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Abstract
Prostate-specific membrane antigen (PSMA), also called glutamate carboxypeptidase II (GCP(II)), is a Zn-dependent met-
alloprotease that is known as a well prostate cancer indication and a potential targeting towards anti-cancer medicines 
and drug delivery. Because of its centrality in the diagnostics and treatment of prostate cancer, several types of inhibitors 
are designed with particular scaffolds. In this study, important groups of related inhibitors as well as reported experimental 
and computational studies are being reviewed, in which we examined three functional groups on each group of structures. 
The importance of computational biochemistry and the necessity of extensive research in this area on PSMA and its effec-
tive ligands are recommended.

Keywords  Prostate-specific membrane antigen (PSMA) · GCP(II) · Prostate cancer (PCa) · Inhibitor · Computational 
biochemistry

Introduction

Prostate-specific membrane antigen (PSMA), also known 
as glutamate carboxypeptidase II (GCPII), is a 750 amino 
acid transmembrane protein in the central nervous system, 
and as a surface membrane protein, it has a high degree 
of availability (Jones et al. 2020, Lutje et al. 2017). This 
type II transmembrane metallopeptidase catalyzes the 
configuration of N acetylaspartylglutamate (NAAG) to N 
acetylaspartate (NAA) and glutamate (Ferraris et al. 2012). 
It is really a Zn2+-dependent metalloprotease out from M28 
peptidase group that is found on the cytoplasmic and apical 
surfaces of the prostate epithelium in benign prostatic cells. 

PSMA is shifted from the cytoplasm to the luminal surface 
of the prostatic channels when it undergoes malignant 
transformation, where that displays substrates with such a 
huge extracellular domain (Wright et al. 1995). It is also an 
important proposition for molecular imaging and targeted 
treatment utilizing highly specific radiolabeled PSMA 
ligands, in other words, inhibitors, owing to their strong 
and constant expression in PCa (Jones et al. 2020, Lutje 
et al. 2017).

The related ligands may now be synthesized using 
a variety of scaffold structures. Similar to glutamate, 
pentanedioic acid contains a zinc-binding group that almost 
always interacts with the catalytic zinc atom throughout 
the PSMA binding site and a substituent that generally 
resides either inside the S1 binding pocket or even inside 
of the protein that really extends to the substrate (Yang et al. 
2016). Scaffolds consisting of several groups: phosphonates/
phosphinates (Jackson et  al. 2001), phosphoramidates 
(Maung et al. 2004), and ureas (Kozikowski et al. 2001) are 
efficient zinc-binding groups for binding related to GCPII. 
Furthermore, thiol (Majer et al. 2003) and hydroxamate 
(Stoermer et al. 2003) are known to be beneficial zinc-
binding groups (Lutje et al. 2017). All the details related 
to three important general groups as effective inhibitors of 
PSMA, and related research studies will be discussed in 
this study.
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GCPII structure

The ectodomain of GCPII is based on three interwoven 
domains (Davis et  al. 2005). The extracellular part of 
GCPII folding into 3 different domains and residues aris-
ing from each of the three domains participate to substrate 
recognition by shaping the GCPII identification pocket 
(Fig. 1). The protease domain spans amino acids 57 to 
116 and 352 to 590, and the apical domain protects the 
active site and forms the wide substrate binding tube with 
the protease domain. The GCPII structure contains two 
other inorganic ions in addition to two zinc ions: Cl− and 
Ca2+ (Hlouchová et al. 2012).

As well as the zinc ions, the active site of PSMA 
is containing a water molecule that has already been 
activated and interacts with the carbonyl oxygen of the 
inhibitors’ ureido motif (Pastorino et  al. 2020). The 
binding site is required for PSMA’s hydrolytic activity, 
whereas inhibitors block the hydrolysis of enzyme and 
operate as an amide-bio isostere. In addition, the active 
site of the protein consists of two pockets: the S1′ 
pocket which is regarding the glutamate-sensing and 
the S1 pocket that is related to the non-pharmacophore 
site (Mesters et al. 2006; Bařinka et al. 2012) (Fig. 2). 
Furthermore, the “arginine patch,” which may transition 
among two different conformations and moreover 
specify the diameter of the S1 derivative pocket, is a 
key component of the S1 pocket (Barinka et al. 2002; 
Machulkin et al. 2016) (Fig. 2).

In addition, significant studies have been performed 
on mutated structures of GCPII. Mlochová et al. created 
and analyzed 12 GCPII mutants that targeted amino acids 
around substrate/inhibitor binding sites. The experimental 
findings, combined with molecular modeling, suggest 
that the amino acid residues delineating the S1′ pocket 
of enzyme, specifically Arg210, contribute primarily to 
the high affinity binding of GCPII substrates/inhibitors. 
However, the residues forming the S1 pocket may be 
more important for GCPII substrate specificity “fine-
tuning” (Mlcochová et al. 2007). Klusák and colleagues 
also created a mutant of human GCPII (GCPII(E424A)) 
in which Glu424, a potential proton shuttle residue, is 
replaced with alanine to study peptide hydrolysis in 
greater detail. Considering N-Ac-Asp-Glu as a substrate, 
kinetic analysis of GCPII(E424A) demonstrated a 
complete loss of catalytic activity, implying that Glu424 
is directly involved in peptide hydrolysis (Klusák et al. 
2009). Furthermore, Barinka et  al. in their research 
found that N-glycosylation is required for correct folding 
and subsequent secretion of human GCPII (Barinka 
et  al. 2004). The predicted N-glycosylation sites are 
also critical for GCPII carboxypeptidase activity, 
according to the analysis. Researchers further reveal 
that an oligosaccharide moiety occupies all anticipated 
N-glycosylation sites and that glycosylation at sites 
other than the putative catalytic domain is crucial for 
GCPII’s NAAG-hydrolyzing activity, and it casts doubt 
on the validity of previously characterized structural 
models of GCPII (Barinka et al. 2004). Human glutamate 

Fig. 1   Graphical representation 
of PSMA/GCPII transmem-
brane protein
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carboxypeptidase II, on the other hand, operates as a 
folate hydrolase in the small intestine in addition to its 
well-known involvement in the central nervous system. 
A comparison of GCPII wild-type and His475Tyr 
variants’ thermal stabilities and folate-hydrolyzing 
activity was performed by Navrátil et al. (Navrátil et al. 
2014). As more than just a conclusion, they mentioned 
that the crystallographic data show a lot about how 
polyglutamylated folates attach to GCPII, particularly 
the role of the arene binding site in recognizing the folic 
acid moiety. Furthermore, the structural and kinetic 
results imply that the wild-type and His475Tyr variants of 
GCPII are functionally equivalent (Navrátil et al. 2014). 
As a result, depending upon which region of the protein 
structure the mutation occurs in, it might impact the 
protein’s function and, as a result, modify the inhibitor’s 
action. In this study, we have tried to study different 
families of ligands and considering that the structure of 
the protein has no mutations.

GCPII inhibitors and ligands

Since inhibition of GCPII enzyme activity in the brain 
results in neuroprotection, selective GCPII inhibitors are 
becoming a significant field of GCPII-focused research. 

Furthermore, inhibitors can be employed as “homing 
devices” for GCPII-based prostate cancer imaging (Zhou 
et al. 2005; Rowe et al. 2016; Kiess et al. 2015). As a 
result, a large variety of GCPII inhibitors with various 
chemical scaffolds, which almost all of them originated 
from NAAG, have been reported during the last 20 years 
(Fig. 2).

As previously stated, GCPII is thought to be a viable 
target for the therapy of a variety of neurological 
illnesses related to glutamatergic neurotransmission 
dysfunction. In animal models of several of these 
illnesses, GCPII inhibition has also been demonstrated 
to be neuroprotective. As a result, one of the most obvious 
goals of structural investigations of GCPII is to gain 
insight into the active site, enabling the development of 
more specific and powerful inhibitors with acceptable 
pharmacokinetic features.

Adaptable oxoanions like phosphate and sulfate, as well 
as divalent metal ion chelators like EDTA and EGTA, 
were the first chemicals to be found to inhibit GCPII 
(Robinson et al. 1987). Other zinc-binding groups were 
explored for their capacity to inhibit GCPII in addition 
to compounds with phosphonate or phosphinate groups 
as active site zinc ion chelators. The thiol-based inhibitor 
(2-MPPA) was discovered to be not only powerful but 
also the first orally accessible GCPII inhibitor (Majer 

Fig. 2   GCPII inhibitors are designed in a general way. The structure 
of the NAAG is used to design inhibitors of GCPII. A zinc-binding 
group (ZBG) in the GCPII inhibitors chelates the catalytic zinc ions 
in the active site. The glutamate moiety is linked to the zinc-binding 
group (ZBG) at position 2 (connector A). The residues at the S1′ site 

bind glutamate firmly. The hydrophilic subsite S1 binds an extra car-
boxyl group at the P1 position (linked through connector B). GCPII 
inhibitors are divided into three categories: phosphonate/phosphinate-
based, urea-based, and thiol-based chemical structures
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et  al. 2003). Compounds having a zinc-binding group 
of hydroxamate were also investigated; however, they 
were shown to be less effective GCPII inhibitors than 
those based on phosphonate or thiol (Stoermer et  al. 
2003). Aside from the inhibitors listed above, urea-based 
compounds have also been shown to effectively inhibit 
GCPII (Kozikowski et al. 2001, 2004). In this study, three 
different types of inhibitors were investigated. Researchers 
in the field of drug design will benefit from having a 
thorough understanding of the various classes of PSMA 
protein inhibitors. The goal of this study is to review 
current investigations of these three main categories of 
PSMA-related inhibitors, with the hope that the findings 
will provide new ideas to continue in the field of design 
and synthesis of effective multifunctional compounds in 
both imaging and therapy, and it was discovered that urea-
based inhibitors are the most efficient, while phosphorus 
and thiol-based inhibitors are less effective.

The main ligand-binding cavity of PSMA is separated 
into three groups (related to the zinc-binding group called 
ZBG): phosphorus-based compounds, e.g., phosphonates 
and phosphinates, urea-based structures, and thiols (Fig. 2).

Phosphorus (and its related structures)‑based GCPII 
inhibitors

Phosphorus-containing inhibitors were the first GCPII 
inhibitors to be discovered, and they were essential in 
gaining a better knowledge of GCPII’s physiological 
activities (Haas et al. 2010). The tetrahedral phospho-
rus group resembles the cleaved peptide bond’s (tetra-
hedral) transition state.

Phosphinate and phosphonates inhibitors

When in 1996, the phosphonate-based GCPII inhibitor 
2-(phosphonomethyl)pentanedioic acid (2-PMPA) was 
developed, it quickly became a benchmark in terms of its 
performance and efficiency (Haas et al. 2010). With the 
exception of 2-PMPA and the other phosphonates, a vari-
ety of phosphinate PSMA inhibitors have been reported (Su 
et al. 1995). Nonetheless, due to a lack of oral bioavailabil-
ity, they have never achieved their potential as therapeutic 
agents, and research has moved in a new path, particularly 
into urea-based inhibitors (Chang et al. 2005). As a result, 
the publication of orally accessible 2-PMPA prodrugs in 
2016 came as a surprise (Kalariti et al. 2004). The early 
studies on phosphonate and phosphate inhibitors, including 
the effective PSMA inhibitor 2-PMPA with IC50 0.9 nM 
along with thiol-based PSMA inhibitors, were done at ZEN-
ECA and afterward Guilford Pharmaceuticals (Jackson et al. 
1996; Majer et al. 2003).

Phosphoramidate inhibitors as radiopharmaceutical 
compounds

Berkman’s group then performed extensive studies with 
phosphoramidate inhibitors (IC50s 0.5–20 nM). The effec-
tiveness of inhibitors is often reported by criteria called IC50 
or Ki. IC50 is the half-maximal inhibitory concentration. 
This criterion, in reality, assesses a substance’s ability to 
impede a certain biological or metabolic activity. (Anderson 
et al. 2007; Liu et al. 2008b; Maung et al. 2004; Foss et al. 
2012). Agents designed to target prostate-specific membrane 
antigen (PSMA) are a fast-developing category of radiophar-
maceuticals for prostate cancer diagnostic imaging, accord-
ing to Behr and co-workers (Behr et al. 2019).

CTT1057 is a potential new phosphoramidate PSMA-
targeting 18F-labeled PET radiopharmaceutical with com-
parable biodistribution to urea-based PSMA-targeted thera-
pies. Kopka and his colleagues claimed that the novel PSMA 
radioligands had quite a significant influence on the clinical 
management of the disease (Kopka et al. 2017). One of sev-
eral problems as to inhibitors of PSMA in terms of providing 
therapeutic payloads, according to Choy et al., is their fast 
urine excretion. They used a 177Lu-labeled phosphoramidate-
based PSMA inhibitor (CTT1298) (Choy et al. 2017). Keep-
ing this research going, Huang and Heston provided the list 
of PSMA inhibitors with an average to low molecular weight 
and addressed a critical question in the study mentioned by 
Choy et al. on the efficacy of Lutecium-177 labeled phos-
phoramidate-based PSMA inhibitors (Huang and Heston 
2017). The issue was whether adding an albumin-binding 
entity to low-molecular-weight medicines would improve 
the efficacy of PSMA targeted treatment. Further, to obtain 
improvement in tumor absorption and to increase PSMA 
targeted anti-tumor action, Choy and his colleagues utilized 
a tiny molecule reversibly linked to a bigger protein, albumin 
(Huang and Heston 2017).

Dannoon and colleagues tested a variety of synthetic 
phosphoramidate-based PSMA inhibitors with varying 
lipophilicity, as well as their fluorine-18 analogs, as PET 
imaging agents for prostate cancer (Dannoon et al. 2016). 
A highly precise and accurate molecular imaging agent or 
technique for classifying the patient with PCa was a major 
therapeutic need, according to Mease et al. (Mease et al. 
2013). Nedrow-Byers et al. showed that copper-free link 
chemistry can easily build a PSMA-targeted SPECT agent 
(Nedrow-Byers et al. 2013). An irreversible phosphorami-
date inhibitor, CTT-54, was also improved in one of Ned-
row-Byers et al.’s studies to transport 99mTc-(CO)3-DTPA 
as a SPECT imaging payload to PSMA + cells in vivo and 
in vitro (Nedrow-Byers et al. 2012).

The chemical combination of Cy5.5 N-hydroxysuccin-
imide ester (Cy5.5-NHS) with a powerful PSMA inhibitor 
CTT-54.2 resulted in the development of a close fluorescent 
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imaging probe (Cy5.5-CTT-54.2) in the research by Liu 
et al. (Liu et al. 2010). The goal of the study by Lapi et al. 
was to investigate phosphoramidates as a novel classifica-
tion of effective PSMA inhibitors with better selectivity and 
approval characteristics (Lapi et al. 2009). Several findings 
that discovered which phosphoramidate peptidomimetic 
inhibitors of PSMA can be divided into three categories by 
Liu et al.: pseudoirreversible, moderately reversible, and 
rapidly reversible inhibitors (Liu et al. 2008a). According 
to the outcomes of such tests, the development of pseudo-
irreversible PSMA inhibitors is likely to open up novel 
research and treatment possibilities for PCa and neurologi-
cal diseases. Several examples of this type of inhibitor are 
shown in Fig. 3.

Urea‑based GCPII inhibitors

The most utilized category of selective GCPII inhibitors 
is urea-based inhibitors, which were discovered 
throughout the twenty-first century (Kozikowski et al. 
2001, 2004). The inhibitors typically require a glutamate 
residue that binds to the S1′ pocket of the enzyme, while 
the ureido group replicates the planar peptide bond 
of cleaved substrate (Ferraris et  al. 2012; Chen et  al. 
2008). As a result, several other urea-based inhibitors 
(radionuclides, fluorophores, and poisons are all linked 
in some way) have been synthesized and effectively 
employed in prostate cancer experimental imaging and 
treatment (Zhou et al. 2005; Eder et al. 2012; Foss et al. 
2005). DCIBzL, which has a phenyl ring that binds to the 
hydrophobic pocket at the S1 site, is a great example of 
this kind of molecule and one of the most powerful GCPII 
inhibitors (Chen et al. 2008).

Kozikowski et al. studied some simple substances to serve 
as powerful urea-based GCPII inhibitors (Kozikowski et al. 
2004). Chandran et al. employed a combination of meth-
ods to coat a nanoparticle’s surface using a peptidomimetic 

inhibitor of PSMA depending on urea (Chandran et  al. 
2008). The extremely effective acyclic Ga (III) chelator 
N,N′-bis [2-hydroxy-5-(carboxyethyl)benzyl] ethylen-
ediamine N,N′- diacetic acid (HBED-CC) was added as a 
lipophilic side chain in the hydrophilic pharmacophore and 
was observed to interact positively with the PSMA “active 
binding site” by Eder and co-workers (Eder et al. 2012). 
To improve binding characteristics and pharmacokinetics, 
Schäfer et al. used the 68 Ga chelator N, N′-bis[2-hydroxy-
5(carboxyethyl)benzyl] ethylenediamine-N, N′-diacetic acid 
(HBED-CC) to dimerize the pharmacophore Glu-ureido-
Lys (Schäfer et al. 2012). Scientists indicated that using a 
specially designed linker, the pharmacokinetics of tracers 
with the Glu-urea-based binding motif might be even better. 
Wüstemann et al. looked examined how the chelator moiety 
may affect pharmacokinetics, including tumor cell internali-
zation (Wustemann et al. 2016). The findings suggest that 
drugs containing the chelator CHX-A”-DTPA uses a Glu-
urea-based binding site in combination with hydrophobic 
linkers might be useful in the treatment of PCa. Zha et al. 
presented a new [68 Ga]-Glu-NH-CO–NH-Lys (Ahx)-linker-
HBED-CC conjugate using a unique O-(carboxymethyl)-L-
tyrosine as like the collection of linkers in order to build 
innovative agents with improved characteristics for PET 
imaging (Zha et al. 2018). The first findings strongly imply 
that [68 Ga] might be a good choice to detect PSMA expres-
sion in PCa using PET imaging. PSMA I&T, a theranostic 
tracer improved by Wirtz et al., was improved by altering the 
peptidic structure in an attempt to optimize PSMA binding 
and internalization in PSMA-expressing tumor cells (Wirtz 
et al. 2018). Giesel et al. also provided an intraindividual 
study of tracer-specific features of 18F-DCFPyL against 
18F-PSMA-1007 in their clinical research (Giesel et  al. 
2018).

The production of isocyanate intermediates and urea 
linkages are the first two stages in the synthesis of urea-
based PSMA inhibitors. According to Mosayebnia and 

Fig. 3   Phosphorus-based GCPII inhibitors
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colleagues, the isocyanate is produced in the liquid phase 
and subsequently interacts with the amine in the liquid 
phase or attached to the solid phase to establish the urea 
connection (Mosayebnia et al. 2018). Moreover, Mosayebnia 
et al. developed novel 99mTc-labeled peptides as a PSMA 
inhibitors for the finding of selective PCa inhibitors at a pre-
liminary phase in another investigation (Mosayebnia et al. 
2020). Glutamate-ureido inhibitors with labels seem to be 
a very often PSMA-targeting agents for nuclear medicine 
application fields, according to Pastorino et al. (Pastorino 
et al. 2020). Thus, recently, nuclear imaging tools and radio-
therapeutics have been designed and tested, and more other 
most common PSMA-targeting drugs for nuclear medicine 
purposes are identified glutamate-ureido inhibitors.

In terms of clinical practice, PSMA is a possible candi-
date for both diagnostics and radioligand treatment (RLT) 
of prostate cancer, as Tateishi explains in a review study 
(Tateishi 2020). More research is needed to evaluate the 
diagnostic usefulness of PSMA-ligand PET for PCa (Felber 
et al. 2021). There are some examples of this kind of inhibi-
tors in Fig. 4.

Thiol‑based and other GCPII inhibitors

2‑MPPA, a powerful thiol‑based GCPII inhibitor

Thiol-based GCPII inhibitors are distinguished by 
their availability in the mouth (oral bioavailability). 
As a matter of fact, they were created in reaction to the 
phosphorus-based GCPII inhibitors’ poor pharmacokinetic 
profile and high polarity. In 2003, 2-(3-mercaptopropyl) 
pentanedioic acid (2-MPPA), a powerful thiol-based 
GCPII inhibitor, was discovered. 2-MPPA has been found 
to be orally accessible in rats (Majer et al. 2003) and, 
more significantly, effective in a variety of illnesses in 
association with models of animals, including neuropathic 
pain (Majer et al. 2003), diabetic neuropathy (Zhang et al. 
2006), and related muscular dystrophy (Ghadge et  al. 
2003). 2-MPPA was tested in phase I clinical research (van 
der Post et al. 2005), but progress was suspended due to 
the animal toxicity. In general, compounds based on thiols 
are not good medicines since this group of inhibitors could 
be easily oxidized.

Fig. 4   Urea-based PSMA inhibitors
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Hydroxamate compounds

Another potential zinc-binding group is hydroxamate com-
pounds (Novakova et al. 2016b; Stoermer et al. 2003). Inhib-
itors based on hydroxamic acid with human GCPII nanomo-
lar sensitivity have recently been found. They have a novel 
binding mechanism that contains a glutamates-like moiety 
which binds to the entering funnel rather than the S1′ pocket 
(Novakova et al. 2016b).

Stoermer et  al. developed hydroxamic acids in a 
sequence as possible inhibitors of PSMA in a research 
investigation (Stoermer et  al. 2003). They expanded 
their structure–activity relationship (SAR) analyses to 
include other ZBG and discovered that phosphinate and 
thiol-based PSMA inhibitors were effective in animal 
studies of a variety of neurological diseases. Then, he and 
other colleagues also developed a variety of thiol-based 
PSMA inhibitors using a scaffold of 3-(mercaptomethyl) 
benzoic acid or 2-(2-mercaptoethyl) benzoic acid in 
additional investigations. Majer et al. prepared a variety 
of 2-(thioalkyl)pentanedioic acids along with PSMA 
inhibitors (Stoermer et al. 2003). The number of methylene 
units between the thiol group and pentanedioic acid was 
discovered to affect the inhibitory efficacy of these thiol-
based drugs towards PSMA. In previous investigations, 
Majer and co-workers developed and evaluated a variety 

of thiol-based inhibitors with a benzyl moiety for their 
ability to inhibit PSMA.

Takatsu et al. investigated the effects of 2-(3-mercap-
topropyl) pentanedioic acid (2-MPPA), a novel PSMA 
inhibitor that may be taken orally, on impairments in pre-
pulse inhibition (PPI) following injection of the N methyl-
D-aspartate (NMDA) receptor antagonist dizocilpine 
(Takatsu et al. 2011). GCP II inhibition may be a therapy 
option that works for schizophrenia, according to their 
findings. Ferraris and colleagues developed-thiolactones 
as prodrugs from thiol-based PSMA inhibitors (Ferraris 
et al. 2014). The pharmacological of several radiopharma-
ceuticals utilized for the theranostic therapy of PCa was 
highlighted in research by Vahidfar et al. (Vahidfar et al. 
2019). Some examples of this type of inhibitor are shown 
in Fig. 5.

Studies in the field of computational 
biochemistry

Wu et  al. developed a brief digital collection, which 
was displayed the inhibitory efficacy versus PSMA to 
find the best pharmacophores from a phosphoramidate 
peptidomimetic inhibitor of PSMA. Computational 
docking was utilized to suggest that PSMA active site 

Fig. 5   Thiol-based inhibitors of PSMA
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has a pharmacophore description, based on information 
on enzyme inhibition and the recombinant a new X-ray 
crystal structure of the protein (Wu et  al. 2007). In 
the other case, Wu et al. developed and tested a small 
analog library for inhibitory efficacy towards PSMA in 
order to find the pharmacophore of a phosphoramidate 
peptidomimetic inhibitor of PSMA. The lead inhibitor’s 
structure is based on N-acyl derivatives and includes 
a phosphoramidate group that has some important 
interactions with the active site of the PSMA, containing 
two zinc atoms. Docking studies were employed to 
suggest a pharmacophore model (Wu et  al. 2007). 
Also, Wu et  al. created six glutamate-containing 
phosphoramidate derivatives of different hydroxysteroids. 
Individual compounds in the collection had inhibitory 
potencies equivalent to a simple phenyl alkyl analog. 
Molecular docking was utilized in this research to get the 
binding energy (Wu et al. 2008).

Phosphoramidate peptidomimetic inhibitors of PSMA 
may be divided into three categories, according to Liu 
et al.’s findings: pseudoirreversible, moderately revers-
ible, and quickly reversible inhibitors (Liu et al. 2008a). 
The development of pseudoirreversible PSMA inhibitors 
is likely to open up novel research and treatment possibili-
ties for PCa patients. RNA aptamers, according to Rockey 
et al., are a new class of medicines with a huge future for 
prostate cancer diagnostics and therapy. They employed 
a “rational truncation” method guided by RNA struc-
ture determination and protein/RNA docking algorithms 
(Rockey et al. 2011). Novakova et al. conducted a detailed 
structural and computational analysis aiming at determin-
ing the role of the effector function in PSMA binding and 
affinity (Novakova et al. 2016a). They achieved this by 
determining the crystal structures of human GCPII in 
combination with a variety of phosphoramidate-based 
inhibitors. As a result, their findings indicate that phos-
phoramidates had better binding affinities than matching 
phosphonates.

Naushad et al. used molecular visualization software to 
develop models of different versions applying the crystal 
structure of PSMA as a pattern to establish a possible 
future inhibitor, that all eight prevalent genetic variations 
have been reported to be effective (Naushad et al. 2016). 
Pandit et al. used computational methods to discover active 
sites and interactions of urea-based PSMA inhibitors with 
the protein by altering the core structure of the ligand 
(Pandit et al. 2018). A novel PSMA inhibitor was also 
created to confirm the in silico study, and they were able 
to effectively test the three-dimensional quantitative SAR 
(3D-QSAR) and molecular docking-based development 

of the PSMA inhibitors. Sharma and Baruah summarized 
the most frequently reported dysregulated miRNAs 
in PCa from the literature and reviewed the already 
available evidence in a review (Sharma and Baruah 
2019). Differentially expressed genes (DEGs) in prostate 
cancer were discovered using a combined bioinformatics 
technique (Baruah and Sharma 2019).

Ivanenkov et al. developed and synthesized a PSMA-
specific small-molecule carrier loaded with Doxorubicin 
for a preliminary biological assessment (Dox) (Ivanenkov 
et al. 2019). A 3D molecular docking research was also 
carried out to clarify the exact principle and mechanism 
of binding and to improve the target affinity by further 
optimizing the linker region. Glu-urea-Lys-based PSMA-
targeting conjugates with paclitaxel were developed, 
according to the study by Machulkin et al. (Machulkin 
et al. 2019). A number of novel PSMA-targeting con-
jugates containing paclitaxel have been developed and 
produced. Finally, 3D-molecular docking research was 
carried out, too. Abdullahi et al. conducted in silico mod-
eling investigations on some unique inhibitors of prostate 
cancer (PC3) cell lines employing C14-urea-tetrandrine 
components (Abdullahi et al. 2020). They used the DFT 
and QSAR models to optimize each structure. Their find-
ings following computational studies might contribute 
to the development and production of novel C14-urea-
tetrandrines with improved inhibitory properties against 
the PC3 prostate cell line. In silico docking studies were 
used to evaluate a collection of peptides holding such a 
well Glu-Urea-Lys pharmacophore and PSMA inhibitor 
using only new non-urea functional groups for accurate 
PCa identification at a preliminary phase by Mosayeb-
nia and colleagues (Mosayebnia et al. 2020). LLE (Liq-
uid–liquid extraction) in flow-based 45Ti purification, 
using computer-aided design, and the manufacturing of 
a salan-natTi/45Ti-chelidamic acid (CA)-PSMA ligand 
comprising the Glu-urea-Lys pharmacophore were pre-
sented by Pedersen et al. (Søborg Pedersen et al. 2020). 
In our recent study, new compounds as urea-based inhibi-
tors were proposed by using the CADD method includ-
ing molecular dynamic simulation and docking study 
(Nikfarjam et al. 2021).

Over the last few years, GCPII crystal structures have 
been explored in a variety of methods utilizing a range 
of ligands, including GCPII inhibitors based on phos-
phorus and urea. These discoveries give insight on the 
structural features of each of GCPII’s key binding sites, 
as well as the potential for developing novel inhibitors. 
In Table 1, GCPII-related structures in RCSB database 
are provided.
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Conclusion

PSMA is the most attractive proposition for researchers 
looking to use nuclear medicine techniques to detect and 
treat individuals with PCa. Reviewing the studies per-
formed on each group of important PSMA inhibitors, it was 
observed that the research process is being carried out with 
considerable speed and accuracy by experts and researchers. 
Considering that the protein considered in these studies is a 
metalloprotein and due to the range of appropriate computa-
tional tools and packages for the study of metalloproteins, it 
is suggested that researchers in computational biochemistry 
further study each group of inhibitors that are introduced in 
this review. Researchers will also be able to improve the pro-
cess of developing and conducting research to find suitable 
inhibitors by using drug design and drug delivery methods in 

computational chemistry and computational biochemistry. In 
addition, the reported findings in the literature review reveal 
a variety of inhibitor binding mechanisms inside the non-
prime site(s) of GCPII, which might be used to develop new 
GCPII-specific drugs. In addition, by using the integration of 
quantum mechanics and molecular dynamics techniques, the 
mechanism of action of each group of inhibitors is studied as 
much as possible. Then, using new programming methods 
in the field of drug design such as machine learning (ML), 
the need for biochemical calculations along with laboratory 
and clinical research can be addressed.

Author contribution  ZN: literature search and data analysis, writing—
original draft, visualization. FZ: literature search and data analysis. 
AN: supervision, editing. OB: conceptualization, supervision, writ-
ing—review and editing.

Table 1   GCPII-related structures in the Protein Data Bank (RCSB database)

PDB Important points related to the study Resolution Reference

1Z8L The PSMA ectodomain’s 3.5- Å crystal structure, which also displays a homodimer featuring 
structural similarities to transferrin receptor, an iron-loaded transferrin receptor which loses 
protease function

3.50 Å (Davis et al. 2005)

2C6P At different resolutions, crystal structures of the extracellular domain of GCPII in combination 
including both powerful and weaker inhibitors, as well as glutamate, are presented

2.39 Å (Mesters et al. 2006)
2C6G 2.20 Å
2C6C 2.20 Å
2PVW At various resolutions, crystal structures of human GCPII given in combination by 3 glutamate 

mimetics/derivatives, 2-(phosphonomethyl)pentanedioic acid (2-PMPA), quisqualic acid 
(QA), and L-serine O-sulfate (L-SOS), are provided

1.71 Å (Bařinka et al. 2007)
2OR4 1.62 Å
2PVV 2.11 Å
2JBK With resolutions of 2.99 and 2.19 Å, crystal structures of the extracellular domain of GCPII 

(including residues 44 to 750) in combination with two effective inhibitors, quisqualate and 
2-PMPA, have been studied

2.99 Å (Mesters et al. 2007)
2JBJ 2.19 Å

3BI0 The crystal structures of adult GCPII in association with folyl-gamma-glutamate, aspartyl-
glutamate, and gamma-glutamyl-glutamate phosphapeptide analogs at several resolutions are 
provided

1.67 Å (Barinka et al. 2008b)
3BI1 1.50 Å
3BHX 1.60 Å
3D7H Low molecular weight GCPII ligands based on urea have shown effectiveness in a variety of 

neurological diseases models and can be used as imaging agents for prostate cancer
1.55 Å (Barinka et al. 2008a)

3D7D 1.69 Å
3D7G 1.75 Å
3D7F 1.54 Å
3IWW Several glutamate-free inhibitors with K(i) values less than 20 nM were discovered 

through structure–activity relationship investigations of the P1′ site of ZJ-43- and DCIBzL-
based ligands

2.30 Å (Wang et al. 2010)

3RBU Offer only one selectivity filtration method appropriate for released protein purification. The 
system relies on biotin’s interaction with mutant streptavidin

1.60 Å (Tykvart et al. 2012)

3SJX Discussion on discovery as well as characterization of increased lipophilicity GCPII inhibitors 
generated from such a collection of recently found dipeptidic GCPII ligands with nonpolar 
aliphatic side chains at just the C-terminus

1.66 Å (Plechanovová et al. 2011)
3SJE 1.70 Å
3SJF 1.65 Å
3SJG 1.65 Å
2XEJ Reported that ARM-Ps (antibody-recruiting compounds targeting prostate cancer) are a new 

class of small compounds’ means of achieving antibody-mediated immunity identification of 
prostate cancer cells

1.78 Å (Zhang et al. 2010)
2XEF 1.59 Å
2XEI 1.69 Å
2XEG 1.59 Å
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