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Abstract
Plants store triacylglycerides in organelles called oil bodies, which are important fuel sources for germination. Oil bodies 
consist of a lipid core surrounded by an interfacial single layer membrane of phospholipids and proteins. Oleosins are highly 
conserved plant proteins that are important for oil body formation, solubilising the triacylglycerides, stabilising oil bodies, 
and playing a role in mobilising the fuel during the germination process. The domain structure of oleosins is well established, 
with N- and C-terminal domains that are hydrophilic flanking a long hydrophobic domain that is proposed to protrude into 
the triacylglyceride core of the oil body. However, beyond this general understanding, little molecular level detail on the 
structure is available and what is known is disputed. This lack of knowledge limits our understanding of oleosin function 
and concomitantly our ability to engineer them. Here, we review the state of play in the literature regarding oleosin structure 
and function, and provide some examples of how oleosins can be used in commercial settings.
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Introduction

Plant seeds need a source of fuel to germinate. Once embry-
ogenesis begins, the required chemical energy is released by 
catabolising fuel stores, which generally consist of starch, 
proteins, and fats (Waschatko et al. 2016). Triacylglycer-
ides are glycerol esters of fatty acids and are a key energy 
storage molecule (Murphy 1993). However, because they 
are insoluble in water, plants store triacylglycerides in oil 
bodies, which are specialised organelles that provide easy 
access to the energy rich fats during the germination process.

The membrane of oil bodies comprises a phospholipid 
monolayer embedded with proteins (Yatsu and Jacks 1972; 
Fang et al. 2014; Kanazawa et al. 2020), which together 
envelop the stored triacylglycerides (Fig. 1a). The main pro-
tein component of oil bodies are oleosins (Tzen et al. 1993). 
Although the 3D structure of oleosins is largely unknown, 
they are predicted to fold into unique structure (Fig. 1b) 
that contains a central hydrophobic domain flanked by two 
hydrophilic terminal domains (an N-terminal domain and a 
C-terminal domain) (Pons et al. 2005). The terminal domain 
rest on the oil body membrane atop the phospholipid heads, 
while the central hydrophobic domain (H-domain) extends 
beyond the membrane and is embedded into the triacylg-
lycerides of the oil body (Jolivet et al. 2017). Within the 
H-domain is an unusual proline knot motif that is predicted 
to form a hairpin turn (Fig. 1b) that is conserved across all 
oleosin sequences (Huang 1996).

First reported in the late 1980s (Murphy and Cummins 
1989), oleosins are vital to the structural integrity of the oil 
body (Murphy 2001). Due to their amphiphilic nature, how-
ever, they are difficult to study and this has slowed research 
efforts. It has also resulted in conflicting results, especially 
in the context of the predicted structure (Li et al. 1992, Mil-
lichip et al. 1996). Overall, little is known about oleosin 
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structure or function—knowledge gaps that if addressed 
may inform new applications for oleosins in industry. Here, 
we will focus on the current state of knowledge for oleosin 
structure and function with a brief overview of their bio-
synthesis and examples of how they are being developed 
for commercial use.

Oil bodies: composition and structure

Oil bodies are small (0.5–2 µm) lipid-based intracellular 
organelles in plants (Fig. 1c) (Tzen et al. 1993; Huang 1996; 
Shimada et al. 2008). They are found in high levels in cer-
tain tissues, such as in seeds, flowers, pollen, stamen, and 
fruits (Dave et al. 2019). Functioning as an energy reserve 
for seeds during germination and post-germinative growth, 
oil bodies are thought to provide an increased surface area 
for lipase action during triacylglyceride mobilisation after 
dormancy or during germination (Huang 1992). Not all cells 
contain the same number of oil bodies—some can be oil 
body rich, while others have none (Fig. 1d shows coconut 
cells, highlighted by arrows, without oil bodies).

Oil bodies consist of a lipid core surrounded by an inter-
facial membrane of phospholipids and proteins (Dave et al. 
2019). The lipid core is largely composed of triacylglyc-
erides, but some bioactive compounds can be found (e.g., 

vitamin E, carotenoids and phytosterols) (Acevedo-Fani 
et al. 2020). The phospholipid fraction of the interfacial 
membrane predominantly contains phosphatidylcholine, 
which accounts for ~ 50% of the total phospholipids. Minor 
fractions of other phospholipids can also be found, such as 
phosphatidylserine, phosphatidylethanolamine and phos-
phatidylinositol (Huang 1992; Payne et  al. 2014). The 
protein fraction consists of membrane- specific proteins: 
oleosins, caleosins and steroleosins. The most abundant 
structural proteins of oil bodies are oleosins, covering 
most of the oil body’s surface (e.g., in Arabidopsis thali-
ana oleosins make up 79% of the oil body proteins (Jolivet 
et al. 2004)). Generally, oil body composition is 94–98% 
(w/w) triacylglycerides, 0.6–2.0% (w/w) phospholipids, and 
0.6–3.0% (w/w) protein (Tzen et al. 1993; Nikiforidis et al. 
2014).

The general arrangement of the interfacial membrane 
components (phospholipids and proteins) is largely known. 
At the interface, the hydrophobic tails of acyl moieties of 
phospholipids interact with the lipid core and the hydro-
philic head groups face the cytosol (Huang 1992; Tzen and 
Huang 1992). Oleosins are oriented with their terminal 
domains atop the phospholipid monolayer. It is thought 
that positive residues on the N- and C-terminal domains 
interact with the negatively charged phosphate groups of 
the phospholipids to support the interfacial structure of oil 

Fig. 1  a Schematic representa-
tion of the oil body structure 
(triacylglyceride core, phospho-
lipids and proteins of the inter-
facial membrane). b. Schematic 
representation of predicted oleo-
sin structure with the proline 
knot highlighted. c. Cryo-SEM 
images of the outer endosperm 
tissues of coconut adjacent to 
the testa. Magnified to show one 
cell. Bulbous looking spheres 
are the oil bodies indicated by 
arrows. Reproduced from Dave 
et al. (2019), with permission 
from Elsevier. d. Cryo-SEM 
images of the outer endosperm 
tissues of coconut adjacent to 
the testa. Multiple cells are in 
view, arrows show cells that 
have no oil bodies. Reproduced 
from Dave et al. (2019), with 
permission from Elsevier
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bodies (Ratnayake and Huang 1996; White et al. 2008). 
Functionally, oleosins are thought to stabilise oil bodies 
against coalescence inside plant cells through electrostatic 
repulsion and steric effects (Frandsen et al. 2001; Maurer 
et al. 2013). The saturated nature of the fatty acids in the 
phospholipid fraction may also increase the physical sta-
bility of oil bodies; the lack of double bonds allows the 
fatty acids to be fully extended, and closely packed, pro-
moting a firm anchorage of the oleosins and strengthening 
the oil body interface (Payne et al. 2014). Recent evidence 
suggests that the interfacial proteins of coconut oil bodies 
are disulfide-linked (Dave et al. 2019), which may further 
contribute to the stability of oil bodies.

Biosynthesis of oleosins and oil bodies

Oleosins are synthesised via the usual protein synthetic 
machinery, although there are several features to note. The 
ribosome synthesising the oleosin polypeptide chain is trans-
ported to the endoplasmic reticulum via the co-translation 
synthesis pathway (Fig. 2a) (Hills et al. 1993, Beaudoin et al. 
2000, Huang and Huang 2017). During translation, the sig-
nal recognition particle (Fig. 2a, in green) binds to the signal 
region within the developing polypeptide chain of the poly-
peptide/ribosome complex. The signal recognition particle 
then binds the signal recognition particle receptor attached 
to the endoplasmic reticulum membrane (Fig. 2a in orange). 

Fig. 2  a Schematic of oleosin synthesis. The signal recognition par-
ticle (green) binds to the polypeptide as it is being transcribed. The 
signal recognition particle carries the transcription machinery to the 
signal recognition particle receptor (orange) found on the endoplas-
mic reticulum membrane. Transcription of the oleosin then finishes 
with the H-domain being deposited into the membrane of the endo-
plasmic reticulum. The endoplasmic reticulum expands as more tria-

cylglycerides are synthesised and more oleosins are added, finally 
forming an oil body ready to bud off the endoplasmic reticulum. b. 
Predicted schematic of how oleosin breakdown could occur. Oleosin 
is first phosphorylated or ubiquitinated, this allows a protease to rec-
ognise the oleosin and begin the process of digesting the oleosin. This 
then allows room for lipase to bind and begin metabolising triacylg-
lycerides
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This mode of translation embeds the oleosin into the endo-
plasmic reticulum membrane (Loer and Herman 1993). 
There are two regions within the oleosin polypeptide chain 
that may bind the signal recognition particle: the first being 
a section of the H-domain found close to the N-terminal and 
the second is the proline knot motif (van Rooijen and Molo-
ney 1995; Abell et al. 1997; Abell et al. 2002; Beaudoin and 
Napier 2002; Huang and Huang 2017).)

The mechanism through which the oil body forms is not 
fully understood, although the most promising hypothesis is 
the budding model. Following the budding model, oil bodies 
have three main steps in their formation: 1) fatty acid syn-
thesis, 2) triacylglyceride assembly and 3) oil body budding 
(Song et al. 2017) (Fig. 2a). First the fatty acids are synthe-
sised in a plastid using glycerol derived from photosynthe-
sis. They are then moved to the endoplasmic reticulum and 
assembled into triacylglycerides. As triacylglycerides are 
being synthesised within the endoplasmic reticulum mem-
brane, oleosins are being deposited into the same region 
creating a budding oil body that is then detached from the 
endoplasmic reticulum (Fig. 2a) (Wanner et al. 1981; Hsieh 
and Huang 2004). The mechanism of release is not under-
stood and there is the question of how oleosins fold into their 
final structure in the oil body (Sarmiento et al. 1997, Song 
et al. 2017)—does this occur when deposited into the mem-
brane or during the budding process? Whether oleosins play 
a role in forming the sharp curvature that facilitates detach-
ment from the endoplasmic reticulum is an open question.

Although the budding model is more widely accepted, 
a second hypothesis for oil body formation is the post-
encasement model. This model suggests that triacylglyc-
erides build-up in the cytoplasm and are only encased in 
the oil body during the later stages of germination (Murphy 
1993). This though does not seem likely as triacylglycer-
ides are extremely hydrophobic and would not ‘linger’ in the 
hydrophilic environment of the cytoplasm. This theory also 
doesn’t explain how oleosins are deposited into the mem-
brane, whereas in the budding model oleosins are targeted 
to the endoplasmic reticulum. These factors make the post-
encasement model difficult to rationalise.

Decoding oleosin function

Stabilising oil bodies

It was established early on that oleosins stabilise oil bodies 
by preventing their coalescence or aggregation (Tzen and 
Huang 1992), which ensures a large surface area for lipase 
activity (Huang 1992). As noted, oleosins sit in the mem-
brane of the oil body, with the two hydrophilic termini sit-
ting atop of the phospholipid monolayer, and the H-domain 
nestled into the oil body. It is thought that both the N- and 

C-terminal domains and the H-domain play a role in stabilis-
ing the oil body.

Early studies demonstrated that oil bodies coalesce when 
the charge of the oleosins is neutralised, which could be due 
to the oleosin terminals dissociating from the phospholipids 
(Tzen et al. 1992). The removal of these domains results 
in the oil bodies coalescing and bursting, this leads to the 
idea that the two hydrophilic terminal domains brace the 
structure of the oil body membrane (Maurer et al. 2013). It 
is worth noting that most plant species have two different 
oleosin isoforms, which may have subtle differences in their 
function (Tzen et al. 1990). These isoforms have different 
molecular weights (e.g., in maize there is a 16 kDa lower, 
and an 18 kDa higher isoform), due to a longer C-terminus 
(Tzen et al. 1990). Both isoforms have been found in oil bod-
ies together (Hsieh and Huang 2004) with the lower isoform 
being more effective in its function of stabilisation (Tzen 
et al. 1998).

The length of the H-domain, which is identical in both 
plant isoforms, is important for the size and stability of oil 
bodies. Peng et al. (2007) tested this hypothesis by reduc-
ing the length of the H-domain in an oleosin and examin-
ing how this affected the protein and oil body. The wild 
type H-domain is predicted to have 30 residues preceding 
the proline knot followed by a further 29 residues (30r-PK-
29r). The study generated five truncated H-domain variants 
recombinantly: 18r-PK-29r, 18r-PK-17r,18r-PK-5r, 6r-PK-
5r, and 0r-PK-0r (i.e., just the proline knot). The N- and 
C-terminal domains are retained. When compared to the 
wild type oleosin, the 18r-PK-29r and 18r-PK-17r variants 
are able to form normal sized, stable artificial oil bodies 
and prevented coalescence. This is consistent with another 
protein in the membrane of oil bodies, caleosin, which also 
has a very similar, but shorter H-domain (18r-PK-18r) (Peng 
et al. 2007). Oil bodies with the 18r-PK-5r, 6r-PK-5r, and 
0r-PK-0r variants, however, show increasing susceptibility 
to coagulation, especially at elevated temperatures, leading 
to the conclusion that 18r-PK-17r is the shortest H-domain 
length required for oleosin stabilisation of oil bodies (Peng 
et al. 2007). Although this experiment would appear to show 
how unnecessarily long the oleosin H-domain is, finer trun-
cations of the H-domain may reveal subtleties in the role of 
symmetry in the residues either side of the proline knot of 
the H-domain. Perhaps the longer tail and the proline knot 
play a role for the formation of the oil body in vivo.

Role in germination

Oil bodies have an important role in germination, particu-
larly in the initial stages (Hsieh and Huang 2004; Purkr-
tova et al. 2008; Quettier and Eastmond 2009; Itabe 2010; 
Jolivet et al. 2013; Song et al. 2017). In general, oil bodies 
are metabolised by lipases and the glyoxysome, which is 
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often found close to oil bodies (Hayashi et al. 2001). Lipases 
catalyse the stepwise hydrolysis of triacylglycerides to dia-
cylglycerides, which is the first step in the gluconeogenic 
pathway (Lin et  al. 1983; Wong and Schotz 2002) and 
the glyoxysome is a peroxisome and holds many of the 
enzymes that are involved in breaking down fatty acids to 
carbohydrates (Beevers 1979, 1980; Chapman and Trelease 
1991). How lipase and the glyoxysome interact with the oil 
bodies is a mystery, however there is evedence that oleosins 
may be involved in these crucial interactions.

Oleosins are reported to be phosphorylated by a ‘ser-
ine, threonine, tyrosine protein kinase’ during germination 
(Fig. 2b) (Parthibane et al. 2012a, 2012b); Ramachandiran 
et al. 2018). In Arachis hypogaea (peanut), oleosin (OLE3) 
has been shown to be part of a complex of proteins that has 
duel monoacylglycerol acyltransferase and phospholipase 
A2 activities (Parthibane et al. 2012a, 2012b). The ‘ser-
ine, threonine, tyrosine protein kinase’ was shown to bind 
to peanut OLE3 and phosphorylated predominantly serine 
residues, particularly Ser18, which is not conserved across 
oleosins (Fig. 3a) (Parthibane et al. 2012a, 2012b). Simi-
lar studies in Arabidopsis thaliana OLE1 found that it was 
also phosphorylated by a ‘serine, threonine, tyrosine protein 
kinase’ on Thr166, which is again not conserved (Fig. 3a) 
(Ramachandiran et al. 2018). The role of phosphorylation 
may be to recruit proteins, such as proteases, to the oleosin, 
although these studies raise the possibility that the N- and 
C-terminal domains may have their own catalytic functions.

Thiol-proteases are reported to degrade oleosins from the 
oil body, allowing lipases access to the oil body for tria-
cylglyceride digestion (Fig. 2b) (Sadeghipour and Bhatla 
2002; Vandana and Bhatla 2006). Tracking the abundance 
of oleosins throughout germination using SDS-page analysis 
demonstrated that the lowest molecular weight sunflower 
oleosin disappears and this coincides with the increasing 
activity of a 65-kDa thiol-protease (Vandana and Bhatla 
2006). Zymographic analysis demonstrated that the pro-
tease interacts with the oil body and that the protease could 
degrade oleosins when it was isolated with oil bodies. When 
the concentration of the protease is increased, all oleosins in 
the oil body were removed regardless of the isoform (Van-
dana and Bhatla 2006).

Similarly, oleosins, along with other proteins, may be 
removed from the oil body via the ubiquitination pathway 
(Fig. 2b) (Hsiao and Tzen 2011; Deruyffelaere et al. 2015). 
Removal of oleosins via ubiquitination is thought to occur 
as the first step in the germination process. Oleosins isolated 
from seeds during germination, and analysed by protein 
mass spectrometry, were found to contain ubiquitin. This 
was supported by immunological detection with antibodies 
against both oleosin and ubiquitin (Hsiao and Tzen 2011; 
Deruyffelaere et al. 2015). Higher isoforms of oleosins and 
caleosin (from Sesamum indicum (sesame) and Arabidopsis 

thaliana) were found to be ubiquitinated at the C-terminal 
regions (Hsiao and Tzen 2011; Deruyffelaere et al. 2015). 
There are lysine residues on the C-terminal domain of the 
higher isoform that could serve as a site for ubiquitination

A limited structural understanding 
of oleosins

The domain structure of oleosins is well established based 
on their amino acid sequence (Fig. 3a). The N- and C-termi-
nal domains are hydrophilic, whereas the middle H-domain 
is hydrophobic (Huang 1992). The long H-domain, which 
spans around 68–74 residues, is thought to be the longest 
hydrophobic stretch of residues found in any protein (Huang 
1992; Hsieh and Huang 2004; Huang and Huang 2015). 
Beyond the primary structure, where oleosin sequences have 
been accumulating as plant genome sequences are reported, 
the only structural information for oleosins comes from 
Fourier transform infrared spectroscopy and circular dichro-
ism spectroscopy, which reports on the proteins secondary 
structure in the far-UV range (180–230 nm) and on pro-
tein tertiary structure in the near-UV range (260–320 nm). 
However, protein structures can now be predicted from the 
primary sequence using protein folding software, such as 
AlphaFold (Jumper et al. 2021) or RaptorX (Xu et al. 2021) 
with surprising accuracy—here we have considered the 
AlphaFold model of OLE1 from A. thaliana (Fig. 3b) and 
used RaptorX to generate oleosin structures from almond, 
hemp, and sunflower.

The N-terminal domain is roughly 40 residues in length 
and is predicted to contain both α-helices and β-sheets (Li 
et al. 1992, Li et al. 1993, Lacey et al. 1998). Despite these 
findings, the protein folding software AlphaFold predicts 
the N-terminal to be disordered (Fig. 3b). Similarly, the 
RaptorX models (Fig. 3b) of the N-terminal domain from 
almond, hemp, and sunflower oleosins were predicted to 
be largely disordered, although a short helix is predicted. 
The C-terminal domain, which is ~ 65 residues in length, is 
α-helical based on circular dichroism spectroscopy and Fou-
rier transform infrared spectroscopy experiments (Li et al. 
1992, Lacey et al. 1998). The C-terminal appears to have 
positively charged residues spaced periodically throughout 
the primary sequence (Fig. 3a). These positively charged 
residues are thought to be on the underside of the helix and 
interact with the negatively charged phospholipid heads to 
hold the terminal end to the oil body membrane (Li et al. 
1992, Tzen et al. 1992, Lacey et al. 1998). The models from 
AlphaFold and RaptorX suggest that the C-terminal domain 
contains an α-helix, but is largely disordered. It may be that 
the N- and C-terminal domains have a unique fold, or that 
they require the interactions with phospholipids to correctly 
fold.
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The secondary structure of the H-domain is a bone of 
contention. Early research carried out on rapeseed oleo-
sins proposed that the hydrophobic domain was made up of 
antiparallel β-strands based on circular dichroism and Fou-
rier transform infrared spectroscopy data (Li et al. 1992). 
However, this was quickly contested with contrasting evi-
dence from circular dichroism experiments demonstrat-
ing largely α-helical content in the H-domain of sunflower 
oleosins (Millichip et al. 1996). These studies used different 
methods of protein purification leading to debate on which 
method best represents the in vivo structure (Beisson et al. 
1996). However, there have been further reports since of 
α-helix content in safflower and sunflower seed oleosins 
(Lacey et al. 1998, Alexander et al. 2002) and β-strand con-
tent in rapeseed oleosins (Li et al. 2002). Whether these 
differences are due to species or differences in protein prepa-
ration remains to be seen.

Those who support the β-strand hypothesis suggest there 
are two β-strands, one going down from the N-terminus and 
one coming back up from the hairpin loop to the C-terminus, 
in an antiparallel arrangement (Li et al. 1992; Tzen et al. 
1992; Huang 1996; Li et al. 2002). Li et al. (2002), also pre-
dicted that the β-sheets of separate oleosins will interact with 
each other via hydrogen bonds between the β-sheets. Those 
who support the α-helix hypothesis propose there are two 
antiparallel α-helices (Alexander et al. 2002). The α-helical 
model has the advantage of ensuring the partial charges on 
the peptide backbone are not exposed to the hydrophobic 
environment and instead form hydrogen bonds through the 
helix and that any hydrophilic sidechains can hydrogen bond 
in the inter-helical space securing the two helices together 
(Alexander et al. 2002). They further propose that two con-
served residues Thr67 and Thr97 are in this inter-helical 
space and are conserved due to their role in holding the 
helices together (Alexander et al. 2002). However, a protein 
sequence alignment (Fig. 3a) shows that these residues are 
not highly conserved but there are usually threonine residues 
within the domain. The AlphaFold model suggests that the 
H- domain is α-helical. Others have generated their own 
models of oleosins with similar results to AlphaFold (Huang 
and Huang 2017).

Despite the inconsistencies in the secondary structure of 
the H-domain, most researchers agree on the importance of 
the proline knot motif that creates that hairpin turn (Tzen 

et al. 1992; Hsieh and Huang 2004). All the polypeptide 
chains of oleosins currently under study have the same three 
proline residues and one serine residue in the same position 
(PX5SPX3P) in the middle of the central hydrophobic chain 
(Hsieh and Huang 2004) (Fig. 3b). The proline knot also 
looks to be essential in inserting oleosins into the oil body 
during oil-body formation in the ER (as mentioned above). 
The conformation of the proline knot is noted in AlphaFold 
to be difficult to predict; this is likely due to its unusual 
protein sequence. It is becoming clear that the only way to 
determine the structure of oleosins is experimentally.

The translation of oleosins in industry

Despite the many gaps in our understanding of oleosin struc-
ture and function, oleosins have found application in com-
mercial settings and we highlight some recent examples.

Oleosins have the potential to aid drug delivery. Cancer 
medications have a reputation of being non- specific (Schil-
sky 2010; La Thangue and Kerr 2011) and can be hydropho-
bic which makes drug delivery challenging. Hydrophobic 
medicines are not easily delivered by oral or intravenous 
methods due to poor solubility, instability, and low mem-
brane permeability (Porter et al. 2007; Savjani et al. 2012; 
Cho et al. 2018). Some have exploited oleosin stabilised 
oil bodies to create easier and more effective methods for 
delivering cancer medications to their intended site. Here, 
oleosins are a part of an artificial oil body which holds in its 
centre the hydrophobic medicine meant for treating the can-
cer (Chiang et al. 2018; Cho et al. 2018). Both Chiang et al. 
(2018) and Cho et al. (2018) also fused specific signalling 
proteins to the oleosins to target the oil body and drug to the 
cancer cells. Chiang et al. (2018) fused an epidermal growth 
factor receptor targeting motif to the N-terminal domain of 
the oleosin which targets cells with the epidermal growth 
factor receptor, commonly found in lung cancer cells. Cho 
et al. (2018) instead fused to the C-terminal domain of oleo-
sins an immunoglobulin-binding protein, which binds anti-
bodies that could target breast cancer cells. The artificial oil 
body contained carmustine, which is a hydrophobic cancer 
drug. Both methods exploited oleosins fused with ancillary 
proteins that target the oil body and its hydrophobic drug 
payload to specific cells.

Human fibroblast growth factor (hFGF) has been shown 
to aid in wound healing and hair growth (Jimenez and 
Rampy 1999, Braun et al. 2004, Jang 2005, Lin et al. 2015). 
However, it is difficult to express recombinantly and has 
poor thermal stability and poor transdermal absorption 
(Kovacs et al. 2006; Wang et al. 2007). The expression of 
oleosins fused with hFGF in plants has been suggested as 
a possible solution (Li et al. 2017, Cai et al. 2018). Studies 
on oil bodies with oleosins fused to hFGF9 and hFGF10 

Fig. 3  a Sequence alignment of oleosins. The green line signifies the 
approximate N-terminal, the orange line signifies the approximate 
H-domain, the purple line signifies the proline knot motif, and the 
pink line signifies the approximate C-terminal, Box one highlights 
Ser18, box two highlights Thr166. b. Oleosin models of OLE1 A. 
thaliana generated using AlphaFold, and models of almond, hemp, 
and sunflower oleosins generated using RaptorX. The proline knot 
motif of A. thaliana is highlighted with the conserved residues indi-
cated

◂
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isolated from safflower seeds found that both proteins were 
still able to work effectively (Li et al. 2017, Cai et al. 2018). 
Mice treated with oil bodies containing oleosin-hFGF had 
improved wound healing and hair growth compared with just 
recombinant hFGF. The oleosin and oil body were able to 
stabilise the hFGF and therefore make its application more 
efficient. Similar studies have used human epidermal growth 
factor (hEGF), which has similar applications as hFGF 
(Mroczkowski and Ball 1990; Jahovic et al. 2004; Hee Na 
et al. 2006) and the harvested oil bodies can be directly given 
to the patient (Qiang et al. 2020).

Despite a limited understanding of the structure of oleo-
sins, these examples clearly demonstrate an opportunity to 
revolutionise drug delivery systems. A deeper knowledge 
of the structure of oleosins will allow us to understand 
how oil bodies are formed and stabilised. This will inform 
future engineering efforts, to utilise oil body systems to 
their full potential.
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