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Abstract
Significant advances in biophysical methods such as next-generation sequencing technologies have now opened the way to 
conduct evolutionary and applied research based on the genomic information of greatly diverse insects. Crickets belonging 
to Orthoptera (Insecta: Polyneoptera), one of the most flourishing groups of insects, have contributed to the development of 
multiple scientific fields including developmental biology and neuroscience and have been attractive targets in evolutionary 
ecology for their diverse ecological niches. In addition, crickets have recently gained recognition as food and feed. However, 
the genomic information underlying their biological basis and application research toward breeding is currently underrep-
resented. In this review, we summarize the progress of genomics of crickets. First, we outline the phylogenetic position of 
crickets in insects and then introduce recent studies on cricket genomics and transcriptomics in a variety of fields. Further-
more, we present findings from our analysis of polyneopteran genomes, with a particular focus on their large genome sizes, 
chromosome number, and repetitive sequences. Finally, how the cricket genome can be beneficial to the food industry is 
discussed. This review is expected to enhance greater recognition of how important the cricket genomes are to the multiple 
biological fields and how basic research based on cricket genome information can contribute to tackling global food security.
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Introduction

Insects are the most prosperous organisms on the planet, and 
their biological diversity has attracted researchers in a vari-
ety of fields to study their mysteries. Gryllidea (crickets) has 
been studied for understanding developmental biology (Don-
oughe and Extavour 2016), regeneration biology (Nakamura 
et al. 2008), neuroscience (Matsumoto et al. 2018), chrono-
biology (Tomioka 2014), and the biophysical aspects of 
acoustic signaling (Song et al. 2020). For developmental 
biology, cricket has been used for studying embryogenesis 
as an alternative model that represents the insect ancestor 
much better than fruit fly Drosophila melanogaster due to 
its evolutionary closeness (Donoughe and Extavour 2016). 
In the biology of regeneration, cricket nymphs have been 
used as models for studying tissue and organ regeneration 
mechanisms, thanks to the remarkable regenerative capac-
ity of their legs (Nakamura et al. 2008). For neuroscience, 
crickets have been used to study the molecular mechanisms 
of long-term and short-term memory formation, and it has 
become clear that the mechanisms of memory formation 
in crickets share a certain degree of similarity to those in 
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mammals (Matsumoto et al. 2018). The findings of the stud-
ies described here have been translated to the molecular 
level by the nature of the cricket, which is readily available 
for reverse genetic techniques, including RNA interference 
(RNAi) (Mito and Noji 2008). The collection of these stud-
ies has allowed crickets to be used as model organisms that 
best represent the insect ancestor and has led to the sophisti-
cation of protocols in the fields of molecular biology, devel-
opmental biology, behavior, and neuroscience.

Moreover, the order Orthoptera, to which crickets belong, 
has diversified into a number of lineages, occupy all pos-
sible terrestrial habitats except for the polar regions, and 
play an important role in their ecosystems (Song 2018). In 
addition to obvious habitats such as temperate grasslands 
and tropical rainforests, many orthopteran insects inhabit 
unexpected environments. For example, the family Gryllo-
talpidae, commonly known as mole crickets, have adapted to 
a true subterranean lifestyle (Frank and Parkman 1999). The 
mole cricket’s paws are optimized for burrowing, and they 
spend most of their life underground. Additionally, the fam-
ily Myrmecophilidae (ant-loving crickets) inhabit ant nests 
with ants, which would be attacked by ants in the case of 
other insects (Komatsu et al. 2008). Moreover, several spe-
cies in crickets are adapted to aquatic habitats. For instance, 
mangrove crickets Apteronemobius asahinai, which inhabit 
mangrove forest floors only during low tide, show a clear 
endogenous rhythm synchronized with the tidal cycle to 
escape submergence (Satoh et al. 2008). Other orthopteran 
insects that are not crickets include species that specialize in 
alpine, desert, and cave habitats (Dirsh 1954; Knowles 2001; 
Allegrucci et al. 2010).

In addition to the biological characteristics mentioned 
above, orthopteran insects, of which crickets are a prime 
example, have an important social value. Crickets are cur-
rently being seen as a potential savior for the upcoming 
food crisis. The world population is growing rapidly and 
is projected to reach 9.74 billion by 2050 (Godfray et al. 
2010). To meet this population growth, urgent interven-
tions are needed to increase food production to satisfy the 
growing demand (Godfray et al. 2010). The current style 
of food production may not be able to meet the demand 
because the expansion of essential land for farming is 
unexpected (Nellemann et al. 2009). The lack of land is 
exacerbated by climate changes, water scarcity, and poverty 
(Nellemann et al. 2009). There is, therefore, a need for a 
shift to alternative and new food production systems that 

are cheaper, more environmentally friendly, adaptable to 
climate changes, and sustainable. One of the most prom-
ising options is entomophagy, defined as the practice of 
eating insects. Entomophagy is common in many areas of 
the world, with 2100 species of insects being consumed in 
over 110 countries. Insects can utilize water and food more 
efficiently and have lower feed requirements and higher 
growth efficiency than conventional livestock (Nagasaki 
and Defoliart 1991; Oonincx et al. 2015). For example, 
crickets consume six times and three times as little feed as 
cattle and pigs, respectively, to produce the same amount 
of protein (Oonincx et al. 2015). Moreover, crickets release 
fewer greenhouse gasses and ammonia than conventional 
livestock and can be raised on organic by-products such as 
food waste and waste from agriculture and the food indus-
try (Cičková et al. 2015).

The biological and food application research on crickets 
can be substantiated by their genome sequence data. The 
genetic basis that gives rise to habitat diversity in crick-
ets is grounded in genomic information, and the effect on 
food productivity by cricket should be based on gene reper-
toire in the genome. However, there is currently very little 
genomic data available to the public, compared to other 
insects. Analyzing the genomes of the related organisms 
(especially those belonging to the clade that has received 
little attention so far) can provide a complete picture of the 
genomic diversity of the complete tree of life in Orthoptera 
and provide insight into their evolution. More importantly, 
understanding the genome of an organism is generally use-
ful for the domestication of that organism (Zsögön et al. 
2018).

In this review, we begin with a brief overview of the phy-
logenetic position of crickets, followed by the uniqueness of 
crickets and Orthoptera genomes among insects, the current 
status of cricket genome research, and finally, the potential 
of the cricket genome for applied research.

Phylogenetic overview of cricket

Insects are the most diverse animals on the planet, with 
different species living in a variety of terrestrial and 
aquatic habitats from the tropics to the polar regions (Song 
2018). Crickets, or Gryllidea in phylogenetic terminology, 
belong to the cohort Polyneoptera, which is one of the 
major groups of winged insects that have the ability to 
fold their wings flat over the bodies by bending them. 
Within Polyneoptera, crickets are classified in a subgroup 
of the order Orthoptera, which is generally characterized 
by acoustic communications. In this section, we provide a 
brief overview of the systematics of crickets from higher 
to lower order classification.

Fig. 1   Described species of Polyneoptera, Orthoptera, and Gryllidea. 
The number of species shown in the pie chart represents the informa-
tion available in the Orthoptera Species File as of the writing of the 
manuscript. Note that the Orthoptera Species File includes the super-
family Rhaphidophoroidea and Schizodactyloidea in the taxonomic 
groups under Ensifera, and the number of species in Tettigoniidea 
does not include these superfamilies

◂
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Polyneoptera

Polyneoptera comprises more than 45,000 described spe-
cies in a total of ten taxonomic orders (Fig. 1). These orders 
comprise Orthoptera, including crickets, grasshoppers, and 
locusts, as well as Plecoptera (e.g., stoneflies), Phasmatodea 
(e.g., stick and leaf insects), Blattodea (e.g., cockroaches and 
termites), Mantodea (e.g., mantids), Dermaptera (e.g., ear-
wigs), Grylloblattodea (e.g., ice crawlers), Embiodea (e.g., 
web-spinners), Zoraptera (e.g., angel insects), and recently 
described Mantophasmatodea (e.g., gladiators). Among 
these orders, the Orthoptera has the overwhelming number 
of species, accounting for more than 60% (Fig. 1) (Beccaloni 
2014; Eades et al. 2014; Maehr and Hopkins 2017; Otte 
et al. 2017; Brock et al. 2018; Hoplins and Maehr 2018; 
Hopkins et al. 2018; Maehr and Hopkins 2018; Maehr et al. 
2018; DeWalt et al. 2021).

Polyneopteran insects grow through incomplete or hem-
imetabolous metamorphosis distinct from the well-known 
insects with complete or holometabolous metamorphosis. 
Insects with incomplete metamorphosis are characterized by 
gradual body growth from hatching through the larval stage to 
the final sexually mature winged adult without major changes 
to the body plan. On the other hand, complete metamorphosis 
is characterized by the presence of the inactive and nonfeeding 
pupal stage between the highly appetitive larvae and the repro-
ductive adults. Insects undergoing complete metamorphosis 
are prominent model species used in the laboratory, including 
Drosophila melanogaster. It is believed that the insects with 
incomplete metamorphosis are evolutionarily older than those 
with complete metamorphosis and that the ancestral species 
of insects were unable to undergo metamorphosis (Wipfler 
et al. 2019).

Phylogenetic relationships of the insects in Polyneop-
tera have long been controversial, which is due to a high 
degree of their morphological specializations (Whitfield 
and Kjer 2008). The phylogenetic study provides evidence 
for a monophyletic origin of Polyneoptera and its origin is 
estimated at 300 million years ago (Mya) or more (Misof 
et al. 2014). A recent study using protein-coding single-
copy genes from public transcriptomic data has placed 
Dermaptera and Zoraptera as sister groups to the remain-
ing orders; a group called “core Polyneoptera,” which com-
prises Orthoptera, Mantophasmatodea, Grylloblattodea, 
Embioptera, Phasmatodea, Mantodea, and Blattodea (Terry 
and Whiting 2005; Wipfler et al. 2019) (Fig. 2). Plecop-
tera is placed on a siter group of these “core Polyneoptera” 
groups, which diverged from an ancestor of Dermaptera and 
Zoraptera at approximately 270 Mya (Misof et al. 2014). 
Within the “core Polyneoptera” groups, Orthoptera is placed 
in the sister group that diverged from the remaining groups 
of “core Polyneoptera” at the earliest (Wipfler et al. 2019) 
(Fig. 2).

Orthoptera

The orthopteran insects include grasshoppers, locusts, 
crickets, katydids, and their kins. Orthoptera is the most 
diverse and largest order in Polyneoptera, containing more 
than 28,900 extant species according to the Orthoptera Spe-
cies File (Eades et al. 2014; Song et al. 2015) (http://​ortho​
ptera.​speci​esfile.​org/). Three hundred million years of his-
tory has produced a stunning diversification of this order. 
Orthopteran insects are characterized by the presence of the 
cryptopleuron, a condition in which the pronotum covers a 
large part of the propleuron and by big jumping hind legs 
(Grimaldi and Engel 2005). This order is further divided 
into two suborders: Ensifera (e.g., crickets, katydids, and 
wetas) and Caelifera (e.g., grasshoppers and locusts). Ensif-
era is characterized by long, thread-like antennae, usually 
longer than the body, and thus are also known as “long-
horned grasshoppers.” The female individual also features 
a sword‐like or needle‐like ovipositor. In contrast, Caelifera 
is characterized by “short-horned” antennae with less than 
30 segments, whose female has an ovipositor with only two 
valvular pairs (Song 2018). One of the intriguing differences 
between Caelifera and Ensifera is the location of their audi-
tory system; the insects belonging to Caelifera have their 
auditory organs in the first abdominal segment, whereas 
Ensifera have the organs in the tibiae of the prothoracic legs 
(Meier and Reichert 1990).

Within the Caelifera, there are two infraorders, which 
comprise more basal Acrididea and Tridaetylidea (Figs. 1 
and 2). The former includes pygmy mole crickets (note 
that they do not belong to Ensifera, which “true crickets” 
belong to, although their common name contains “cricket”), 
while the latter includes grasshoppers and locusts. Ensifera 
has 16,000 or more species in approximately 2000 genera 
(Zhou et al. 2017) (Fig. 1). Most recent phylogenetic studies 
agree that Ensifera consists of two monophyletic infraorders: 
Gryllidea and Tettigoniidea (Song et al. 2015, 2020; Zhou 
et al. 2017) (Fig. 2). The former has more than 6000 valid 
species registered (Eades et al. 2014) (Fig. 1) and consists 
of Grylloidea (e.g., field crickets and sword-tailed crick-
ets) and Gryllotalpoidea (e.g., mole crickets and ant-loving 
crickets). Tettigoniidea is the largest infraorder in Ensifera 
and includes Rhaphidophoroidea, Schizodactyloidea, Sten-
opelmatoidea, Hagloidea, and Tettigonioidea. Regarding 
the internal relationships of Tettigoniidea, there has not 
been a consensus among phylogenetic studies using differ-
ent molecular markers (Eades et al. 2014; Song et al. 2015, 
2020; Zhou et al. 2017) (Fig. 2).

Gryllidea

The infraorder Gryllidea lists 6118 species according to the 
Orthoptera Species File (Eades et al. 2014) at the timing of 

Biophysical Reviews (2022) 14:75–9778

http://orthoptera.speciesfile.org/
http://orthoptera.speciesfile.org/


1 3

writing the manuscript. The Gryllidea includes two super-
families Grylloidea and Gryllotalpoidea. The latter consists 
of Gryllotalpidae (e.g., mole crickets) and Myrmecophilidae 
(e.g., ant-loving crickets). Within the Gryllidea, only 3–4% of 
species belong to the Gryllotalpidae. Grylloidea includes the 
family Gryllidae (true crickets), Mogoplistidae (scaly crick-
ets), Trigonidiidae, Phalangopsidae, and other families. Gryl-
lidae is the largest group in the Grylloidea, with over 3000 
valid species registered.

The phylogenetic relationships within Gryllidea are 
not fully understood due to a long history of conflict-
ing classification schemes (Fig. 2). Recent studies using 

the mitochondrial genome and a combination of nuclear 
and mitochondrial genes have shown that Grylloidea and 
Gryllotalpoidea are monophyletic sister groups (Song 
et al. 2015; Chintauan‐Marquier et al. 2016; Zhou et al. 
2017; Yang et al. 2021; Sanno et al. 2021). However, other 
studies or approaches have either not confirmed this rela-
tionship or have produced conflicting phylogenetic rela-
tionships (Song et al. 2020; Sanno et al. 2021). To fully 
understand the phylogenetic relationship between Gryl-
loidea and Gryllotalpoidea, we need genome sequences of 
a wide range of species included in this infraorder, which 
enable usage of single-copy gene sequences for building 

Fig. 2   Phylogenetic trees of 
Polyneoptera, Orthoptera, and 
Gryllidea. The tree topology 
of Polyneoptera is based on 
Misof et al. 2014 and Wipfler 
et al. 2019, and of Orthoptera 
is on Zhou et al. 2017 and Song 
et al. 2020. Because there has 
been no or little consensus on 
the relationships within the Tet-
tigoniidea, the lower taxonomic 
groups (Rhaphidophoroidea, 
Schizodactyloidea, Stenopel-
matoidea, Hagloidea, and 
Tettigonioidea) are collapsed 
into one subtree. For Gryllidea, 
the inferred topological trees in 
recent studies have been shown
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phylogenetic trees or of specific markers that accentuate 
the division of species.

The most up‑to‑date status of cricket 
genomics and transcriptomics

Cricket genomes have been ever studied in various contexts, 
such as evolutionary biology, developmental and regenera-
tive biology, and even entomophagy (Table 1). Out of the 

seven Orthoptera genomes registered in the National Center 
of Biotechnology Information (NCBI) Genome, the cricket 
genome that is currently sequenced consists of six species, 
namely Laupala kohalensis (Blankers et al. 2018a), Teleog-
ryllus oceanicus (Pascoal et al. 2019), T. occipitalis (Kata-
oka et al. 2020), Gryllus bimaculatus (Ylla et al. 2021), 
Acheta domesticus (Gupta et al. 2020), and Apteronemo-
bius asahinai (Satoh et al. 2021). The assembled size of 
current version of A. domesticus genomes registered in the 
NCBI (about 1.0 Gbp, GCA_014858955.1) is far less from 

Table 1   Recent studies on cricket genomics and transcriptomics

Research field Species Purpose Reference

Evolutionary biology Gryllus firmus and G. pennsylvanicus Gene flow in hybrid zone Maroja et al. 2009
Andrés et al. 2013
Larson et al. 2013
Larson et al. 2014
Maroja et al. 2015

Gryllus rubens and G. texensis Parapatric speciation Gray et al., 2008
Blankers et al. 2018b
Blankers et al. 2019b

Laupala spp. Coevolution of signal preference Blankers et. 2018a
Blankers et al. 2019a
Xu and Shaw 2019
Xu and Shaw 2021
Ylla et al. 2021

Teleogryllus oceanicus Dosage compensation in sexual antago-
nism

Rayner et al. 2021

Teleogryllus oceanicus Early stage of adaptive and parallel 
evolution (flatwing)

Pascoal et al. 2014
Pascoal et al. 2018
Pascoal et al. 2019
Zhang et al. 2021

Phenotypic plasticity Teleogryllus oceanicus and T. com-
modus

Evolution in X chromosome Moran et al. 2018

Gryllus firmus Wing polymorphism Nanoth Vellichirammal et al. 2014
Zera et al. 2018

Gryllus pennsylvanicus Cold tolerance Des Marteaux et al. 2017
Gryllus veletis Cold tolerance Toxopeus et al. 2019a

Compensatory plasticity Gryllus bimaculatus Structural neuronal changes in the audi-
tory system

Fisher et al. 2018

Gryllus bimaculatus Synaptic strength change in the cercal 
escape circuitry

Prasad et al. 2021

Developmental and 
regenerative biology

Gryllus bimaculatus and G. rubens Leg regeneration Bando et al. 2013
Gryllus bimaculatus and G. rubens Stage-specific transcriptome Zeng et al. 2013

Berdan et al. 2016
Kono et al. 2021

Entomophagy Acheta domesticus Domestication Oppert et al. 2020
Gryllus bimaculatus Domestication Ylla et al. 2021
Teleogryllus occipitalis Domestication Kataoka et al. 2020

Others Apteronemobius asahinai Circatidal rhythm Satoh et al. 2019
Satoh et al. 2021

Gryllus bimaculatus Codon usage frequency and expression 
level

Whittle et al. 2021b

Gryllus bimaculatus DNA methylation Ylla et al. 2021
Gryllus bimaculatus Sex-biased gene expression regulation Whittle et al. 2021a
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that of about 2.0 Gbp predicted by photometric measure-
ment (Lima-de-Faria et al. 1973; Gregory 2021). Gupta 
et al. sequenced a whole genome of A. domesticus not for 
its draft genome but for the development of microsatellite 
markers (Gupta et al. 2020). While genomes of A. domes-
ticus were sequenced only on the short-read sequencer for 
de novo assembly, the genomes of the other five species 
have been sequenced on a combination of short-read and 
long-read based next-generation sequencers. The sizes of 
these five genomes range from 1.6 for L. kohalensis and G. 
bimaculatus to 2.0 Gbp for T. occeanicus and T. occipitalis. 
As of August 2021, despite the advancement of technolo-
gies to construct draft genomes at the chromosome level 
in animals and plants, there are still no chromosome-level 
genomes in the crickets. However, the studies on the cricket 
genomes that have been sequenced so far show a wide range 
of potential for basic and applied research. In this section, 
we outline the areas of research in which the genome and 
transcriptome information of cricket has been used.

Evolutionary biology

Some of the cricket species have been studied for under-
standing the genomic structures underlying speciation. 
The Hawaiian swordtail cricket genus Laupala is one 
of the groups of crickets that has been most intensively 
studied for genomic architectures of reproductive isola-
tion and speciation. The Laupala cricket is rapidly radiat-
ing and thus endemic to each of the single islands in the 
archipelago, resulting in 38 species. The male Laupala’s 
mating song has a species-specific pulse rate that attracts 
females. In contrast, female Laupala shows an acoustic 
preference for the pulse rate of the same species. The 
rapid divergence and coevolution of the mating songs and 
conspecific acoustic preferences has been thought to be 
a driving force of sexual selection, thus making this spe-
cies a powerful system for dissecting the basis for parallel 
and convergent evolution. L. kohalensis is the first spe-
cies of cricket for which a complete genome sequence has 
been published (Blankers et al. 2018a). The draft genome 
of L. kohalensis was used to examine local variation in 
recombination rates across the genome and in relation 
to the location of the song and preference quantitative 
trait locus (QTL). The results showed that, contrary to the 
hypothesis that the suppression of interspecific recombi-
nation promotes the coevolution of song and preference, 
the genomic regions where male song and female prefer-
ence QTL coexist did not have particularly low recom-
bination rates (Blankers et al. 2018a). Further study has 
revealed that the repeated song-preference coevolutions 
in independent Laupala species share the same QTLs 
(Blankers et al. 2019a). Furthermore, the QTLs associ-
ated with male mating songs and female preference have 

been shown to be closely coupled, suggesting genetic 
coupling, and include genes underlying variation in song 
and preference divergence, such as genes involved in the 
neuronal formation, rhythmic muscle activities, and signal 
processing in auditory systems (Xu and Shaw, 2019; Xu 
and Shaw, 2021). Recent analysis on gene family expan-
sion/contraction has revealed the cricket-specific pick-
pocket gene family, which encodes ion channels and is 
involved in locomotion, neural modulation, and muscle 
development (Younger et al. 2013; Hill et al. 2017; Ylla 
et al. 2021). L. kohalensis has been shown to contain pick-
pocket genes in a genomic region associated with changes 
in song rhythm, possibly suggesting that song production 
in crickets is likely to be regulated by ion channels (Ylla 
et al. 2021).

Teleogryllus oceanicus is another model for evolution-
ary genomics. T. oceanicus also habitats in the Hawaiian 
Islands, and the male individuals adaptively lose their songs 
to protect them from a lethal, eavesdropping parasitoid fly 
Ormia ochracea (Zuk et al. 2006). The female fly identifies 
the location of male crickets by hearing their chirp and lays 
its eggs inside the crickets. The fly larvae grow inside the 
cricket and when they emerge a week or later, they kill their 
host. The silent population of the crickets was first observed 
in 2003 on Kauai and then rapidly spread in fewer than 20 
generations (with three to four generations per year) to near-
fixation, which thus reflects the early stage of adaptive evo-
lution. This genetic variant called “flatwing” was linked with 
the X chromosome (Tinghitella 2008). Interestingly, flatwing 
has also appeared on the different Hawaiian Islands, and 
these similar phenotypes have been associated with morpho-
metrically distinct wings and shown to be caused by inde-
pendent mutational events but not by genetic introgression 
between geographically different populations, as revealed by 
restriction associated DNA tag sequencing (RAD-seq) and 
genome-wide association study (GWAS) supported by high-
coverage resequencing data (Pascoal et al. 2014; Zhang et al. 
2021). Nevertheless, it has been shown that the populations 
on different islands have experienced recent and ongoing 
human activity-related gene flow, which theoretically coun-
teracts the generation and maintenance of parallel adapta-
tions (Zhang et al. 2021). The whole genome of this species 
has indeed revealed a flatwing QTL covering a large region 
of the X chromosome (Pascoal et al. 2019). This study also 
found that the flatwing male expresses different profiles of 
chemical pheromones, which is similar to the female ones, 
and this change is genetically associated with the X chromo-
some loci responsible for the flatwing phenotype, suggesting 
abrupt adaptation through pleiotropy or genomic hitchhiking 
(Pascoal et al. 2019). In other recent studies, genomic and 
transcriptomic information in T. oceanicus has been used to 
support the theory that phenotypic plasticity drives adap-
tive evolution (Pascoal et al. 2018) and to study the role of 
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dosage compensation in sexual antagonism (Rayner et al. 
2021).

Cricket has also been used as a model to study the genetic 
basis of parapatric or sympatric speciation that occurs within 
a continent, unlike allopatric speciation between the islands as 
described above. For example, two sexually isolated species, 
Gryllus rubens and G. texensis, are distributed in adjacent areas 
of the Eastern and Southern USA, forming a hybrid zone. They 
diverged 500,000 years ago followed by a long period of bidi-
rectional gene flow that lasted until 18,000 years ago, as revealed 
by sequence data of gene for mitochondrial cytochrome oxidase 
I and transcriptome-based SNP data (Gray et al. 2008; Blank-
ers et al. 2018b). The parapatric origin of G. rubens has been 
demonstrated, and a mechanism for the coevolution of mating 
song and preference has been proposed (Blankers et al. 2018b, 
2019b). Like this, other studies have utilized the field crickets 
G. firmus and G. pennsylvanicus, which interact and form a 
hybrid zone in the Eastern USA. They diverged more recently, 
200,000 years ago, and there is an ongoing gene flow despite 
prezygotic barriers (Maroja et al. 2009; Larson et al. 2013). 
Transcriptomic scan from individuals in a hybrid zone reveals 
candidate prezygotic barrier genes with remarkably reduced 
introgression including ones encoding cytoskeletal proteins, 
which are involved in critical steps in fertilization (Andrés et al. 
2013; Larson et al. 2013). The loci involved in speciation were 
speculated to be located on the X chromosome, which has been 
confirmed by a backcross experiment to construct a genetic 
linkage map for these species (Larson et al. 2014; Maroja et al. 
2015). Another example includes a pair of T. oceanicus and T. 
commodus, which are close species on the eastern coast in Aus-
tralia. RAD-seq-based comparative study about genetic variation 
at X and autosomal loci within and between the species poses a 
challenge to the theory that sex chromosomes are predicted to 
exhibit reduced diversity and greater divergence between species 
and populations compared to autosomes (Moran et al. 2018).

Phenotypic plasticity

Wing pleomorphism is a phylogenetically widespread and 
ecologically important feature of insects. The sand cricket 
Gryllus firmus exhibits a well-known wing polymorphism, 
consisting of a long-winged morph with functional flight 
muscles that is capable of flight, and two flightless morphs. 
The two flightless morphs differ in the timing of becom-
ing flightless, but both morphs show more pronounced 
fertility than the flight-capable morphs by the end of the 
first week of adult life. Thus, this species is an orthopteran 
model for studying a life-history trade-off between repro-
duction and flight capability in females. This polymorphism 
is polygenically and environmentally controlled, conferring 
morph-specific biochemical, physiological, and behavioral 
differences such as hormone level and energy consumption 
(Zera 2009). To better understand the molecular basis of 

these morph-specific adaptations, a de novo transcriptome 
analysis on different morphs has been conducted (Nanoth 
Vellichirammal et al. 2014). This research has identified 
genes involved in this polymorphism in flight muscle and 
fat bodies, including genes related to respiration, proteolysis, 
triglyceride biosynthesis, lipid transport, immune function, 
and reproduction (Nanoth Vellichirammal et al. 2014). Inter-
estingly, RNA-seq analysis also shows that flight-capable 
morphs have a significantly higher number of genes that 
exhibit diurnal changes in gene expression compared to 
flightless morphs (Zera et al. 2018). This model can be uti-
lized as a useful empirical model to study circadian aspects 
of life-history adaptation.

Moreover, the transcriptomics of some species has con-
tributed to the understanding of the mechanisms of cold 
tolerance in insects. Crickets originate from the tropics, but 
many species are also found in temperate zones and have 
their overwintering strategies. The fall field cricket, G. penn-
sylvanicus, is univoltine and overwinters in diapause in the 
soil as an egg. Although rapid cold hardening induces loss 
of homeostasis of ion and water and eventually death in G. 
pennsylvanicus, this species exhibits plasticity under cold 
acclimation (Coello Alvarado et al., 2015). Tissue-specific 
transcriptomic analysis shows that this species acquires cold 
tolerance by regulating the expression of genes encoding 
proteins involved in the transport of substances between 
hemolymph and gut (Des Marteaux et al. 2017). The spring 
field cricket, G. veletis, is also a promising model for mecha-
nistic studies of insect freeze tolerance. A laboratory model 
which mimics autumn-like conditions in nature induces 
freeze tolerance in the late instar juveniles, which is accom-
panied by gene expression regulation that may contribute 
to metabolic suppression as well as elevated membrane and 
cytoskeletal remodeling, cryoprotectant transporters, cyto-
protective proteins, and antioxidants (Toxopeus et al. 2019a, 
b).

Compensatory plasticity

The nervous system has the potential to adapt to the loss of 
one modality by making plastic changes to its structure, con-
nectivity, function, and neural interactions. The auditory sys-
tem of cricket has the capacity to respond to deafferentation 
even as an adult, through compensatory dendritic growth and 
subsequent synapse formation (Horch et al. 2011). Auditory 
interneurons, such as ascending neuron 2 (AN-2) in G. bimac-
ulatus, normally have dendrites that extend to, but not over, 
the midline of the prothoracic ganglion. However, after uni-
lateral removal of the ear, the dendrites of the ipsilateral AN-2 
are dramatically altered, with the medial dendrite extending 
beyond the midline to form a compensatory synapse with audi-
tory afferents from the contralateral ear. De novo transcriptome 
analysis on cricket prothoracic ganglia has identified several 
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well-conserved guidance molecules in neuronal wirings such 
as slit, netrin, ephrin, and semaphorin (Fisher et al. 2018). In 
addition to compensatory plasticity in the auditory system, 
crickets are also known to have the compensatory response 
of the escape behavior mediated by cerci, two antenna-like 
appendages located on the posterior end of the abdomen. Each 
cercus detects and integrates directional information on airflow 
originating from a predator with mechanoreceptor hairs, trig-
gering an appropriate escape response. Activation of the hairs 
on one side of the cercus stimulates the ipsilateral ascending 
giant interneurons, while the contralateral giant interneurons 
respond only slightly. However, when the ipsilateral cercus is 
removed, the giant interneurons from the remaining contralat-
eral cercus receive a stronger than normal excitatory signal. 
Unlike the auditory system, the compensatory plasticity in 
the cercal escape circuitry does not accompany the structural 
changes in dendrites and instead relies on shifts in excitatory 
and inhibitory synaptic strength. A terminal ganglion transcrip-
tome in crickets after unilateral cercal ablation has revealed 
enrichment of upregulation of genes involved in the ubiquitin-
proteosome protein degradation system, chromatin-mediated 
transcriptional pathways, and GTPase-related signaling system 
(Prasad et al. 2021).

Developmental and regenerative biology

The field cricket has been used as a model for understand-
ing developmental mechanisms in hemimetabolous insects 
(Donoughe and Extavour 2016). Although there are many 
transcripts of unknown function, the transcriptomic data 
on oogenesis, embryonic development, and instar develop-
ment are available for two field cricket species, G. bimacu-
latus and G. rubens (Zeng et al. 2013; Berdan et al. 2016; 
Kono et al. 2021). G. bimaculatus is emerging as a model 
for regeneration research. In this cricket, distal parts of the 
amputated leg are regenerated in response to injury. A key 
cell population called blastema, which has the pluripotent 
proliferative capacity, proliferates and differentiates to 
restore the lost parts of tissues. RNA-seq-based global gene 
expression profile during the early regeneration process has 
identified the JAK/STAT signaling pathway as a key signal-
ing pathway in blastema formation (Bando et al. 2013).

Entomophagy

Cricket is emerging as a future source of animal protein for 
human consumption and for vertebrate livestock. The crops 
and livestock that we humans eat today are the results of a 
long process of selection, which has conferred ideal traits, 
such as size, growth rate, stress resistance, and organo-
leptic properties, on the livestock. As will be discussed 
in the later sections, genome and transcriptome informa-
tion on crickets will contribute to the domestication of 

crickets and to the food production supported by insects. 
The genome of T. occipitalis was sequenced by the authors, 
explicitly intending to be applied for the first time to an 
alternative animal protein for human food and animal feed 
(Kataoka et al. 2020). T. occipitalis is mentioned in the 
Food and Agriculture Organization of the United Nations 
(FAO) report and is one of the edible species reared in 
Asian countries (van Huis et al. 2013). This species inhab-
its the southwestern islands in Japan, China, and Southeast 
Asian countries. The two-spotted cricket Gryllus bimacu-
latus and house cricket Acheta domesticus are probably 
the most widely distributed food and feed crickets in the 
world today. As of November 2021, genome information 
of G. bimaculatus and transcriptome information of A. 
domesticus are available (Oppert et al. 2020; Ylla et al. 
2021). Crickets are rich in nutrients, but this value could 
be further enhanced by improving their vitamin content and 
production of Omega-3 fatty acids. Genetic information 
related to immunity could also help to prevent infectious 
diseases in crickets (Hussain et al. 2020).

Others

Field crickets are also used in studies of gene expression 
regulation in hemimetabolous insects. In the recent study 
of G. bimaculatus genome, the pattern of DNA methylation 
common to holometabolous and hemimetabolous insects is 
mainly reported (Ylla et al. 2021). DNA methylation is an 
important DNA modification exclusively found in cytosine 
residues in eukaryotes, which is responsible for genome 
integrity and regulation of gene expression. Contrary to the 
mammalian pattern of DNA methylations, in which they 
occur throughout the genome except for CpG islands near 
promoters of genes (Suzuki and Bird 2008), DNA methyla-
tions in insect genomes frequently occur in the gene bodies 
(Bonasio et al. 2012; Feng et al. 2010), regulating behav-
ioral plasticity and social behavior. Studies on CpG deple-
tion, considered a reliable indicator of DNA methylation, 
have revealed that DNA methylated genes tend to perform 
housekeeping functions across insects including holome-
tabolous and hemimetabolous ones (Ylla et al. 2021). In 
addition to the epigenomics described above, the genome 
and transcriptome in crickets have been used for studying 
the sex-biased gene expression regulation, which is linked 
to protein sequence evolution (Whittle et al. 2021a) and the 
relationship between codon usage frequency and expression 
level in different tissues and sexes (Whittle et al. 2021b).

Another line of studies on cricket genome and transcrip-
tome involves biological rhythm. The mangrove cricket 
Apteronemobius asahinai, which is endemic to mangrove 
forest floors, shows an endogenous activity rhythm with the 
cycle of approximately 12.4 h formed by tidal flooding and 
ebbing (circatidal rhythm). RNA-seq analysis has detected 
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a few hundreds of significant circatidal cycling transcripts, 
including genes encoding antioxidants and detoxification 
enzymes (Satoh and Terai, 2019). The draft genome of this 
species has been recently sequenced by the hybrid Illumina/
Nanopore sequencing technologies, which will accelerate 
molecular research in the studies on circatidal rhythm (Satoh 
et al. 2021).

Genomic resources of polyneopteran insects

Since the publication of the genome sequence of D. mela-
nogaster in 2,000 (Adams et al. 2000), insect genomics has 
revolved largely around holometabolous insects. Hemimetab-
olous insects are of great importance for the study of external 
morphology, social behavior, lifestyle, and early evolution 
of winged insects, yet their study is still far behind that of 

holometabolous insects. In terms of genomic information, the 
number of species of hemimetabolous insects with genomic 
data registered in the NCBI is 101 as of August 2021, which 
is much less than 1305 for holometabolous insects (Table 2). 
Most of the genomic data for hemimetabolous insects is so far 
from Hemiptera, as represented by pea aphid Acyrthosiphon 
pisum. The genome of this species has been sequenced for the 
first time in hemimetabolous insects to study agricultural pests 
and symbiosis (The International Aphid Genomics Consor-
tium 2010). The number of genomic resources of polyneop-
teran insects is now 31, among which Orthoptera is just seven 
(Table 2). Previous studies have been biased toward holometa-
bolic insects and the limited information on the genome of 
Polyneoptera has undoubtedly hampered elucidation of the 
evolutionary history of the insect as a whole. However, recent 
advancements in long-read sequencing technologies and com-
putational analysis have opened the possibility of large-scale 

Table 2   Registration number of 
genomes of holometabola and 
hemimetabola in the NCBI

† Insecta represents the orders above plus the remaining orders: Protura, Collembola, Diplura, Archaegna-
tha, Zygentoma, and Psocodea

Order Taxonomy ID Number of genomes 
in the NCBI (August 
2021)

Holometabola (1305)
   Lepidoptera     7088   736
   Diptera     7147   272
   Hymenoptera     7399   210
   Coleptera     7041     75
   Trichoptera   30263       8
   Megaloptera   50553       1
   Neuroptera     7516       1
   Siphonaptera     7509       1
   Strepsiptera   30261       1
   Mecoptera   27420       0
   Raphidioptera   50482       0

Hemimetabola–Polyneoptera (31)
   Phasmatodea     7020     13
   Orthoptera     6993       7
   Blattodea   85823       6
   Plecptera   50622       4
   Dermaptera   27434       1
   Embioptera   50657       0
   Grylloblattodea   58557       0
   Mantodea     7504       0
   Mantophasmatodea 192413       0
   Zoraptera   30265       0

Hemimetabola–non-Polyneoptera (70)
   Hemiptera     7524     60
   Ephemeroptera   30073       4
   Odonata     6961       3
   Thysanoptera   30262       3

Insecta†   50557 1429
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analysis of genomes diversified from Polyneoptera (Hotaling 
et al. 2021). Here, we focus on the Polyneopteran genomes 
and analyze the characteristics of their genomes especially 
their genome size, chromosome number, and repetitive 
regions.

Genome size of polyneopteran insects

The genome size, or C value, is defined as the amount of 
haploid DNA per cell (Greilhuber et al. 2005). It is typi-
cally expressed in picograms (pg) or basepairs (bp), and 
their relation was established as 1 pg = 978 Mbp DNA 
(Dolezel et al. 2003). One of the reasons for the paucity 
of genomic data on Polyneoptera is probably attributed to 
its large genome size, making it challenging to sequence 
their entire genomes. Most holometabolan species have 
a relatively small genome among insects, ranging from 
68.5 Mbp to 3.61 Gbp (Fig. 3), as exemplified by about 
140 Mbp of a model organism D. melanogaster (Adams 
et al. 2000). Conversely, hemimetabolous species, par-
ticularly polyneopteran species, possess a wider range of 
genome size (Fig. 3), which ranges from 518 Mbp to 16.6 

Gbp. The species with the largest genome size in insects 
in the Animal Genome Size database (Gregory, 2021) is 
Podisma pedestris (Orthoptera; Acrididae) with 16.93 pg 
(16.56 Gbp), while the smallest genome size is 0.07 pg 
(68.46 Mbp) in Clunio tsushimensis (Diptera; Chironomi-
dae). Given that the number of genes carried by species in 
Polyneoptera is essentially constant, comparison of their 
genomes will be of great use in studying the evolution of 
genome size. Analysis of the distribution of genome sizes 
in Polyneoptera including Blattodea, Mantodea, Phasma-
todea, and Orthoptera, which have sufficient sample sizes, 
shows that the genome size of Orthoptera is remarkably 
variable (Fig.  3). This suggests that the genome size 
diversity of Polyneoptera should be largely due to that 
of Orthoptera. The genome size of Gryllidea ranges from 
1.55 Gbp in Hadenoecus subterraneus to 2.25 Gbp in 
Gryllus pennsylvanicus, which is a relatively small sub-
set of Orthoptera. Indeed, several lines of comprehensive 
studies also have suggested that genome sizes of insects 
in Gryllidea are in the minimum range for orthopterans 
(Hanrahan and Johnston 2011; Yuan et al. 2021). Con-
sidering that the median genome size of insects is 518.3 
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Fig. 3   Genome size variation in Insecta and Polyneoptera. The data on the genome size were collected from the Animal Genome Size Database 
(https://​www.​genom​esize.​com) (Gregory 2021)

Biophysical Reviews (2022) 14:75–97 85

https://www.genomesize.com


1 3

Mbp, the genome size of Gryllidea is quite large. Note that 
among the datasets of genome size of about 1160 insects, 
only about 50 species of Orthoptera are described, and of 
these, 40 species belong to the family Acrididae (Caelif-
era). For Gryllidea, there are data from only six species. 
We believe that unbiased datasets will allow for more 
sound insights in the future.

Genome size has a significant impact on a variety of 
fitness-associated parameters, including growth, metabo-
lism, life-history traits, and body size (Dufresne and Jef-
fery 2011; Alfsnes et al. 2017). In general, as genome size 
increases, cell size increases, which is a common tendency 
found in almost all organisms (Cavalier-Smith 1985; Greg-
ory 2002). An increase in cell size results in an increase 
in the duration of cell division (Bennett 1977). In many 
organisms, including insects, it is known that the longer 
the duration of cell division, the slower the growth rate 
(the longer time from hatching to adulthood in insects) 
(Alfsnes et al. 2017). Hence, genome size is negatively 
correlated with the developmental rate (positively corre-
lated with the developmental duration). For most animals, 
the duration of development influences adult body size. 
To increase the size of the body, it is necessary to either 
increase the development time or increase the growth rate 
(Roff 2000). Experimental data using reverse genetics in 
a cricket Gryllus bimaculatus provided evidence that the 
body size of adults increases with the duration of their 
developmental period (Ishimaru et al. 2016). Therefore, 
the great diversity of genome size in Orthoptera might 
be linked to the varying sizes of their body. Interest-
ingly, Orthoptera, along with Odonata (e.g., dragonflies) 
and Psocodea (e.g., lice), are the group of insects with 
the largest deviation in their body sizes (Rainford et al. 
2016). For instance, while there are ant-loving crickets 
(Myrmecophilidae), which have the smallest body size 
in all Orthopteran species, with adults measuring only 
2–3 mm, a giant weta Deinacrida heteracantha (Ensifera; 
Tettigoniidea) from New Zealand is the heaviest species 
in Orthoptera with females weighing up to 71 g (Williams 
2001) (Supplementary Table 1). Assuming that the weight 
of Myrmecophilidae ant-loving crickets is 2 mg, the dif-
ference in weight between the smallest and the largest 
Orthoptera species is 35,000-fold (Whitman 2008). Since 
body size and mass strongly correlate with fitness (Whit-
man 2008), the flourishing of species in Orthoptera with 
diverse ecological niches (> 28,900 described species) 
possibly reflects the tunability of their genome size. Con-
sistently, in flatworms and copepods, a strong association 
between genome size and body size has been reported 
(Gregory et al. 2000). However, a study that examined 
genome size and body size in Tettigoniidae species did 
not find a significant positive correlation between them, 
but it may need to be tested more rigorously with a larger 

sample size (Yuan et al. 2021). It would be interesting 
to investigate the mechanisms that allow for variation in 
genome size.

Chromosome number of polyneopteran genomes

One of the reasons that the genome sizes dramatically 
change may be attributed to chromosome-level structural 
changes. Chromosome number is a fundamental character-
istic of a genome. Changes in the number of chromosomes 
are caused by the division or fusion of chromosomes (de Vos 
et al. 2020), which ultimately promotes speciation. Decrease 
in the number of chromosomes can be caused by the loss 
of short nonessential DNA after the division of acrocen-
tric chromosomes at centromeres (termed as “Robertso-
nian translocations”) or by the fusion of telomeres of two 
chromosomes followed by the loss of centromeres on one 
of the chromosomes (Gordon et al. 2011). Conversely, an 
increase in the number of chromosomes can be caused by 
chromosomes dividing at or near the centromere (Moretti 
and Sabato 1984) or by a duplication of entire chromosomes. 
Although unusual in most groups of animals, whole-genome 
duplication can double the number of chromosomes (Beçak 
et al. 1970; Doyle et al. 2008). Chromosome number has a 
broad impact on many aspects of the biological system such 
as gene transcription (Sun et al. 2013), recombination rates 
(Dumont 2017), and sex chromosome evolution (Blackmon 
et al. 2017). For the linkage between chromosome number 
and sex determination, it has been found that species with 
many small chromosomes in beetles Coleoptera tends to 
shift from the XY system to the XO system rather than those 
with a small number of large chromosomes, which is thought 
to be due to the event of the loss of a small, nonessential Y 
chromosome (Blackmon and Demuth, 2015).

Insects vary enormously in chromosome number. Among 
insects, Lepidoptera (e.g., butterflies and moths) represents 
large intraspecific and interspecific variations in the num-
ber of chromosomal diploids with about 2n = 58 on average 
(Lukhtanov et al. 2011) (Fig. 4, Supplementary Table 2), 
according to the Animal Chromosome Count database 
(https://​croma​npa94.​github.​io/​ACC/) (Román-Palacios 
et al. 2021). Although most groups of Lepidoptera, just 
like other animals and plants, have a relatively stable chro-
mosome number, there are several families, for example, 
Lycaenidae (Talavera et al. 2013) and Papilionidae (Emmel 
et al. 1995), that have an unusually large number of chro-
mosomes. For example, the blue butterfly species Polyom-
matus atlanticus (Lycaenidae) has the largest number of 
chromosomes in the non-polyploid eukaryotic organisms, 
with at least n = 224–226 countable chromosome bodies 
(Lukhtanov 2015). In contrast, the Diptera, which has long 
been analyzed as a model organism among insects, has about 
2n = 11 on average. The diversity of chromosome numbers 
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across taxa can be explained by the difference in the rate of 
chromosomal mutations such as fusion, fission, and trans-
location. Indeed, genome rearrangement rates are signifi-
cantly higher in Lepidoptera than in Diptera by an order of 
magnitude (d’Alencon et al. 2010). The remarkable diversity 
in chromosome number in Lepidoptera was long thought 
to be due to chromosomal holocentricity (multiple kineto-
chores along their length rather than the single centromere), 
which enables the successful inheritance of novel fission or 
fusion fragments (Lukhtanov et al. 2018; Hill et al. 2019). 
However, the recent analysis suggested that chromosome 
number is independent of whether they have holocentric or 
monocentric chromosomes in any taxa of insects (Ruckman 
et al. 2020).

In polyneopteran insects, the number of chromosomes 
varies depending on the order. According to the analysis 
using the datasets deposited on the Animal Chromosome 
Count database, Phasmatodea and Blattodea have many spe-
cies with chromosome diploid numbers greater than 2n = 50, 
contributing to the extreme diversity of karyotypes in this 
order (Fig. 4, Supplementary Table 2). Phasmatodea and 
Blattodea have an average chromosome number of 2n = 40, 
which is clearly larger than the chromosome number of the 
remaining orders in Polyneoptera, which has an average of 

2n = 25, suggesting that they have a higher rate of chromo-
somal fission events than the other polyneopteran groups 
(Sylvester et al. 2020) (Fig. 4, Supplementary Table 2). 
Orthopteran diploid chromosome number is 2n = 22.5 on 
average and is less variable. Thus, Orthoptera is likely the 
order with the largest genome size relative to its small num-
ber of chromosomes in the polyneopteran insects (Sylvester 
et al. 2020). Within Orthoptera, Rhaphidophoridae exhibits 
a relatively high number of chromosome numbers, reaching 
a maximum of 2n = 58 in Diestrammena japanica (Makino 
1931) (Fig. 4). The chromosome number of Gryllidae shows 
a relatively wider variety rather than the other orthopteran 
lineages, ranging from 2n = 8 in Eneoptera surinamensis to 
2n = 29 in Gryllus assimilis, G. bimaculatus, and G. camp-
estris (Fig. 4). One possible explanation for this variety of 
chromosome numbers can be linked to ancient polyploidy in 
the ancestors of orthopteran sublineages; there is, however, 
no evidence of ancient genome duplications in the genomes 
of hexapods except Lepidoptera, Trichoptera, and Odonata 
(Li et al. 2018). Thus, it is reasonable to assume that the 
large variation in genome size in Orthoptera is not due to 
variation at the chromosome level but to some other poten-
tial factors. The diversity in chromosome number in Orthop-
tera, although not as much as in Lepidoptera, is expected to 

Fig. 4   Diploid chromosome 
number of Insecta and Orthop-
tera. The data on the chromo-
some number were collected 
from the Animal Chromosome 
Count database (https://​croma​
npa94.​github.​io/​ACC/) (Román-
Palacios et al. 2021)
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have been partly caused by chromosome fusion and division, 
which requires further investigation in the future.

Repeat sequences in polyneopteran genomes

Another underlying potential mechanism of diverse genome 
size in Orthoptera is involved in repetitive regions, in particular 
transposable elements (TEs), in their genomes. TEs are DNA 
sequences that can jump in host genomes and are widespread 
in eukaryotic organisms and are generally deleterious since 
they give rise to mutations that lead to sterility and malfor-
mations (Gilbert et al. 2021). TEs fall into two major classes 
(Finnegan 1989). Class I elements, or retrotransposons, rep-
licate and transpose via an RNA intermediate, which is often 
termed as the “copy and paste” mechanism of transposition. 
Retrotransposons include long and short interspersed ele-
ments (LINEs, SINEs) and long terminal repeat (LTR) ret-
rotransposons. In contrast, class II elements, also known as 
DNA transposons, use DNA intermediates in their “cut and 
paste” mechanism. DNA transposons have structural features 
that are unique to their superfamily. For example, hAT (hobo-
Ac-Tam3) superfamily, which includes hobo elements in D. 
melanogaster, Activator elements in maize and Tam3 ele-
ments in Antirrhinum majus, is characterized by DNA con-
sensus sequence corresponding to a domain of approximately 
50 amino acids located at the C-terminus. (Rubin et al. 2001). 
Furthermore, the P element in D. melanogaster is one of the 
most famous DNA transposons, which causes hybrid dysgene-
sis, a phenomenon whereby F1 hybrids between males harbor-
ing P elements and females lacking them shows several defects 
such as gonadal atrophy and sterility (Bucheton et al. 1984). 
Although TEs are viewed as “junk DNA” as a nonessential 
region of the genome in animals and plants, recent accumulat-
ing studies have updated this old view and revealed that they 
involve genome rearrangement, transcriptional regulation, and 
even immunity (Bourque et al. 2018). For example, TEs can 
disrupt coding sequences or gene regulation by transposing 
host genes or regulatory sequences. In other cases, chromo-
somal rearrangements (e.g., deletions, duplications, inversions, 
and translocations) can be induced by ectopic (nonhomolo-
gous) recombination. In insects, TEs are involved in the acqui-
sition of insecticide resistance (Chen and Li 2007; Itokawa 
et al. 2010) and the evolution of climate adaptation (González 
et al. 2010; Kim et al. 2014).

Comparative analyses of TE composition in insects have 
been conducted on several model organisms. For example, a 
comparison of 26 Drosophila species genomes has detected 
a strong phylogenetic signal on the evolution of both genome 
size and TE content (Sessegolo et al. 2016). Despite the 
ever-growing number of insect genomes sequenced to date, 
comprehensive study on the diversity and evolution of insect 
TEs remains surprisingly poor. In recent studies, in which 
a broad range of insect groups was used, TE contents have 

been found to vary greatly among the groups and even 
between species belonging to the same orders (Petersen et al. 
2019; Wu and Lu 2019). These studies have also confirmed 
that the genome size was positively correlated with TE con-
tent and diversity (Petersen et al. 2019; Wu and Lu 2019). 
The migratory locust Locusta migratoria, which belongs to 
Orthoptera and has the largest genome size of any insect 
sequenced to date (Wang et al. 2014), has been found to 
have 61 different TE superfamilies, which is the largest TE 
diversity examined, with the mean of 54.8 TE superfami-
lies in insects (Petersen et al. 2019). The TE landscape in 
Polyneoptera is dominated by LINEs (Petersen et al. 2019), 
although many species-specific TEs that are less represented 
in the database used in the study (Repbase) (Bao et al. 2015) 
are not well-covered.

We used the recently published genome information of 
polyneopteran insects to reanalyze the diversity of repetitive 
sequences, including TEs (Fig. 5, Supplementary Table 3). 
The relative repeat content of genomes from ten species cov-
ering three orders (Orthoptera, Phasmatodea, and Blattodea), 
and their genome sizes were shown in Figs. 5a and b (Sup-
plementary Table 4). In most species, “unclassified” elements, 
which need further characterization, represent the largest 
fraction. We further examined the relative contribution of the 
major repetitive elements (i.e., SINE, LINE, LTR elements, 
DNA transposons, rolling circles, and tandem repeats) to the 
genome sizes in Polyneoptera and found that LINE, LTR ele-
ments, DNA transposon, and rolling circles may contribute 
to the expansion of genome size in Polyneoptera (Fig. 5c). 
We also observed no correlation between the genome size 
and total repeat contents, which may be due to exception-
ally large repeat content for the genome sizes in C. secundus 
and M. natalensis. Furthermore, we compared the relative 
amount of each type of repetitive region between Orthoptera 
and non-Orthoptera, yet found no significant differences in 
any of the repeat regions (Fig. 5d). These results suggest that 
the repetitive content has little impact on the genome size 
expansion in Orthoptera, but it should be noted that sample 
sizes are small (especially for grasshoppers and locusts with 
extremely large genomes). In addition, it should be noted that 
the draft genomes studied here are sequenced by different 
sequencing technologies and assembled by different methods 
(Supplementary Table 3), which leaves the possibility that not 
all repeat sequences in the polyneopteran draft genomes have 
been correctly reconstructed. Overall, the several types of 
repetitive contents may contribute to the genome size expan-
sion in Polyneoptera, although investigating the contribution 
of repeat sequences to genome size in Orthoptera requires 
more sample size and high-quality genome sequences.

Repetitive sequences in the genome can cause chromo-
some breaks and structural rearrangements that alter the 
number of chromosomes (Carbone et al. 2014). While small 
genomes have a low copy number of TEs that are generally 
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Fig. 5   Repeat content and genome size in Polyneoptera. a Repeti-
tive contents of the polynepteran genomes were analyzed by Repeat-
Masker (Smit et  al. 2015) using Repbase (edition 20170127) (Bao 
et  al. 2015) and Dfam database (Storer et  al. 2021). The sources of 
the genomes used in the analysis are as follows: Gryllus bimacula-
tus, GCA_017312745.1; Teleogryllus occipitalis, GCA_011170035.1; 
Laupala kohalensis, GCA_002313205.1; Locusta migratoria, 
GCA_000516895.1; Medauroidea extradentata, GCA_003012365.1; 
Timema cristinae, GCA_002926335.1; Blattella germanica, 

GCA_003018175.1; Zootermopsis nevadensis, GCA_000696155.1; 
Cryptotermes secundus, GCA_002891405.2; Macrotermes natal-
ensis, GigaDB (http://​gigadb.​org/​datas​et/). b The genome sizes of 
the indicated species belonging to Polyneoptera in a. c Correlation 
between the genome size and each type of repeat sequence. The spe-
cies used in the analysis are the same as those used in a and b. d 
Comparison of the percentage of each repeat sequence in Orthoptera 
and non-Orthoptera
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constrained, large genomes have greatly varying numbers of 
TE copies (Kidwell, 2002). However, it has been suggested 
that there is no correlation between chromosome number 
and genome size in Polyneoptera (Sylvester et al. 2020). 
Indeed, the genome of Orthoptera, which contains a large 
number of TEs, has a huge genome size, but the diploid 
chromosome number is relatively stable within the order, 
averaging around 22.5 (Fig. 4). Thus, it is likely that the 
large size of the orthopteran genome is not related to chro-
mosomal rearrangements that depend on the abundance of 
repetitive structures.

Biological impact of genome size diversity 
in Orthoptera

Finally, we discuss how the diversity of orthopteran genome 
size can be involved in biology and evolution. A study that 
brings a phylogenetic view to the comparison of genome 
sizes in orthopteran insects suggests that the genome size of 
Tettigoniidae is expanding while that of Gryllidae is shrink-
ing (Yuan et al. 2021). As shown in Fig. 1, these two clades 
are the species-richest clade in Ensifera, indicating extensive 
species divergence. Yuan et al. have proposed the following 
scenario for the divergence of Tettigoniidae and Gryllidae in 
relation to their genome size (Yuan et al. 2021). The increase 
in the number of species in the Tettigoniidae may be due to 
events such as gene duplications and transposon insertions, 
which are also responsible for genome size expansion, caus-
ing beneficial mutations that result in the acquisition of new 
ecological niches (Dufresne and Jeffery 2011). In contrast, 
the reduction of genome size in Gryllidae may be advanta-
geous for survival by saving extra metabolic costs (Gregory 
and Hebert 1999). One interesting study using the bow-
winged grasshopper Chorthippus biguttulus investigated the 
relationship between male genome size and female prefer-
ence for songs (Schielzeth et al. 2014). This study found 
that genome size is reflected in male courtship songs and 
that females prefer the songs of males with smaller genome 
sizes (Schielzeth et al. 2014). Investigating the ecological 
effects of genome size reduction in Gryllidae will be a topic 
of future research.

Cricket as an alternative animal protein 
resource in the future

Orthopteran insects, including locusts, grasshoppers, and 
crickets, are consumed and occasionally reared, worldwide. 
Among orthopterans, cricket is considered one of the insects 
that are attracting attention most intensively as a source of 
food for humans and feed for livestock and to have the poten-
tial to contribute to food security and alleviate malnutrition. 
Indeed, among orthopterans, crickets are by far the most 

consumed insect in the world (Oonincx et al. 2015). As 
mentioned in the Introduction section, crickets have many 
advantages such as their high growth efficiency and trait 
that allows for high-density breeding (Nagasaki and Defo-
liart 1991; Oonincx et al. 2015). It is also worth noting that 
crickets are omnivorous, which provides the potential to feed 
on various types of food and agricultural wastes. Moreover, 
genetic modification techniques have already been estab-
lished for crickets. These technologies include piggyBac-
mediated transformation, TALEN, and CRISPR-Cas9 sys-
tem (Shinmyo et al. 2004; Watanabe et al. 2012; Awata et al. 
2015). These characteristics have made crickets a promising 
alternative animal protein source for researchers around the 
world.

Various crickets have been consumed in Asia, Latin 
America, and Africa since prehistoric times. Nowadays, a 
wide variety of Gryllidea insects are being consumed and 
reared around the world. 62 species of crickets have been 
reported to be consumed as human food or be used as live-
stock feed around the world (Magara et al. 2021). Repre-
sentative edible species include Gryllus bimaculatus, G. 
similis, G. assimilis, Gryllodes sigillatus, Acheta domesticus, 
Brachytrupes sp., and Gryllotalpa sp. The most frequently 
consumed family of crickets worldwide is the family Gryl-
lidae, followed by Gryllotalpidae (Jongema 2017). It has 
been recorded that as many as 20,000 farmers in Thailand 
produced 7500 tons of crickets each year (Hanboonsong 
et al. 2013). In Bangladesh, Brachytrupes portentosus, the 
largest species of cricket, is collected from the wild and sold 
in local markets (Hasan et al. 2021). In some places, this 
species is also consumed as a supplement for healthy men-
tal development and pre- and postnatal care (Rajkhowa and 
Rokozeno 2016).

There are many cases of farming crickets in different 
corners of the world, but keeping insects in a confinement 
often has a genetic impact through inbreeding depression, 
for instance, and hence new crickets in the wild are added to 
keep the farming. The inbreeding depression apparently is 
one of the causes that prevents crickets from being domes-
ticated and from expanding their production that sustains 
entomophagy. The cause of inbreeding depression lies pre-
dominantly in the presence of recessive mutations. Genome 
sequences can provide the basis for precise genomic breed-
ing. Once these recessive mutations in genes are identified 
based on the genome sequences, new ways to circumvent the 
inbreeding depression can be figured out. Cricket farming 
and breeding based on their genomic information will in 
effect mitigate food insecurity and contribute to the liveli-
hood of mankind.

Recent technology applied for plants can be used for 
crickets to expand their usage as food and feed. In plants, 
recent progress in genome science and genome edit-
ing technologies has sparked a revolution in the field of 
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precision breeding. The accessibility of high-throughput 
sequencing technologies and computational analysis 
has led to the rapid accumulation of genomic data. The 
genomic information can be used to identify desirable 
genes and traits that can be incorporated into wild rela-
tives of crop plants. Combining these data with genome 
editing technologies such as CRISPR-Cas9, it is now 
possible to edit plant genomes with extreme precision. 
Recent technology of genome editing has relatively easily 
enabled the manipulation of traits with a polygenic basis 
(Zsögön et al. 2018). We expect that the application of the 
latest biophysical technologies to crickets can realize the 
domestication of the species and overcome the challenges 
of commercialization of crickets as food and feed, such as 
size, taste, and allergies.

Conclusion and perspective

Advances in biophysical technologies in the last few dec-
ades have generated a large number of genomic datasets 
derived from a wide variety of insects, which has brought 
entomology into a new era and is making progress even 
in the field of applied research including entomophagy. 
Crickets have been used as an experimental model of hem-
imetabolous insects for developmental biology and neuro-
science, which is due to the fact that crickets have the fol-
lowing characteristics: (1) relatively short life cycle with 
about 1 month to hatch; (2) easy to maintain populations 
in the laboratory; and (3) capable of genetic manipula-
tion by RNAi or CRISPR-Cas9. The genomic information 
of crickets will not only provide insight into the genetic 
background underlying their ecological diversity but will 
also shed light on the evolution of genome size in insects 
and TE-driven evolution. In addition, the information will 
help the domestication of crickets for global food security.
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