limiting water loss as a mechanism for 
survival in saline soils. Among the kingdoms of life, plants 
have the greatest diversity of classes of aquaporins, leaving 
open the possibility that there are many aquaporins with 
yet unidentified functions that might provide a portfolio of 
highly specialized ion and water conducting states, which 
can be tuned for optimal growth promoting responses to 
diverse environmental conditions.

Future directions

Functional insights from heterologous hosts

Heterologous expression systems, such as yeast or bacte-
ria, are useful approaches for studying ion channel function 
(Tomita et al. 2017; Locascio et al. 2019; Fairbairn et al. 
2000). Examples include screening of known ion channels 
for channel modulators (Zaks-Makhina et al. 2004; Kawada 
et al. 2016), mutagenesis to identify key residues (Ros et al. 
1999), and evaluation of intracellular trafficking mechanisms 

(Bernstein et al. 2013; Bagriantsev et al. 2014). Heterolo-
gous expression systems also can be adapted as through-put 
screening tools to enable discovery of new classes of ion 
channels. The main challenges are in establishing a robust 
phenotype that shows ion selective effects, and in developing 
tools for correlating the ion channel function with measure-
able parameters such as cell growth or optical probe signal 
intensity.

Yeast and bacteria have evolved selective transport sys-
tems for acquiring  K+ and excluding  Na+ (Yenush 2016; 
Stautz et al. 2021). Inactivation of  K+ uptake genes in the S. 
cerevisiae yeast strain Δ trk1 Δ trk2 (Sentenac et al. 1992) 
and in E. coli (Epstein et al. 1993) has yielded cell lines that 
survive only when supplemented with high concentrations 
of external  K+. Expression of plant (Rubio et al. 1995) and 
mammalian (Tang et al. 1995)  K+ channel genes rescues cell 
growth in standard low extracellular  K+, enabling the mass-
throughput characterization of channel activity and  K+ con-
duction. Fluorescence-based monitoring of ion flux kinet-
ics also in possible using heterologous expression systems 
(Zhou et al. 2007). A few studies have used heterologous 
expression in yeast to study the potential ion permeability 
of AQP1 (Wu et al. 2009) and plant PIP aquaporins (Byrt 
et al. 2017; Qiu et al. 2020). Yeast mass-throughput assays 
could provide a rapid tool for the future evaluation of novel 
classes of AQPs as possible cation channels, and identify 
candidate pharmacological and regulatory compounds as 
tools for further research.

In silico predictions

Molecular dynamics (MD) simulations have been used to 
provide insight into channel functions that are difficult to 
dissect with conventional methods. The number of MD stud-
ies focused on investigating AQPs is increasing steadily in 
parallel with those on other channels (Fig. 3). Solving the 
structural architectures of AQP1 (Murata et al. 2000; Sui 
et al. 2001), bacterial aquaglyceroporin (GlpF) (Fu et al. 
2000), and others has allowed in depth analyses of substrate 
permeation through AQP pores at the atomic level (Tajk-
horshid et al. 2002). The first AQP shown by MD simula-
tion to be permeable to ions was HsAQP1 (Yu et al. 2006). 
Sodium and  Cl– transport via monomeric and central pores 
of HsAQP4 has also been predicted (Bernardi et al. 2019). 
MD simulations of AQPs have provided views into the 
molecular basis of features such as substrate selectivity (Hub 
and De Groot 2008), proton exclusion (Chakrabarti et al. 
2004), gating mechanisms (Törnroth-Horsefield et al. 2006; 
Fischer et al. 2009), and the conduction of gases and signal-
ing molecules (Wang et al. 2007; Yusupov et al. 2018). MD 
simulations have provided insights into the critical residues 
(Hadidi and Kamali 2021), post-translational modifications 
(Sachdeva and Singh 2014), drug interactions (De Almeida 
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et al. 2017), and voltage-dependence properties (Hub et al. 
2010; Mom et al. 2021) that impact the channel function. 
Given the large number of structures (∼50) determined for 
aquaporins by X-ray diffraction and cryo-electron micros-
copy, computational techniques to simulate permeation of 
ions or coupling of water and ion transport via these chan-
nels are within reach as exciting new areas of research. Fur-
ther applications might include simulating protein channel 
activity in different lipid mixtures relevant to a variety of 
cell membranes (Aponte-Santamaría et al. 2012; Gu et al. 
2017), modeling multiple aquaporins isoforms simultane-
ously (Pei et al. 2019; Kapilan et al. 2018), and evaluating 
mechanisms of block and potentiation of ion conductance 
and other substrate fluxes by pharmacological AQP modula-
tors that have been derived from synthetic (Chow et al. 2020; 
Huber et al. 2007; De Ieso et al. 2019) and natural (Aung 
et al. 2019) sources.

Conclusions

The first AQP ion channels were discovered almost 40 years 
ago. Their biophysical properties are likely to be defined not 
only by their tetrameric architecture, but also by the lipid 
environments in which the AQP tetramers reside, as well 
as interacting proteins and signaling mechanisms. Residues 
involved in the selectivity, gating, and permeation pathways 
of the central and intrasubunit pores of ion-conducting AQP 
tetramers are being uncovered. These candidate motifs can 
be investigated with the classical array of electrophysi-
ological methods, but continuing work will benefit from 

incorporating novel approaches using microorganisms 
(e.g., yeast, bacteria) and computational methods such as 
MD simulation, to further define the functional roles of ion 
conductivity in classes of AQPs across all the biological 
kingdoms of life.
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