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Abstract
It has been over two decades since paramagnetic NMR started to form part of the essential techniques for structural analysis 
of proteins under physiological conditions. Paramagnetic NMR has significantly expanded our understanding of the inherent 
flexibility of proteins, in particular, those that are formed by combinations of two or more domains. Here, we present a brief 
overview of techniques to characterize conformational ensembles of such multi-domain proteins using paramagnetic NMR 
restraints produced through anisotropic metals, with a focus on the basics of anisotropic paramagnetic effects, the general 
procedures of conformational ensemble reconstruction, and some representative reweighting approaches.

Keywords Multi-domain proteins · Nuclear magnetic resonance · Pseudocontact shifts · Residual dipolar couplings · 
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Introduction

Multi-domain proteins, comprising more than one struc-
turally well-folded domain connected by peptide linkers, 
widely exist in both prokaryotes and eukaryotes (Koonin 
et al. 2000; Chothia et al. 2003; Wriggers et al. 2005; Ekman 
et al. 2005). Characterizing the conformational states of 
these multi-domain proteins is critical to understanding 
their function in relevant biological events. Such structural 
characterization is nevertheless enormously challenging due 
to the flexibility of linkers as well as the complexity of inter-
domain interactions (Reddy Chichili et al. 2013), even if 
the atomic resolution structures of individual domains are 
already available in the Protein Data Bank (PDB).

The orientation-sensitive NMR measurements, such as spin 
relaxation and residual dipolar couplings (RDCs) in alignment 
media, opened the way for the determination of domain arrange-
ment within a molecule. Works by Fushman et al. (2004), Ryabov 
and Fushman (2007), Walsh et al. (2010), Göbl et al. (2014), and 
Castañeda et al. (2016) have described these approaches in remark-
able details. Thanks to the significant breakthroughs made recently 
in the site-specific incorporation of paramagnetic ions into proteins, 

e.g., substitution of metals in metalloproteins or attachment of a small 
tag coordinating a metal (Ravera et al. 2017; Nitsche and Otting 
2017; Pell et al. 2019; Su and Chen 2019; Joss and Häussinger 2019; 
Softley et al. 2020), paramagnetic NMR has become one of the most 
attractive branches of biomolecular NMR, especially in the structural 
determination of multi-domain proteins, due to the availability of 
long-range (~ 40 

⋅

A ) distance and/or orientation constraints.
Pseudocontact shifts (PCSs) and RDCs caused by paramag-

netic self-alignment are two of the main valuable effects induced 
through anisotropic metals, e.g., cobalt, nickel, and most lantha-
nides. They can affect chemical shifts and coupling constants in 
standard NMR spectra, respectively (Bertini et al. 2005, 2008). The 
values of PCSs and RDCs depend on the structural features and 
dynamics of proteins as well as the position of paramagnetic met-
als: PCSs are sensitive to metal-nucleus distance and orientation, 
and RDCs provide information on the orientation of internuclear 
vectors in the molecular frame. In addition to PCSs and RDCs, 
anisotropic metals also cause paramagnetic relaxation enhance-
ments (PREs), which report on the distance between the metals and 
observed nuclei. At high magnetic fields and for molecules with a 
paramagnetic center, transverse relaxation is predominated by the 
Curie relaxation. This could be described by the isotropic magnetic 
susceptibility (Gueron 1975; Vega and Fiat 2006). Thus, PREs 
are preferably measured through isotropic metals, e.g., manganese 
and gadolinium. A number of applications of PREs in structural 
analysis are discussed thoroughly in Tang et al. (2007), Anthis et al. 
(2011), Liu et al. (2015, 2019), Chen et al. (2016), Wakamoto et al. 
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(2019), and Lee et al. (2020). The use of PREs has also been exten-
sively reviewed (Marius Clore and Iwahara 2009; Clore 2014). 
Here, we limit our discussion to two main anisotropic paramag-
netic NMR restraints: PCSs and RDCs.

PCSs and RDCs are differently averaged depending on the inter-
conversion rates over different conformational states (Fragai et al. 
2013). The structural characterization then recovers a reasonable 
ensemble of such conformations with associated statistical weights, 
which should be consistent with averaged observables. Many 
approaches based on different algorithms for ensemble reconstruc-
tion have been proposed (Nodet et al. 2009; Bertini et al. 2010, 2012; 
Berlin et al. 2013; Ihms and Foster 2015; Bonomi et al. 2017; Köfin-
ger et al. 2019; Bottaro et al. 2020). However, reconstruction is inher-
ently an underdetermined problem, as there are infinite combinations 
of structures that can potentially recapitulate the experimental data 
within certain uncertainties (Ravera et al. 2016; Medeiros Selegato 
et al. 2021). In other words, the dramatically distinct ensembles that 
represent experimental observables might be obtained by different 
approaches, or even by independent runs from the same approach. 
Therefore, discerning the similarities and differences in the different 
interpretations provided by these approaches is essential to selecting 
appropriate approaches to ensemble reconstruction.

In this review, we outline the basics, general proce-
dures, and some approaches for ensemble reconstruction in 
multi-domain proteins by using anisotropic paramagnetic 
restraints. Here, we focus on the paramagnetic tags that can 
be attached to proteins with substantial rigidity (Yang et al. 
2015, 2016; Müntener et al. 2018; Lee et al. 2017; Pavlov 
et al. 2018; Joss and Häussinger 2019; Su and Chen 2019; 
Denis et al. 2020; Chen et al. 2020), for which the observa-
bles are mainly averaged by the internal dynamics of pro-
teins other than the flexibility of paramagnetic tags.

The anisotropic paramagnetic restraints

PCSs and RDCs are two main anisotropic paramagnetic 
restraints, which can be observed through the same ani-
sotropic metals. Their values depend on the positions of 
the observed nuclei in the frame of the magnetic suscep-
tibility tensor ( � tensor) of the paramagnetic center, which 
are related to the conformational features of the systems 
investigated. The details of the � tensor and its anisotropic 
component ( Δ� tensor) can be found in several excellent 
reviews (Bertini et al. 2002; Otting 2010; Fragai et al. 2013; 
Nitsche and Otting 2017). It should be noted that, if the 
conformation of the tag carrying the anisotropic metal is 
substantially mobile, PCSs and RDCs are severely affected. 
Hence, numerous studies have been dedicated to the tagging 
strategy. Some of the excellent works that offer insightful 
details about the effect of the tag mobility on the paramag-
netic effects are those of Shishmarev and Otting (2013), 
Hass et al. (2015), and Suturina and Kuprov (2016).

PCSs arise from the spin-dipole interactions through 
space and depend on the polar coordinates of nuclear spin 
( r, �,� ) with respect to the Δ� tensor of metal and the 
axial ( Δ�ax ) and rhombic components ( Δ�rh ) of Δ� tensor 
(Eq. (1) and Fig. 1a) (Bertini et al. 2002):

PCSs can be measured by comparing differences in chemical 
shifts (in ppm) of nuclei in biomolecules between paramag-
netic and diamagnetic states (Fig. 1c), in which a paramagnetic 
ion and a diamagnetic ion are rigidly bound to the molecule, 
respectively (John and Otting 2007). In the case that the pertur-
bati Bermejo and Schwietersons in the structures and dynamics 
of molecules are insignificant with the incorporation of metal-
chelating tags, i.e., the tag is peripherally bound to the surface 
of the molecules, the tag-free form of proteins may be regarded 
as a diamagnetic reference (Jensen and Led 2006; Otting 2010; 
Yang et al. 2016; Müntener et al. 2020).

In multi-domain systems, PCSs collected from the 
domain bearing the paramagnetic ion (the metal-bearing 
domain) can be used for the determination of the Δ� ten-
sor and metal positions by fitting data against the available 
structure with firmly established programs, i.e., NUMBAT 
(John et al. 2005; Schmitz et al. 2008), FANTEN (Rinaldelli 
et al. 2015), and PARAMAGPY (Orton et al. 2020). There 
can be significant discrepancies between experimental and 
predicted PCSs if the structural model is not accurate. In this 
case, PCSs may be incorporated into structure refinement 
tools, i.e., Xplor-NIH (Schwieters et al. 2003, 2006; Banci 
et al. 2004; Bermejo and Schwieters 2018) and CYANA 
(Banci et al. 1996; Bertini et al. 2001; Güntert 2004), as 
distance and angular constraints to obtain a refined model. 
If the structure of the metal-bearing domain had never been 
characterized in advance, the Δ� tensor and metal positions 
are concurrently determined during the structure calcula-
tion with Rosetta (Bowers et al. 2000; Schmitz et al. 2012; 
Yagi et al. 2013; Kuenze et al. 2019), where additional NMR 
restraints, such as the backbone dihedral-angle restraints, are 
ideally included. In addition, REFMAC5, part of the CCP4 
suite, is a powerful tool for joint structural refinement in the 
combination of X-ray data and paramagnetic NMR restraints 
(Murshudov et al. 2011; Rinaldelli et al. 2014; Kovalevskiy 
et al. 2018; Carlon et al. 2019b).

In many cases, PCSs observed from the metal-free domain 
(i.e., the domain bearing no paramagnetic ion) in multi-domain 
proteins are smaller than those from the metal-bearing domain 
due to the larger metal-nucleus distance. However, if the motion 
of the metal-free domain relative to the other is completely rigid, 
the determined Δ� tensor and metal positions should be simi-
lar to those calculated by using PCSs collected from the metal-
bearing domain. This similarity, however, decreases according 

(1)
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to the existence and extent of domain rearrangement motions 
due to motional averaging (Chen et al. 2016). In systems with 
higher mobility, e.g., calmodulin (Bertini et al. 2004), PCSs from 
the domain without a paramagnetic metal failed to fit any single 
model, as nuclei in the domain have considerably fluctuating 
PCS values in the reference frame. Therefore, PCSs from the 
metal-free domain are, in general, only used for selecting the 
optimal ensemble by minimizing the discrimina0tion between 
experimental and back-calculated PCS data.

RDCs result from partial alignment of observed mol-
ecules caused by the anisotropic magnetic susceptibility of 
the metals, and they provide information regarding the ori-
entation of the internuclear vector in the reference frame 
(Eq. (2) and Fig. 1b) (Banci et al. 1998).

(2)Δvrdc
ij

= −
1

4�

B0
2

15kT

�i�j
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3
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�
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where �i and �j denote the magnetogyric ratios of nuclear 
spin i and j, respectively, rij is the interaction vector connect-
ing the coupled nuclei i and j, B0 is the strength of external 
magnetic field, � is Boltzmann constant, T  is the tempera-
ture, h is Planck’s constant, and �′ and �′ define the orienta-
tion of rij in the frame.

Paramagnetic-induced RDCs are typically small; thus, 
observables are often acquired for covalently bonded 
nuclei, e.g., backbone 1H-15 N, by comparing the coupling 
constants of partially aligned (paramagnetic states) and 
unaligned molecules (diamagnetic states) in the same solu-
tion through IPAP-HSQC experiments (Fig. 1d) (Yao et al. 
2009; Ottiger et al. 1998).

Fig. 1  Schematic representation of structural information in a two-
domain protein derived from PCSs and RDCs. a PCSs are described 
by Eq. (1); the observed nucleus (1H, orange circle) of the metal-free 
domain in three different arrangements (surface, gray) have different 
PCSs in the fame of the Δ� tensor of the metal  (Ln3+, circle, black); 
PCSs from the metal-bearing domain (surface, limon) can be used to 
determine the Δ� tensor; b RDCs are described by Eq. (2); the aver-
aged effective tensor (red frame in the center) from the metal-free 

domain depends on the exchange rate of all conformations (here, 
three are depicted); c, d illustration of paramagnetic effects PCSs (c) 
and RDCs (d) in 2D 1H-15 N correlation NMR spectra; for large bio-
molecules, there might be some overlaid peaks in diamagnetic NMR 
spectra (concentric circles, blue), while in paramagnetic states, they 
can be separated due to different metal-nucleus distances (solid cir-
cles, green and gray)
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In contrast to PCSs, RDCs collected from each domain 
can be represented by an effective tensor, as they are inde-
pendent of metal-nucleus distance (Bertini et al. 2004). 
RDCs from the metal-bearing domain can be analyzed 
together with PCSs through fitting against the available 
structure model with the programs FANTEN (Rinaldelli 
et al. 2015) and PARAMAGPY (Orton et al. 2020). How-
ever, the PCSs-derived and RDCs-derived Δ� tensors are 
somewhat different for two reasons. First, they are averaged 
differently (Shishmarev and Otting 2013). That is, RDCs 
can always be described by a single averaged effective Δ� 
tensor, independent of the metal position (Fig. 1b). On the 
other hand, PCSs depend not only on the Δ� tensor but also 
on the metal-nuclei distances (Fig. 1a). This difference can 
cause discrepancies in the experimentally derived tensors 
when conformational mobility of the paramagnetic center 
exists. Second, the structures registered in PDB may not be 
sufficiently accurate in the orientation of some internuclear 
bond vectors, even if they are determined in similar solution 
conditions using NMR spectroscopy. Since RDCs are more 
sensitive than PCSs to such bond vector orientations, the 
tensors obtained from both can also differ. This structural 
accuracy can be improved by the joint PCSs/RDCs refine-
ment procedure included in some of the programs mentioned 
above. RDC and PCS data from mobile residues should not 
be incorporated into the structural analysis, which can be 
judged through NMR relaxation data, including longitudi-
nal relaxation rate  (R1), transverse relaxation rate  (R2), and 
heteronuclear NOE (hnNOE) (Bertini et al. 2009). To be 
excluded, the selection criteria for the residues may differ 
between RDCs and PCSs because of the different effects of 
local motions.

Due to the domain mobility, RDCs from the metal-
free domain might be smaller than those from the metal-
bearing domain, since the aligning force produced by the 
metal and transmitted to the domain would be weaker in 
such a case. The extent of motions could be easily esti-
mated by the ratio of magnitudes of effective tensors cal-
culated from the two domains (Carlon et al. 2016). The 
ratio is approximately close to 1 in the complete absence 
of domain motion.

Obtaining conformational states 
from paramagnetic data

Once the domain mobility is assessed in the system, PCSs 
and RDCs can be simultaneously used for characterizing the 
conformational space sampled by domain rearrangements. 
This is tackled according to a procedure applied through the 
following steps (Fig. 2):

(a) Refine the structures of the individual domains and 
assemble the entire molecule.
(b) Generate a conformational pool with a sufficient num-
ber of structures.
(c) Calculate the magnetic susceptibility parameter of 
the paramagnetic metal for all the structures considered 
in (b) by using PCSs and RDCs from the metal-bearing 
domains.
(d) Back-calculate the PCSs and RDCs for the metal-free 
domains of all the structures considered in (b) by using 
the corresponding magnetic susceptibility parameters 
obtained in (c).
(e) Reconstruct the conformational ensembles satisfying 
the experimental PCSs and RDCs.

In step (a), the accurate structure of the metal-bearing 
domain, especially with refined orientation of internuclear 
vectors related to RDCs, is obtained by using PCSs and 
RDCs from this domain. In addition, orientations of inter-
nuclear vectors in the metal-free domain are adjusted by 
using RDCs from this domain. Some programs have been 
implemented in structural refinement by using PCSs and/
or RDCs, starting without or with available structures from 
X-ray crystallography or NMR (For the use of Xplor-NIH, 
see Ref. (Banci et al. 2004; Bertini et al. 2009); for the use 
of CYANA, see Ref. (Banci et al. 1996; Bertini et al. 2001); 
for the use of Rosetta, see Ref. (Schmitz et al. 2012; Kuenze 
et al. 2019), and for the use of REFMAC5, see Ref. (Rinal-
delli et al. 2014; Carlon et al. 2019b)). Once the structure of 
each domain is obtained, the AIDA program provides fast 
docking for domain assembly (Xu et al. 2015, 2014). Some 
programs, e.g., pyDockTET (Cheng et al. 2008) and Rosetta 
(Wollacott et al. 2007), are also able to assemble structures 
of isolated domains into a multi-domain molecule. If the 
structure of the entire protein is available, replacing each 
domain with a refined structure is an alternative.

Generation of the conformational pool described in step 
(b) is typically achieved by treating all domains as rigid 
domains and randomizing the backbone torsion angles of 
several residues in the linkers. The unbiased and sufficient 
sampling from the entire conformational space is essential 
to reliable ensemble reconstruction. All generated conforma-
tions should be located in the topologically allowed space 
and maintain chain connectivity. The programs RanCh 
(Bernadó et al. 2007; Tria et al. 2015) and PDB Generator 
module of MESMER (Ihms and Foster 2015) are the two 
simplest tools for pool generation in the case that residues 
comprising the linkers are placed neither in alpha helices 
nor in beta sheets (Bernadó et al. 2005). Otherwise, the 
quasi-Ramachandran space of residues in those second-
ary structures should be carefully considered, such as in 
the native-like model of the program RanCh (Bernadó and 
Svergun 2012). Furthermore, the utilization of molecular 

58 Biophysical Reviews (2022) 14:55–66



1 3

dynamics (MD) is helpful in sampling a more physically 
realistic set of conformations. If available, the incorpora-
tion of complementary high-resolution constraints, e.g., data 
from NMR, small-angle X-ray scattering (SAXS), or dipo-
lar electron–electron resonance (DEER), is preferable (Ihms 
and Foster 2015). In order to simplify the further calcula-
tion and visualization of the conformational ensemble, the 
metal-bearing domain is considered fixed in the reference 
frame in this step.

Next, in step (c), PCSs and RDCs observed from the 
metal-bearing domain are fitted by a single set of effec-
tive parameters, Δ� tensors, and the metal position (only 
for PCSs). Several programs have been developed for such 

calculations, e.g., PALES (Zweckstetter 2008), PATI (Berlin 
et al. 2009), REDCAT (Valafar and Prestegard 2004), and 
MODULE (Dosset et al. 2001) for RDC analysis, and NUM-
BAT (John et al. 2005; Schmitz et al. 2008) for PCS analysis. 
The programs FANTEN (Rinaldelli et al. 2015) and PARA-
MAGPY (Orton et al. 2020) can fit Δ� tensors and metal 
coordinates to the atomic coordinates of biomolecules by 
using PCSs and RDCs, respectively. These parameters can 
be subsequently used in step (d) to predict PCSs and RDCs 
for the metal-free domains of all conformations in the gen-
erated pool. For this purpose, PyParaTools python library 
(http:// comp- bio. anu. edu. au/ mscook/ PPT/) is a powerful 
tool that has been involved in some reweighting programs 

Fig. 2  Overview of ensemble 
reconstruction in a two-domain 
protein, linear diubiquitin  (Ub2), 
by using PCSs and RDCs: to 
enable unambiguous chemical 
shift assignments, the N- or 
C-terminal Ub was selectively 
enriched with 15 N-nuclei; the 
structure of each individual Ub 
was refined by using paramag-
netic data with Xplor-NIH, and 
the structure model of linear 
 Ub2 was obtained by assem-
bling two Ubs with AIDA; 
the conformational pool was 
generated by MESMER; and 
two approaches were employed 
for the conformational ensemble 
reconstruction: MESMER 
selected a minimal ensemble 
comprising seven conformations 
with associated weights that are 
proportional to their putative 
population, while MaxOcc 
depicted the conformational dis-
tributions. Almost all conforma-
tions selected by MESMER had 
higher MaxOcc values. Adapt 
from (Hou et al. 2021)
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(see next section for details), such as MESMER (Ihms and 
Foster 2015). The above outlines the basic processes of data 
preparation in ensemble reconstruction with any reweighting 
approaches.

Selected programs available for ensemble reconstruction 
from PCSs and RDCs are listed in Table 1

Reweighting approaches for ensemble 
reconstruction

In this section, we review some approaches for confor-
mational ensemble reconstruction based on reweighting 
(step (e) in the previous section). Reweighting means that 
the experimental data are used as a posterior to optimize 
the weights of conformations in a pre-calculated unbiased 
ensemble with the aim of minimizing the discrimination of 
experimental and back-calculated data. It is distinct from 
“restraining” approaches, in which the additional energy 
terms, as functions of experimental data, are directly incor-
porated into classical MD force fields during the simula-
tions to generate and analyze possible conformational states 
(Roux and Weare 2013). Such approaches are preferable for 
structural characterization of molecules with extensive con-
formational heterogeneity, such as intrinsically disordered 
proteins (Bonomi et al. 2017). The broader understanding of 
this subject may be found in other existing works (Boomsma 

et al. 2014; Ravera et al. 2016; Bonomi et al. 2017; Ran-
gan et al. 2018; Cárdenas et al. 2020). Here, we focus on 
reweighting approaches in which PCS and RDC restraints 
could be incorporated.

Reweighting approaches have the goal of either finding an 
optimal ensemble with the minimal subset of conformations 
or calculating the maximum allowed probability (MAP) or 
the maximum occurrence (MaxOcc) of all considered struc-
tures. The former can be achieved with several software 
packages. First, we selected minimal ensemble solutions for 
the multiple experimental restraints (MESMER) approach 
because it is user-friendly and available for nearly any type 
of observable (Ihms and Foster 2015).

MESMER has been developed for identifying and select-
ing ensembles that can simultaneously fulfil multiple experi-
mental data, e.g., SAXS, paramagnetic NMR, and DEER. In 
simultaneous fitting, the relative scale for each experimental 
dataset is typically pre-set to the inverse of the average fit-
ness obtained from individual fits. The optimal ensemble is 
iteratively selected via a genetic algorithm with the follow-
ing steps:

(1) K types of predicted data (PCSs and RDCs, etc.) for 
each structure in the conformational pool (Z structures) 
are calculated as described in the previous section, and 
they are compiled into a series of components (Z) as 
input.

Table 1  Selected programs available for capturing structural information from PCSs and RDCs induced through anisotropic metals

Programs Description Reference

NUMBAT Determination of anisotropy tensors from PCSs for a given 3D molecular struc-
ture

Schmitz et al. (2008)

FANTEN Determination of anisotropy tensors related to PCSs and RDCs for a given 3D 
molecular structure

Rinaldelli et al. (2015)

PARAMAGPY Determination of magnetic susceptibility tensors related to PCSs, RDCs, para-
magnetic relaxation enhancements, and cross-correlated relaxation data

Orton et al. (2020)

PCS-ROSETTA Determination of 3D structures using PCSs as the only restraints; estimation of 
anisotropy tensors from PCSs during the structure prediction

Schmitz et al. (2012)

RosettaNMR Determination of 3D structures using paramagnetic data (PCSs, RDCs, and 
PREs) with CSs and NOEs; determination of magnetic susceptibility tensors

Kuenze et al. (2019)

Xplor-NIH Refinement of protein structures based on available structures having the small-
est change to fulfil paramagnetic restraints

Banci et al. (2004; Bertini et al. (2009)
CYANA Güntert (2004)
REFMAC5 Refining protein structure simultaneously using X-ray crystallographic data and 

paramagnetic data
Rinaldelli et al. (2014)

AIDA Modelling and assembling multi-domain proteins Xu et al. (2015); Xu et al. (2014)
pyDockTET Cheng et al. (2008)
RanCh Generating a conformational pool Bernadó and Svergun (2012)
MESMER Identifying conformational ensembles to simultaneously fulfil multiple observa-

bles
Ihms and Foster (2015)

SES Berlin et al. (2013); Andrałojć et al. (2015)
MaxOcc/MaxOR Calculating maximum occurrence of any considered conformations or combina-

tions
Bertini et al. (2010); Andrałojć et al. 

(2016); Gigli et al. (2018)
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(2) A “parent” ensemble pool, comprised of N ensem-
bles with M components, is generated randomly from 
Z components. This pool is then duplicated to form 
a “child” ensemble pool with some diversifications 
through different replacement mechanisms.

(3) 2 N ensembles generated in (2) are ranked according to 
their consistency with experimental data.

(4) N best-fitting ensembles are selected and used as the 
“parent” ensemble pool for the next generation.

Steps (2), (3), and (4) are iterated until even the poorest-
fitting ensemble in step (4) has a reasonable agreement with 
all K types of experimental data, or the residual standard 
deviation (RSD) is less than the pre-set value. Solutions with 
the total sum of weight in one ensemble slightly less or more 
than 1 are acceptable.

MESMER has been applied to characterize the conforma-
tional states of some biomolecules, e.g., calmodulin (Ihms 
and Foster 2015), PDZ domains (Delhommel et al. 2017), 
and linear  Ub2 (Hou et al. 2021), by using paramagnetic 
data. It provides a graphical user interface to streamline all 
processes from the generation of the conformational pool 
to the visualization of selected best ensembles as well as 
representation of the correlation between experimental 
data and predicted data. However, users should be cautious 
when simultaneously fitting multiple datasets obtained from 
different experiments, as they might contain significantly 
distinct information. The inappropriately pre-set scales for 
those input datasets would lead to severe overestimation or 
underestimation of conformational diversity, as the weight 
for components involved in ensembles that fit one dataset 
well would easily increase during the iteration. Thus, the 
relative scales for each dataset need to be carefully tuned. 
This problem is distinct even when using multiple sets of 
PCSs collected from protein with incorporated metals at 
different positions (Hou et al. 2021). In addition, the solu-
tion is not deterministic. In essence, it is hard to obtain one 
single specific solution (ensemble) by executing MESMER 
repeatedly. Even so, major components (conformers) in N 
non-unique ensembles should be similar in any meaningful 
executions.

The Sparse Ensemble Selection (SES) method is an alter-
native global-fit approach, which can recover a representa-
tive conformational ensemble from multiple experimental 
datasets. Distinct from MESMER, SES requires no prob-
lem-specific tuning parameters and provides a deterministic 
solution, as only the structures comprised of the ensemble, 
which fits the experimental observables best, are cloned 
and subsequently complemented during each generation 
(Berlin et al. 2013; Ravera et al. 2016). In addition, it is 
important to stress that certain ensembles selected by these 
approaches only provide possible solutions to recapitulate 

the experimental data, which are sensitive to certain aspects 
of conformational sampling. No ensembles can be consid-
ered unique and represent the full and complete conforma-
tional states in practice (Ozenne et al. 2012).

Rather than finding a solution (the best ensemble) to fit 
the datasets, some approaches try to calculate reasonable 
existence probabilities of any considered structures in the 
ensemble. MAP (Longinetti et al. 2006; Bertini et al. 2007), 
MaxOcc (Bertini et  al. 2010, 2012), and the maximum 
and minimum occurrence of defined regions, MaxOR and 
MinOR (Andrałojć et al. 2014, 2016), have been sequen-
tially developed with the aim of estimating the maximum 
probabilities of single conformation or regions comprised 
of multiple conformations. The MAP approach utilizes free 
domain movements (Ravera et al. 2016), while the others 
calculate corresponding values of conformations in a pre-
defined pool. Here, we focus on the MaxOcc, as MaxOR and 
MinOR are natural extensions of the MaxOcc approach for 
the estimation of specific combinations of conformations.

MaxOcc analysis can be performed by the MATLAB 
script (Andrałojć et al. 2016; Gigli et al. 2018). In this 
case, some further data preparation should be performed 
in advance. K types of experimental data should be concat-
enated into a length-J column vector representing all observ-
ables. Then it is essential to normalize this experimental 
vector through some methods, i.e., dividing the data by the 
square of their sum (Medeiros Selegato et al. 2021). The 
K types of predicted data from Z structures should also be 
concatenated into a J × Z prediction matrix and normalized 
using the same procedure.

Then, the fitting calculation is repeated by increasing the 
weight of a single conformation until there is no acceptable 
ensemble comprising this conformation with one certain 
weight to explain the experimental data reasonably. This 
certain weight is defined as the MaxOcc of this conforma-
tion. Namely, MaxOcc is the maximum allowed weight for 
a conformation in any possible ensembles, which does not 
violate the experimental data. If a conformation has a higher 
MaxOcc value, this implies that it is more likely to be visited 
by molecules due to their intrinsic dynamics in solution. 
However, it should be noted that in principle, even if a con-
formation has higher-MaxOcc, it can be absent in reality, as 
MaxOcc does not guarantee minimum occurrence. In this 
sense, one may rather safely exclude the existence of lower-
MaxOcc conformations in the ensemble.

MaxOcc has been used to evaluate the conformational 
states on the basis of paramagnetic data, SAXS data, or DEER 
data in many systems, e.g., calmodulin (Bertini et al. 2010), 
MMP1(Cerofolini et al. 2013), transactivation response ele-
ment (TAR) RNA from the HIV-1 virus (Andrałojć et al. 
2016), the capsid of human immunodeficiency virus type 1 
(Carlon et al. 2019a), and linear  Ub2 (Hou et al. 2021). One 
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excellent work reported a direct relation between the results 
from SES and MaxOcc: SES is more likely to select conforma-
tions with highest-MaxOcc values (Medeiros Selegato et al. 
2021).

As stated above, MESMER and SES provide an optimal 
ensemble of several discrete conformations with associated 
statistical weights that are proportional to their population for 
recapitulating the experimental data. It is unrealistic that those 
conformations truly exist with the calculated weights in solu-
tion. Rather, they can be viewed as representative snapshots 
taken from a large continuum of states; each of them represents 
a group of similar conformations, namely a certain region 
of the conformational space. The degree of conformational 

variability manifested in the obtained ensemble gives us func-
tional insights into the molecule. As an example, we have cap-
tured a very compact conformer of free linear  Ub2 by perform-
ing a MESMER analysis, which proposed that the dynamics of 
linear  Ub2 is even more complicated than previously consid-
ered (Hou et al. 2021). In this study, MaxOcc further allowed 
us to discern which conformations or conformational regions 
(MaxOR) are more likely to be visited by the proteins, having 
expanded our insight into their intrinsic dynamics. In addition, 
the existence of any structure considered can be evaluated by 
MaxOcc, which is helpful for probing particular aspects of 
the conformational fluctuations. For example, the introduc-
tion of two distinct mutations, E16Rp or E18Rp (where “p” 

Fig. 3  a An example of dramatically changed PCSs by the intro-
duction of mutations in free linear  Ub2: PCSs collected from 
the metal-free Ub of wild-type (cyan bar), E16Rp (orange trian-
gle), and E18Rp (red square) of linear  Ub2, with paramagnetic tag 
(PSPy-6 M-DO3MA-Tm3+) (Yang et al. 2016) at D39C of N-terminal 
(distal) Ub. b, c MaxOcc of top 1,000 conformers calculated using 
PCSs from wild-type (purple or green), E16Rp (orange), and E18Rp 
(red) of linear  Ub2 is sorted and plotted in descending order. The rank 

of MaxOcc of the bound conformer of linear  Ub2 in complex with 
HOIL-1L-NZF (PDB code: 3b0a) (Sato et al. 2011), shown as trian-
gles by corresponding color, dropped (elevated) in E16Rp (E18Rp), 
implying that the E16Rp (E18Rp) decreased (increased) the prob-
ability for free linear  Ub2 to adapt the bound state. Correspondingly, 
dissociation constant  (Kd) increased by over 14-fold for E16Rp and 
decreased by fivefold for E18Rp, implying contribution from the con-
formational selection mechanism. Adapted from (Hou et al. 2021)
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represents the mutation introduced at C-terminal (proximal) 
Ub), in linear  Ub2 drastically changed the PCSs, strongly 
implying the perturbation of conformational space. Notably, 
the rank of MaxOcc of a target-bound conformation changed 
significantly among the whole structural pool. Such perturbed 
conformational sampling of free linear  Ub2 was shown to cor-
relate with binding affinities for Ub-binding proteins, HOIL-
1L-NZF (Fig. 3), thus providing a profound insight into the 
binding mode of linear  Ub2 (Hou et al. 2021).

In the linear  Ub2 example described above, both the high 
flexibility of the linker and the weak interaction between 
domains result in a certain degree of domain movement con-
tinuity among several conformations with similar energies. 
Such a situation probably presents one of the most difficult 
cases for reconstructing conformational ensembles based on 
paramagnetic restraints. If a protein takes only a few stable 
conformations, then domain motion can be regarded as an 
exchange between these states. In such a case, the methods 
reviewed in this paper are likely to work more robustly. This 
is because the complexity of PCS and RDC data is greatly 
reduced when the number of stable conformational states is 
small.

Conclusions

To conclude, paramagnetic effects can be a rich source of 
structural restraints for characterizing the conformational 
states of multi-domain proteins. The anisotropic paramag-
netic restraints are very sensitive to metal-nuclear distances 
(PCSs) and relative orientations of metal-nuclear (PCSs) or 
internuclear vectors (RDCs). Therefore, they can identify 
the conformations that are more likely to visit due to their 
intrinsic dynamics, thus providing structural insight into their 
physiological behaviors. A number of programs have been 
developed for the determination of magnetic anisotropy sus-
ceptibility tensors, refinement of solution structure, assembly 
of multiple individual domains, generation of conformational 
pools, prediction of paramagnetic data for other nuclei in 
biomolecules, and reconstruction of conformational ensem-
bles. In combination with these programs, visualization of 
populated conformational space is possible from averaged 
paramagnetic experimental data. Certainly, in the near future, 
the use of paramagnetic NMR restraints induced through ani-
sotropic paramagnetic ions would be a powerful approach for 
visualizing the dynamic behavior of proteins under physi-
ological conditions, or even in living cells.
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