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Abstract
This mini-review represents a brief, disorder-centric consideration of the interplay between order and disorder in proteins. The 
goal here is to show that inside the cell, folding, non-folding, and misfolding of proteins are interlinked on multiple levels. 
This is evidenced by the highly heterogeneous spatio-temporal structural organization of a protein molecule, where one can 
find differently (dis)ordered components that can undergo local or global order-to-disorder and disorder-to-order transitions 
needed for functionality. This is further illustrated by the fact that at particular moments of their life, most notably during 
their synthesis and degradation, all proteins are at least partially disordered. In addition to these intrinsic forms of disorder, 
proteins are constantly facing extrinsic disorder, which is intrinsic disorder in their functional partners. All this comprises 
the multileveled protein disorder cycle.

Keywords  Intrinsically disordered protein region · Protein function · Nascent polypeptide chain · Protein degradation · 
Protein biosynthesis · Protein folding · Protein misfolding

The discovery of the intrinsic disorder phenomenon and suc-
cessful penetration of this concept into protein science indi-
cated a departure from the classical description of a protein 
function in terms of the “lock-and-key” model. Accumulated 
evidence indicates that protein intrinsic disorder is ubiqui-
tous and inexorable, and the presence of structure-less but 
biologically active proteins dramatically expanded the uni-
verse of functional proteins in such a way that sometimes it 
may seem that the grinning faces of intrinsically disordered 
proteins (IDPs) and proteins with IDP regions (IDPRs) peek 
out from every corner of modern protein science. Altogether, 
there is no doubt now that the fate of a newly synthesized 
polypeptide chain is not limited to the functional folding and 
assembly or pathological misfolding, as was believed for a 
long time, but also includes a very important “non-folding” 
branch (see Fig. 1). The choice between these pathways is 
determined by the peculiarities of the protein amino acid 
sequence and its environment (Uversky and Uversky 2014).

However, none of the indicated pathways (folding, non-
folding, or misfolding) represent a one-way road leading to 

a dead-end. Instead, inside cells, proteins are involved in a 
constant circulation between folded, non-folded, and mis-
folded forms, where already folded proteins can undergo at 
least partial unfolding and misfold or get (partially) unfolded 
for new functionality; where misfolded proteins can return 
back to their original folded or non-folded states; where 
IDPs/IDPRs can partially fold or misfold; and where such 
transitions can be repeated several times (Uversky 2003). In 
other words, there is no folk-tale crossroad stone stating, “If 
you go left, you will lose your horse; if you go right, you will 
lose your life; if you go straight, you will live, but you will 
forget yourself,” and the cellular fate of a protein is not pre-
defined but can be rewritten (and multiple times at that). Let 
us examine this folding-non-folding-misfolding cycle by tak-
ing a closer look at the intrinsic disorder (non-folding) part.

The last two decades witnessed a triumph of the idea 
that protein functionality can be independent of the unique 
structure (Turoverov et al. 2010; Dyson 2011; Tompa 2011, 
2012; Uversky 2013a; van der Lee et al. 2014). IDPs and 
hybrid proteins with ordered domains and IDPRs are abun-
dantly present not only in all proteomes analyzed so far 
(Uversky et al. 2000; Dunker et al. 2000; Ward et al. 2004; 
Schad et al. 2011; Xue et al. 2012; Pancsa and Tompa 2012; 
Peng et al. 2013a, 2015) but even within the preeminent 
source of protein structural knowledge, the protein data bank 
(PDB), where the vast majority of proteins with resolved 
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X-ray structures have unobserved regions of varied length 
with missing electron density that frequently correspond to 
IDPRs (Le Gall et al. 2007; Monzon et al. 2020). Further-
more, in PDB, many protein–protein and protein-nucleic 
acid complexes with stable structures are in fact formed by 
IDPs/IDPRs as a result of the disorder-to-order transition 
(Gunasekaran et al. 2004; Oldfield et al. 2008; Wu et al. 
2015; Zhou et al. 2020).

The levels of IDPs/IDPRs in proteomes are correlated 
with the evolutionary complexity of the organisms, where 
the more advanced species have higher IDP/IDPR counts 
(Dunker et al. 2000, 2015; Ward et al. 2004; Xue et al. 2012; 
Peng et al. 2013a, 2015). The functional range of these pro-
teins is remarkably broad and complements functions of 
ordered proteins and domains (Wright and Dyson 1999; 
Dunker et al. 2001, 2002a, b, 2005, 2008a,  b; Dunker and 
Obradovic 2001; Dyson and Wright 2002, 2005; Uversky 
2002a, b; Uversky et al. 2005; Cortese et al. 2008; Dunker 
and Uversky 2008; Oldfield et al. 2008; Uversky and Dunker 
2010; van der Lee et al. 2014; Oldfield and Dunker 2014).

Structurally, IDPs/IDPRs are characterized by remark-
able spatio-temporal heterogeneity and can range from com-
pletely structure-less, coil-like conformational ensembles to 
compact (but still highly dynamic) molten globular ensem-
bles, to proteins with a hybrid structure containing both 
ordered and disordered regions (Uversky and Dunker 2010; 

Uversky 2013a,  d,  e; Dunker et al. 2013). Thus, intrin-
sic disorder has multiple faces affecting different levels of 
protein structural organization, where either the whole pro-
tein or its various regions can be (dis)ordered to a different 
degree. As a result, while looking at such a heterogeneous 
structure, one can identify fragments with different struc-
tural complexity and folding complicity and admire a highly 
dynamic and interchanging structural mosaic containing 
foldons (i.e., independently foldable protein units), inducible 
foldons (which are IDPRs capable of at least partial folding 
promoted by their interactions with binding partners), mor-
phing inducible foldons (IDPRs with the potential to fold 
differently due to binding to different partners), semi-foldons 
(regions that are always in a semi-folded state), and non-
foldons (IDPRs that never fold) (Uversky 2013e, 2016a, b, 
c, 2019a, b). Such exceptional spatio-temporal heterogeneity 
of IDPs/IDPRs is translated into their multifunctionality, as 
differently (dis)ordered parts of a protein molecule might 
have different functions (Uversky 2015, 2016a).

IDPs/IDPRs behave as highly frustrated systems with no 
single thermodynamically stable state. This is reflected in 
their free energy landscapes, which are relatively flat, do not 
have deep energy minima seen in the free energy landscapes 
of ordered globular proteins, and instead represent a hilly 
plateau with multiple shallow local minima corresponding to 
the allowed conformations separated by low hills indicating 

Fig. 1   Schematic representa-
tion of the fate of a polypeptide 
chain in the cell. In addition 
to the folding-misfolding-non-
folding crossroad stone that 
seems to define the cellular 
fate of a protein based on the 
peculiarities of its amino acid 
sequence, the model shows that 
this cellular fate of a protein 
is not pre-defined but can be 
rewritten, thereby generating a 
perpetual folding-non-folding-
misfolding cycle
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forbidden conformations (Uversky et al. 2008; Turoverov 
et al. 2010; Fisher and Stultz 2011). Such a flattened energy 
landscape is extremely sensitive to different environmental 
changes and can be modified in a number of different ways. 
Depending on the peculiarities of the environment, some 
energy minima can be deepened, while some energy barri-
ers can increase. This explains the conformational plasticity 
of IDPs/IDPRs, their extreme sensitivity to changes in the 
environment, the ability to specifically interact with many 
partners of different nature, and to fold differently as a result 
of these interactions (Uversky 2013e).

One should also remember that there is no actual bound-
ary between order and disorder. Instead, structures of pro-
teins can be presented as a continuous spectrum of differ-
ently structured/disordered conformations that extends 
from the fully ordered to completely structure-less species, 
with everything in between (Uversky 2013e; DeForte and 
Uversky 2016). Such complex, highly heterogeneous spatio-
temporal organization of the protein structural space forms 
the foundation of the structure–function continuum concept 
(Uversky 2016a,  b, 2019a, b), where instead of the classical 
“one gene-one protein-one structure-one function” model, 
any protein is considered as a highly dynamic conforma-
tional ensemble with a broad spectrum of structural features, 
and as such the structural heterogeneity and conformational 
plasticity of IDPs define their remarkable multifunctional-
ity and binding promiscuity (Uversky 2016b, 2019b; Fonin 
et al. 2019).

Therefore, multifunctionality of proteins is based on the 
constant order–disorder-order and disorder-order–disorder 
cycles. This is reflected in the crucial dependence of the 
functionality of many ordered proteins on the existence 
of “unfoldons,” i.e., ordered regions that must undergo 
an order-to-disorder transition to make the protein active 
(Uversky 2013e), or, more generally, in a dormant (tran-
sient, conditional, or cryptic) disorder phenomenon (Jakob 
et al. 2014; Creamer 2013; Bardwell and Jakob 2012). On 
the other hand, the functionality of IDPs/IDPRs depends on 
the presence of disorder-based binding sites, called molec-
ular recognition features (MoRFs), which are interaction-
prone disordered regions that can fold at binding to specific 
partners (Cheng et al. 2007; Vacic et al. 2007; Mohan et al. 
2006; Oldfield et al. 2005). The presence of such MoRFs 
(inducible foldons) or morphing MoRFs defines the excep-
tional binding plasticity and promiscuity of IDPs/IDPRs 
(Uversky 2011b, 2013c), where a single IDPR can bind to 
multiple partners gaining very different structures in the 
bound state (Oldfield et al. 2008; Hsu et al. 2012, 2013; 
Alterovitz et al. 2020), and explains the abundance of intrin-
sic disorder among hub proteins and their binding partners in 
various protein–protein interaction networks (Dunker et al. 
2005; Patil and Nakamura 2006; Haynes et al. 2006; Ekman 
et al. 2006; Dosztanyi et al. 2006; Singh et al. 2006).

Furthermore, the lack of stable structure defines the 
exceptional sensitivity of IDPs/IDPRs (which represent the 
edge of chaos systems) to even small environmental changes 
that can trigger very different structural and functional out-
puts, thereby serving as illustrative examples of the but-
terfly effect (Uversky 2013e, 2019a, b). Finally, since the 
formation of the pathological aggregates, including amyloid 
fibrils, is critically dependent on the presence of partially 
folded aggregation-prone species, protein misfolding, by 
default, relies on the order-(partial) disorder or disorder-
(partial) disorder transitions. For example, it was empha-
sized that amyloidogenic conformations must be relatively 
unfolded (but not completely unfolded or coil-like), as the 
inherent flexibility of such pre-molten globular interme-
diates defines their capability to undergo conformational 
rearrangements necessary to form amyloid fibrils (Uversky 
and Fink 2004). It is likely that similar conformational con-
strains are applicable to proteins involved in the formation 
of functional amyloids (Deshmukh et al. 2018; Christensen 
et al. 2019; Jain and Chapman 2019; Rubel et al. 2020; Ser-
geeva and Galkin 2020; Daskalov et al. 2021; Levkovich 
et al. 2021).

Although the aforementioned examples serve as illustra-
tions of the folding-non-folding-misfolding circle, it seems 
that any given protein constantly faces disorder throughout 
its entire life within the cell, and this disorder can be of 
intrinsic or extrinsic nature (i.e., intrinsic disorder in func-
tional partners) (Uversky 2013b). Even proteins with the 
most ordered structures are synthesized as linear polymers 
that need to undergo disorder-to-order transitions to gain 
their functional structure. A newly synthesized nascent poly-
peptide chain passes through the 100-Å long, 10–28-Å-wide 
ribosomal exit tunnel (Gabashvili et al. 2001), which, at the 
exit site, contains a ring of 7 ribosomal proteins (L4, L17, 
L22, L23, L24, L29, and L32) and which regulates trans-
lation via interaction of L22 with specific nascent chains 
(Wilson and Nierhaus 2005). Figure 2 shows that all these 
proteins contain significant levels of disorder, as evidenced 
by their per-residue intrinsic disorder profiles and by their 
unusual structural shapes, which (with the exception of L22) 
are not consistent with simple globular structure, suggest-
ing that, similar to the majority of other ribosomal proteins, 
these proteins fold at binding (Peng et al. 2013b) and might 
preserve significant levels of disorder even in the bound 
state, forming so-called fuzzy complexes (Uversky 2011b; 
Tompa and Fuxreiter 2008; Fuxreiter and Tompa 2012; 
Sharma et al. 2015; Miskei et al. 2017; Fuxreiter 2020).

These observations indicate that the cradle of a nas-
cent polypeptide chain, being enriched in IDPs/IDPRs, 
is soft and fluffy. Even chaperones and nanny-proteins, 
which guard a newly synthesized polypeptide chain before 
it properly folds and matures, are IDPs or hybrid proteins 
containing ordered domains and functional IDPRs (Tompa 
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and Csermely 2004; Kovacs et al. 2009; Tompa and Kovacs 
2010; Uversky 2011a; Tsvetkov et al. 2009; Kovacs and 
Tompa 2012). In its mature form, a protein is placed within 
the aforesaid perpetual folding-non-folding-misfolding 
circle, and even on its deathbed it faces disorder. In fact, 
both proteolytic digestion and proteasomal degradation 
are dependent on intrinsic disorder. Proteolysis of dis-
ordered substrates by numerous proteases is extremely 
fast (Dunker et al. 2001; Iakoucheva et al. 2001; Fontana 
et al. 1986, 1997a, b, 1993), and ATP-dependent, active 
unfolding of protein substrates (likely by mechanical pull-
ing of the polypeptide chain into their channel) represents 
a crucial functional step of proteasomes and their prokary-
otic and archaeal analogues (Weber-Ban et al. 1999; Kim 
et al. 2000; Van Melderen et al. 1996; Navon and Gold-
berg 2001; Lee et al. 2001; Prakash and Matouschek 2004; 
Prakash et al. 2004).

In conclusion, intrinsic disorder represents a crucial 
part of the functional and dysfunctional life of any given 
protein, and no single protein can avoid some form of 
disorder (intrinsic, induced, or extrinsic) during its 
lifetime. In fact, some proteins are always at least par-
tially disordered. Others, being mostly ordered, possess 
transient disorder and have to undergo at least partial 
unfolding to become functional. The functions of many 
proteins depend on extrinsic disorder, as these proteins 
are controlled, regulated, and activated via utilization of 
the functional intrinsic disorder of their partners. Fur-
thermore, the birth and death of all proteins are inevita-
bly associated with disorder, since protein biosynthesis 
involves generation of a linear polypeptide chain and pro-
teasomal degradation relies on the induced unfolding of 
a degradation target.
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