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Abstract
Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by ventricular enlargement, diastolic dysfunc-
tion, and increased risk for sudden cardiac death. Sarcomeric genetic defects are the predominant known cause of HCM. In
particular, mutations in the myosin-binding protein C gene (MYBPC3) are associated with ~ 40% of all HCM cases in which a
genetic basis has been established. A decade ago, our group reported a 25–base pair deletion in intron 32 of MYBPC3
(MYBPC3Δ25bp) that is uniquely prevalent in South Asians and is associated with autosomal dominant cardiomyopathy.
Although our studies suggest that this deletion results in left ventricular dysfunction, cardiomyopathies, and heart failure, the
precise mechanism by which this variant predisposes to heart disease remains unclear. Increasingly appreciated, however, is the
contribution of secondary risk factors, additional mutations, and lifestyle choices in augmenting or modifying the HCM pheno-
type in MYBPC3Δ25bp carriers. Therefore, the goal of this review article is to summarize the current research dedicated to
understanding the molecular pathophysiology of HCM in South Asians with the MYBPC3Δ25bp variant. An emphasis is to
review the latest techniques currently applied to explore the MYBPC3Δ25bp pathogenesis and to provide a foundation for
developing new diagnostic strategies and advances in therapeutics.
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Introduction

Hypertrophic cardiomyopathy (HCM), one of the leading
forms of cardiovascular disease (CVD) in the world, is a ge-
netic disorder that affects ~ 20million people globally, includ-
ing 750,000 Americans. HCM is characterized by ventricular
expansion, resulting in diastolic dysfunction and an increased
risk of sudden death (Gersh et al. 2011). Sarcomeric genetic

defects are the predominant cause of HCM (Bonne et al. 1995;
Carrier et al. 1998; Gersh et al. 2011; Harris et al. 2011; Spirito
et al. 1997; Watkins et al. 1995; Watkins et al. 1993). Several
reports have established a direct link between sarcomeric mu-
tations and cardiomyopathies, including HCM and dilated
cardiomyopathy (DCM) (Hitomi et al. 2010; Niimura et al.
2002; Tabish et al. 2019; Tanjore et al. 2008; Van Driest et al.
2005).
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HCM is termed a disease of the sarcomere as mutations in
sarcomeric genes, such as MYH7, MYBPC3, MYL3, TPM1,
TNNI3, and TNNT2, are the principal causes of pathology
(Geisterfer-Lowrance et al. 1990; Seidman and Seidman
2011; Thierfelder et al. 1994). However, 5–10% of HCM
cases are caused by mutations in genes involving metabolic
pathways (MacRae et al. 1995; Murphy et al. 2005).
Importantly, mutations in both MYH7 and MYBPC3 genes
contribute to more than 80% of HCM cases (Viswanathan
et al. 2017), of which MYBPC3 is the leading gene known
to cause HCM and DCM (Bonne et al. 1995; Previs et al.
2012; Viswanathan et al. 2017). The MYBPC3 gene encodes
a thick-filament cardiac muscle protein, a cardiac paralog of
myosin-binding protein C (cMyBP-C), which is involved in
regulating myosin function, rate of force generation, and car-
diac contractility. Also, MYBPC3 mutations present a high
risk for heart failure (HF) (Adalsteinsdottir et al. 2014;
Barefield et al. 2014; Dhandapany et al. 2009; Helms et al.
2014; Michels et al. 2009; Page et al. 2012). Previously, our
group discovered a polymorphic variant in MYBPC3, a 25–
base pair deletion (MYBPC3Δ25bp) at intron 32 (Fig. 1). One
of the molecular consequences of MYBPC3Δ25bp is the re-
placement of 65 wild-type amino acids by 58 novel amino
acids in the carboxyl region of cMyBP-C (Dhandapany et al.
2009; Kuster et al. 2015; Kuster and Sadayappan 2014;
Waldmuller et al. 2003). The variant is associated with
HCM, DCM, and HF (Dhandapany et al. 2009; Simonson
et al. 2010; Srivastava et al. 2011).

Discovery of the MYBPC3Δ25bp mutation and its associa-
tion with cardiomyopathies was first noted at the International
Society for Heart Research in Winnipeg, Canada, on July 6–
11, 2001 (Sakthivel et al. 2001). In our first study,
MYBPC3Δ25bp was discovered in two unrelated Indian fami-
lies in association with the development of HCM (Waldmuller

et al. 2003). SinceMYBPC3Δ25bp is familial with late-onset in
aging and a mild form of HCM in carriers, the existence of
unequivocal disease penetrance has been concluded. The
study further determined that MYBPC3Δ25bp could be a ca-
nonical monogenic risk with low expressivity and penetrance.
However, whole-genome DNA sequencing was not available
at that time, and it was unclear whether the deletion was, in
fact, both necessary and sufficient to cause HCM, or, indeed,
whether other known or unidentified genetic or risk factors
were at play (Waldmuller et al. 2003).

Following these initial investigations, a series of population-
based surveys revealed a striking prevalence in the South Asian
(SA) population (Table 1), estimated to be present in 6% and
translating to ~ 100million peopleworldwide (Dhandapany et al.
2009; Viswanathan et al. 2018) (Fig. 2). For example,
Dhandapany and colleagues suggested MYBPC3Δ25bp preva-
lence around 2–6% in Southeast Asians. They further suggested
that the higher incidence of cardiomyopathies in SAs, compared
with other ethnicities, could be, at least partly, attributed to this
polymorphism (Dhandapany et al. 2009; Dodani 2008; Gupta
and Brister 2006; Jones et al. 2014; Omariba 2015; Uppaluri
2002). More recently, Kumar et al. (2016) studied the frequency
of sarcomeric gene polymorphismswith left ventricular dysfunc-
tion (LVD) in patients with coronary artery disease (CAD).
Contrary to other sarcomeric gene mutations, such as titin, tro-
ponin T type 2, and myospryn, they showed theMYBPC3Δ25bp

polymorphism to be associated with an elevated risk of left ven-
tricular pathologic remodeling and cardiac dysfunction post-
myocardial infarction (Kumar et al. 2016; Srivastava et al.
2011). The association of MYBPC3 mutations with HCM and
sudden death, the high prevalence of this mutation in the SA
community, and preclinical studies revealing pathologic conse-
quences of the MYBPC3 mutation all support ongoing effort to
understand the molecular mechanisms underlying MYBPC3

Fig. 1 Genotype ofMYBPC3Δ25bp in intron 32 of theMYBPC3 gene. (a) Two options of 25-bp deletion are indicated with the same outcome. (b) The
location of the splice branch point and polypyrimidine track at the junction of intron 32/exon 33 splicing (modified from Sadayappan et al. 2020)
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mutation–mediated HCM. The objective of our review is to de-
tail the association of MYBPC3Δ25bp and HCM/HF in SAs, de-
scribe the pathophysiology of HCM/HF in the setting of
MYBPC3 mutations, and explore newly proposed diagnostic
and therapeutic strategies. Overall, we aim to provide a construc-
tive answer to the frequently posed question by SAs: “I recently
found out through genetic testing (23andme) that I have one copy
of the MYBPC3 mutation [25bp deletion]… should I be taking
any precautions?”

Increased risk of cardiovascular disease
in South Asians

At 1.8 billion people, SAs comprise approximately 20% of the
world’s population. An estimated 3.5 million SAs live in the

USA, constituting approximately 1% of the American popu-
lation (Tang et al. 2012). Despite being only 20% of the
world’s population, SAs represent about 60% of CVD cases
worldwide (Kraker et al. 2016), suggesting a unique predis-
position worthy of increased investigation. The World Health
Organization (WHO) reports that CVD takes the lives of 17.9
million people every year, accounting for 31% of all deaths
globally. Strikingly, out of those 17.9 million people, 13.6%,
or 2.43 million, are of SA origin (Finegold et al. 2013;
Volgman et al. 2018), including Sri Lanka, Nepal,
Bangladesh, Bhutan, India, and Pakistan. Interestingly, the
SA population has a higher risk of CVD than any other ethnic
group (Gupta and Brister 2006). While researchers have ad-
vanced many causes to explain the high incidence of CVD
among SAs, the literature has been circumspect and inconclu-
sive, and, to date, no reports have pinpointed with precision

Table 1 The global distribution
and frequency of subjects found
to be carryingMYBPC3Δ25bp

according to the country of
residence

Countries/
region

Total subjects
analyzed

MYBPC3Δ25bp

carriers
Frequency (%) Reference

Southern India 229 16 6.98 Waldmuller et al. (2003)

India 6159 291 4.72 Dhandapany et al. (2009)

Pakistan 770 32 4.15 Dhandapany et al. (2009)

Sri Lanka 21 2 9.52 Dhandapany et al. (2009)

Malaysia 272 4 1.47 Dhandapany et al. (2009)

Indonesia 61 1 1.63 Dhandapany et al. (2009)

Southeast Asia 220 5 2.27 Srivastava et al. (2011)

Europe 110,751 170 0.15 Chowdry et al. (2012) (23&Me)*

USA 2401 144 5.99 Viswanathan et al. (2018)**

**Denotes the screening of South Asians residing in the USA; South Asians include those from Afghanistan,
Bangladesh, Bhutan, India, Maldives, Myanmar, Nepal, Pakistan, and Sri Lanka

*Denotes the screening of subjects of all ethnicities in Europe

Fig. 2 Prevalence ofMYBPC3Δ25bp worldwide. The frequency ofMYBPC3Δ25bp distribution in various countries is shown as a percentage. Details are
provided in Table 1 with the total number of samples screened by the country concerning the existing literature
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the etiology of increased risk for CVD among SAs. MetS
(metabolic syndrome) is a group of disease conditions of me-
tabolism (Pan et al. 2008) associated with an increased risk for
heart disease (Ram and Farmer 2012). The conditions associ-
ated with this designation are all risk factors for CVD (Kaur
2014), and they include hypertension, elevated triglyceride/
HDL ratio, hyperinsulinemia, insulin resistance, abdominal
adiposity, and dyslipidemia (Huang 2009; Pan et al. 2008;
Ram and Farmer 2012). Around 20–25% of SAs are known
to currently have MetS (Eapen et al. 2009), indicating that
MetS could play an important pathogenic role in the suscep-
tibility of SAs to CVD. A key component of MetS is insulin
resistance (Eapen et al. 2009). When compared with
Caucasians, SAs have notably been found to be at more risk
for insulin resistance (Simmons et al. 1991), which is a key
component of MetS (Eapen et al. 2009). Similarly, the high
frequency of MYBPC3Δ25bp mutation among SAs (~ 6%)
(Dhandapany et al . 2009; Simonson et al . 2010)
(Viswanathan et al. 2018) is presumed to be a significant
contributor to the high incidence of CVD, along with these
secondary risk factors (Srivastava et al. 2011). The challenge
is to determine if and how comorbidities, such as diabetes and
hypertension, contribute to the ultimate phenotype and natural
history of MYBPC3Δ25bp in a specific individual.

cMyBP-C is a regulator of contractility

MYBPC3 encodes cMyBP-C, a key structural protein of the
heart muscle that interacts with myosin (Flavigny et al. 2003;
Flavigny et al. 1999; Gruen and Gautel 1999; Shaffer et al.
2009), titin (Freiburg and Gautel 1996), and actin (Shaffer
et al. 2009; Squire et al. 2003) to support sarcomeric integrity
(Fig. 3). cMyBP-C was first discovered in the 1970s as a
contaminant in a myosin preparation (Bennett et al. 1986;
Craig and Offer 1976; Starr and Offer 1971). The gene
encoding the cardiac isoform was later identified and charac-
terized (Carrier et al. 1997; Carrier et al. 1993; Freiburg and
Gautel 1996; Oakley et al. 2004). MYBPC3 is a single-copy,
24-kb gene, consisting of 35 codons encoding a 1274–amino
acid and 140-kDa protein. Mutations involving the MYBPC3
gene cause significant cardiac disease at all ages (Barefield
and Sadayappan 2010; Chung et al. 2003; Maron 1996; Van
Driest et al. 2004). Experimental evidence, mainly resulting
from in vitro protein-protein interaction studies, suggests that
cMyBP-C may serve two functions: one as a molecular “rul-
er,” coordinating the spacing between thick and thin filaments,
and one as a regulator of actomyosin interaction by associa-
tion with the myosin II neck region (S2) and F-actin. cMyBP-
C encodes multiple repeats of fibronectin type III–like and
immunoglobulin (Ig)-like domains but differs from skeletal
isoforms in that it contains an N-terminal C0 domain, a
proline/alanine-rich linker between C0 and C1 and an ~ 100

amino acid segment between C1 and C2 Ig domains (the M-
domain). TheM-domain contains multiple serine residues that
are conserved between mice and humans and are reversibly
phosphorylated in response to systolic pressure and adrenergic
stimulation (Kulikovskaya et al. 2003b), thereby modulating
myofilament affinity (Kooij et al. 2013; Mun et al. 2011).
Genetic profiles have been used to study how changes in
cMyBP-C regulation at the molecular and cellular levels affect
the sarcomere structure. However, the correlation between
sarcomeric defects and organ-scale defects of myocyte orga-
nization remains an open area for investigation. The phos-
phorylation of cMyBP-C plays an important role in the regu-
lation of cardiac mechanics (Rosas et al. 2015; Rosas et al.
2019; Tong et al. 2008; Tong et al. 2015). Sadayappan and
colleagues have demonstrated that total cMyBP-C phosphor-
ylation affects cardiac contractility, sarcomere organization,
and the response to ischemia-reperfusion (I/R) injury
(Sadayappan et al. 2009; Sadayappan et al. 2005;
Sadayappan et al. 2006). In vitro experiments suggest that
genetic mutations in cMyBP-C could alter interactions within
the sarcomere, such as the α-tropomyosin and light meromy-
osin region of myosin (James and Robbins 2011; Okagaki
et al. 1993), the S2 region of myosin (Gruen and Gautel
1999), F-actin (Colson et al. 2012; Kensler et al. 2011;
Shaffer et al. 2009), and titin (Al-Khayat et al. 2013).
Moreover, the M-domain, containing serine residues differen-
tially phosphorylated by cAMP-dependent protein kinase
(Gautel et al. 1995; Hartzell and Titus 1982) and endogenous
calcium/calmodulin-dependent kinase (Hartzell and Glass
1984), maymodulate contractility (Stelzer et al. 2006) through
tethering of the S2 region of myosin (Weisberg and Winegrad
1996) and by modulation of actin-binding at the N-terminus
(Kulikovskaya et al. 2003a; Razumova et al. 2006). Nuclear
magnetic resonance studies suggest that the first 140 amino
acids of the M-domain contain regulatory phosphoserines
flanked by N-terminal charged residues. Phosphorylation of
the M-domain leads to a transient helical structure, whereas a
more stable trihelical structure comprises the C-terminal por-
tion of the M-domain (Howarth et al. 2012).

As revealed in previously published in vitro results
(Kulikovskaya et al. 2003a), the N-terminal region relative
to the M-domain is required for the interaction between M-
domain and F-actin. Together, these data support the hypoth-
esis that mutations in the gene encoding cMyBP-C affect the
signaling platform regulating actin and myosin and cause an
altered contraction in the heart (Charron et al. 1998; Kooij
et al. 2013; Niimura et al. 1998). In addition, we previously
demonstrated in rats with induced myocardial infarction that
the normal left ventricular architectural pattern is replaced by a
largely disordered region, upon which a mesh-like network of
orthogonally oriented myofibers is superimposed, extending
from within the infarct to the septal and basal border zones.
Addressing the underlying mechanism of this architectural
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disorder, the Sadayappan laboratory demonstrated that an N-
terminal 40-kDa fragment of cMyBP-C during I-R injury is
generated from calpain-dependent cleavage at 272-
TSLAGAGRRTS, near a conserved protein kinase A phos-
phorylation motif, containing the cardiac-specific C0 domain
(99 amino acids), C1 domain, and the first 17 residues of the
M-domain (C0-C1f) (Govindan et al. 2012; Sadayappan and
de Tombe 2012). Since C0-C1f lacks the phosphorylation
sites for dynamic interplay involving actin and myosin S2,
the presence of the cleaved product during I/R may be respon-
sible for impaired sarcomere structure and function, leading to
altered macroscopic myoarchitecture and impaired mechanics
(Barefield et al. 2019; Hoffman et al. 2018; Taylor et al.
2016). Moreover, it is well known that I/R promotes a reduc-
tion in cMyBP-C phosphorylation, notably via a loss in
triphosphorylated species (Sadayappan et al. 2006), and that
cMyBP-C phosphorylation confers resistance to proteolysis
(Barefield et al. 2019) while protecting against I/R injury
(Sanada et al. 2004). Extending these concepts regarding the
central role of cMyBP-C in affecting sarcomere structure, it is

reasonable to postulate that the tissue architectural response to
I/R would similarly be regulated by cMyBP-C and its degree
of phosphorylation. Therefore, it is obvious that mutations in
genes encoding for cMyBP-C would likely affect sarcomere
structure, regulation, and function.

Potential mechanism of cardiomyopathies
owing to MYBPC3Δ25bp

Currently, more than 350 disease-causingMYBPC3mutations
have been identified, and most are associated with HCM
(Carrier et al. 2015; Dhandapany et al. 2009; Morimoto
2008; Stenson et al. 2014). Importantly, several founder mu-
tations in different populations/countries were identified and
reported, including Japan (Kubo et al. 2005), Finland
(Jaaskelainen et al. 2013), Iceland (Adalsteinsdottir et al.
2014), France (Teirlinck et al. 2012), Spain (Oliva-Sandoval
et al. 2010), the USA (Saltzman et al. 2010), the Netherlands
(Alders et al. 2003) and MYBPC3Δ25bp from South Asia

Fig. 3 cMyBP-C: structure, localization, and function illustrating the
location of both MYBPC3Δ25bp and MYBPC3D389V variants. (a)
MYBPC3 gene comprising 35 exons and 35 introns. (b) cMyBP-C codes
for 1273 amino acids of cMyBP-C protein containing several domains.
(c) cMyBP-C is located on 7–9 stripes of 43 nm spacing in each half of
the A-band (cross-bridge bearing zone, C-region) of the sarcomere

exclusively in cardiac myocytes. Both MYBPC3Δ25bp and
MYBPC3D389V variants are indicated in the MYBPC3 gene and cMyBP-
C protein. cMyBP-C is an important structural component of the sarco-
mere which plays a regulatory role in cardiac muscle function via
interacting with actin, myosin, and titin. cMyBP-C, cardiac myosin-
binding protein C; MYBPC3, cardiac myosin-binding protein C3 gene
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(Dhandapany et al. 2009). It is likely that such an effect
exis ted in SA countr ies some 40,000 years ago
(Dhandapany et al. 2009). Furthermore, the chance of devel-
oping HCM among MYBPC3Δ25bp carriers is increased by
5.3-fold odds ratios among independent subjects with HF
(Dhandapany et al. 2009). This calls for research focused on
discovering the pathophysiological mechanism of
MYBPC3Δ25bp relative to cardiomyopathies. Interestingly,
70% of total MYBPC3 mutations are premature stop codons
or frameshifts at the carboxyl region of cMyBP-C, leading to
truncations lacking key myosin-binding residues. Truncations
in domains C7 to C10 of the carboxyl region of cMyBP-C
prevent its incorporation into the sarcomere (Barefield and
Sadayappan 2010; Harris et al. 2011; Kuster and
Sadayappan 2014). Other underlying mechanisms may in-
clude (1) “splicing defects,” an insufficient amount, or
“haploinsufficiency,” of MYBPC3 product (Barefield
et al. 2015; Marston et al. 2009); (2) a direct pathogenic
effect of a mutant on typical myofilament function, i.e.,
“poison polypeptide effect” (Kuster et al. 2019); and (3)
accumulation of misfolded proteins, i.e., “proteotoxicity”
(Kuster et al. 2019) (Fig. 4). The possible mechanisms
for MYBPC3Δ25bp pathogenesis remain uncertain, but
evidence suggests the following three possibilities: (i)
exon skipping and inclusion of novel amino acids in
the coded protein, (ii) haploinsufficiency, or (iii) combi-
nation with other mutations on the same allele (Fig. 4).
The following sections will discuss each of these mech-
anisms aiming to understand how MYBPC3Δ25bp could
be pathogenic and cause contractile dysfunction.

Altered splicing and exon 33 skipping owing to
MYBPC3Δ25bp could be pathogenic

The deletion in intron 32 was potentially expected to cause full
skipping of the downstream exon 33, resulting in a reading
frameshift, subsequently skipping the stop codon in exon 34.
Translation then continued through exon 34 and a part of the
3′-UTR, finally stopping in 3′-UTR (Figs. 3 and 5)
(Dhandapany et al. 2009; Waldmuller et al. 2003). In the mouse
model, MYBPC3Δ25bp leads to the replacement of the last C-
terminal 65 amino acids with 50 unique amino acids (cMyBP-
CΔC10mut) (Kuster et al. 2015). In this way, MYBPC3Δ25bp cre-
ates a newly altered C10 domain sequence and translates
cMyBP-CΔC10mut protein lacking exon 33 (Dhandapany et al.
2009; Waldmuller et al. 2003). Reports show that cMyBP-
CΔC10mut cannot link cMyBP-C to the myosin LMM region,
resulting in contractile dysfunction (Hossain et al. 2019; Kuster
et al. 2015). Kumar et al. have studied models for cMyBP-C that
depict the front and back helical views of cMyBP-C and cMyBP-
CΔC10mut protein. Interestingly, cMyBP-CΔC10mut introduces β-
pleated sheets and α-helix that might decrease the binding ca-
pacity of cMyBP-C to the myosin LMM region (Kumar et al.

2016). Since carboxyl domains of cMyBP-C directly bind to
myosin, titin, and connectin to form normal sarcomere structure,
conformational changes caused by cMyBP-CΔC10mut will affect
these interactions, resulting in severe sarcomere disorganization
and leading to structural and functional changes in cardiac mus-
cle (Hossain et al. 2019; Kumar et al. 2016).

In earlier studies, the molecular consequence of
MYBPC3Δ25bp was determined using neonatal cardiomyocytes
in vitro and demonstrated thatMYBPC3Δ25bp could skip exon 33
in the transcription (Waldmuller et al. 2003). In a follow-up
study, the presence of exon 33 skipping inmRNAwas confirmed
using a biopsy from an HCM patient with MYBPC3Δ25bp

(Dhandapany et al. 2009). Exon 33 skipping leads to a loss of
62 native cMyBP-C amino acids in the C10 domain (cMyBP-
CΔC10mut). The C10 domain of cMyBP-C directly interacts with
the myosin LMM region, which is critical for cMyBP-C anchor-
ing, localization, and stabilization of the cardiac sarcomere.
Furthermore, previous studies have established that modification
of the C10 domain of cMyBP-C will result in the removal of
mutant cMyBP-C since it is not incorporated in the sarcomere
(McConnell et al. 1999). In addition, carboxyl domains C7 to
C10 of cMyBP-C interact with titin, promoting cMyBP-C inte-
gration into the C-zone of the A-band. Kuster et al. (2019) have
analyzed the effects of cMyBP-CΔC10mut overexpression in iso-
lated cultured cardiomyocytes in vitro (Kuster et al. 2015) and in
transgenic mouse hearts in vivo. Results showed that cMyBP-
CΔC10mut expression is sufficient to cause the HCM phenotype.
Altogether, these data suggest that the expression of cMyBP-
CΔC10mut in cardiomyocytes results in the development of con-
tractile dysfunction and HCM. Alternatively, it could also be
hypothesized that the expression of cMyBP-CΔC10mut mRNA in
cardiomyocytes would result in susceptibility to rapid degrada-
tion. This effect was previously shown in a mouse model where
exon 31 was mutated such that the mutant RNA does not exist
and if it does exist, it does not translate (McConnell et al. 1999).
In that specific mouse model, a homozygous mutation of
MYBPC3 in the C-terminus is guaranteed to cause cMyBP-C
null, resulting in the HCM phenotype and possible sudden death
at an early age (Zahka et al. 2008). On this basis, we propose that
MYBPC3Δ25bp could be pathogenic. However, we still do not
know how MYBPC3Δ25bp promotes HCM. Recent studies sug-
gest thatMYBPC3Δ25bp may not be pathogenic in the context of
HCM (Harper et al. 2020; Sadayappan et al. 2020; Viswanathan
et al. 2018). However, we need a systematic study to determine
whether MYBPC3Δ25bp is or is not pathogenic (Hossain et al.
2019). One possibility is that the presence ofMetSmay aggravate
the effect ofMYBPC3Δ25bp activation and cause HF (Sadayappan
et al. 2020). Future research should consider questions such as (i)
the factors that promoteMYBPC3Δ25bp to skip exon 33, (ii) exon
33 skipping under all circumstances or only in the presence of
MetS, (iii) any genetic cofactors required to cause exon 33 skip-
ping, and (iv) gender and age association with exon 33 skipping
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and the relationship with left ventricular dysfunction
(Sadayappan et al. 2020).

Haploinsufficiency

According to the Nat ional Ins t i tu tes of Heal th ,
haploinsufficiency is a condition in which “one allele of a gene
is inactivated or deleted, and the remaining second functional
and normal allele of the gene is not adequate to produce a
sufficient amount protein to preserve normal function.” In the
case of one affected MYBPC3 allele in a truncated mutation, it
appears that the truncated protein is never found in the heart
(Rottbauer et al. 1997; van Dijk et al. 2009). Likewise, in pa-
tients with the MYBPC3Δ25bp, mutant cMyBP-C was not de-
tected in the biopsies (Dhandapany et al. 2009). It is plausible
that haploinsufficiency with theMYBPC3Δ25bp allele could re-
duce the total normal cMyBP-C protein level by the failure of
the normal allele to fully compensate (Dhandapany et al. 2009).
Based on a recent report, the relatively inadequate compensa-
tion induces a primary increase in calcium sensitivity which
would explain the features observed in HCM patients, includ-
ing an increased percentage of fractional shortening and ejec-
tion fraction, increased calcium transients, presence of myocar-
dial hypertrophy and evidence of relaxation impairments, and
increased cardiac remodeling causingmyofibrillar disarray and/
or life-threatening arrhythmias (Hossain et al. 2019).

The mechanism by whichMYBPC3Δ25bp causes increased
myofilament calcium sensitivity is unknown. Nonetheless,
mouse models and HCM patient studies suggest that either
poison polypeptide or haploinsufficiency of MYBPC3 would
have such an effect (Fraysse et al. 2012; Kuster et al. 2019;
Najafi et al. 2016; Sequeira et al. 2013). On the myofilament
level, several different mechanisms are proposed to cause
HCM, followed by HF and sudden cardiac death (SCD). For
example, increased Ca2+ handling, inefficient ATP utilization,
and accelerated mechanical force in combination could play a
role in the development of HCM (Ashrafian et al. 2011; Huke
and Knollmann 2010). In addition, mitochondrial energetic
abnormalities could also cause increased reactive oxygen spe-
cies and oxidative stress (Ashrafian et al. 2011; Brouwer et al.
2011), leading to pathologic cardiac remodeling associated
with cardiomyopathies like HCM. In support of this mecha-
nism, a recent study shows that cardiac troponin C, the
calcium-binding protein in the myofilament, showed in-
creased sensitivity to calcium, meaningless calcium generates
more force, which would lead to prolonged muscle tension
(Davis et al. 2016). Our group has determined another poten-
tial effect of cMyBP-C haploinsufficiency, namely, a reduc-
tion in the level of super-relaxed state myosin in which myo-
sin heavy chain is in a low energy state and regulated by
cMyBP-C (McNamara et al. 2017; McNamara et al. 2016).
This can cause increased energy consumption and, hence,
contribute to HCM pathophysiology. In support of this

Fig. 4 Possible mechanisms for MYBPC3Δ25bp pathogenesis.
Representation of various possible mechanisms of MYBPC3Δ25bp in
cardiomyocytes with the strong probability of another unidentified
phenomenon causing left ventricular hypertrophy (LVH), left

ventricular dysfunction (LVD), HCM, and HF. Eight related
mechanisms range from abnormal gene transcription to defective
translated protein
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possibility, a recent study of mouse cardiomyocytes with
cMyBP-C haploinsufficiency showed that treatment with the
myosin inhibitor mavacamten improved super-relaxed myo-
sin to contractile function (Toepfer et al. 2019b), suggesting a
clear relationship between cMyBP-C haploinsufficiency and
contractile dysfunction during HCM.

Poison polypeptide effect

Another possible pathological mechanism inHCM is the “poi-
son polypeptide” effect, in which the mutant proteins, either
missense or truncated, cause dysfunction through integration
into the sarcomere (Knoll 2012). In the case of cMyBP-
CΔC10mut, improper assembly of the cardiac sarcomere can
occur, resulting in the development of contractile dysfunction
and HCM (Kuster et al. 2019). Using transgenic mice express-
ing the cardiac-specific cMyBP-CΔC10mut protein, Kuster
et al. demonstrated that cMyBP-CΔC10mut protein does not
incorporate into its native sarcomeric C-zone. Instead, it pref-
erentially localizes to the cytosol and Z-line. Increased toxic
mutant and truncated proteins, if the poisoning process is

operative, result in altered contractile function, thereby alter-
ing calcium handling and inducing pro-hypertrophic signaling
in the cardiomyocytes that express cMyBP-CΔC10mut proteins.
Both in vitro (Kuster et al. 2015) and in vivo (Kuster et al.
2019) experiments have concluded that cMyBP-CΔC10mut

could be expressed in the cardiomyocytes, which would have
turned into “poison polypeptide” effects on cardiomyocyte
contractility. When cMyBP-CΔC10mut is expressed and local-
ized improperly, it could alter the speed of contraction by
regulating actomyosin interactions as the amino terminus of
cMyBP-CΔC10mut is unaltered (Razzaque et al. 2013;
Witayavanitkul et al. 2014). However, this hypothesis remains
speculative by the failure of several studies to detect the mu-
tant cMyBP-C proteins in the biopsies of patients with HCM
(Jacques et al. 2008; Knoll 2012; van Dijk et al. 2009).

Proteotoxicity: inflammation and impaired ubiquitin-
proteasome system

Several reports have suggested thatMYBPC3mutations could
produce toxic effects and that truncated proteins induce

Fig. 5 MYBPC3Δ25bp and MYBPC3Δ25bp/D389V variants and associated
pathogenesis. (a) Schematic illustration showing transcription of non-
carrier MYBPC3 allele coding normal cMyBP-C protein. (b) Intron 32
carrying MYBPC3Δ25bp mutation drives splicing defect causing exon 33
skipping and coding mutated C10 domain (cMyBP-CΔC10mut). (c)
Similarly, an additional point mutation, i.e., D389V, along with

MYBPC3Δ25bp (together represented asMYBPC3Δ25bp/D389V), is also pre-
sented. Such mutations drive abnormal MYBPC3 gene transcription and
translation leading to diverse processes/pathways that have adverse ef-
fects on cardiomyocyte health that may result in cardiomyopathy
phenotype
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inflammatory proteotoxicity and HCM (Bahrudin et al. 2011;
Gupta et al. 2014; Schlossarek et al. 2014; Wang and Robbins
2014). More recently, Lipps et al. showed that cMyBP-C is
degraded and released into myocardial tissue as a predomi-
nantly N-terminal 40-kDa fragment (C0C1f) with pro-
inflammatory characteristics in the systemic circulation
(Lipps et al. 2016). Alternatively, cMyBP-CΔC10mut could in-
volve impairment of the ubiquitin-proteasome system (UPS)
(Bahrudin et al. 2008; Sarikas et al. 2005). Eukaryotic cells
use the lysosomal pathway (autophagy) (Bhuiyan et al. 2013;
Maloyan and Robbins 2010; Pattison and Robbins 2011;
Wang and Robbins 2014) and the UPS to remove unwanted
proteins from the cytosol (Bahrudin et al. 2011; Carrier et al.
2010; Predmore et al. 2010; Sarikas et al. 2005; Schlossarek
et al. 2014). In theory, the elevated levels of mutant protein
could overwhelm and impair the UPS (Bahrudin et al. 2008;
Schlossarek et al. 2012). Consistent with this notion, HCM
patients with sarcomeric mutations have been observed with
reduced proteasome activity compared with patients without
the sarcomeric mutation (Predmore et al. 2010). Moreover,
improper functioning of UPS may contribute to the disease
process via (1) accumulation of malfunctioning proteins like
cMyBP-C and (2) aggregated formation of unfolded proteins.
Because cardiac UPS system efficiency is reduced with aging
(Bulteau et al. 2002), we propose that disease penetrance in
MYBPC3Δ25bp carriers is determined by the level of UPS im-
pairment, which could be age-dependent (Dhandapany et al.
2009). It is also possible that MYBPC3 mutations destabilize
the UPS system by accumulating more in the cytosol, further
contributing to cardiomyocyte dysfunction (Sarikas et al.
2005). Finally, considering the well-described decline in pro-
cess and pathways of the UPS with increasing oxidative stress
and secondary risk factors, such as age (Bulteau et al. 2002;
Okada et al. 1999), mutant cMyBP-C proteinsmay store in the
cardiomyocyte, affect cellular homeostasis, activate autopha-
gy, and cause LV dysfunction (Kumar et al. 2016). This is
supported by recent studies in cMyBP-CΔC10mut transgenic
mouse heart showing differential expression of several genes
associated with proteasome function (Kuster et al. 2019), sug-
gesting the direct association amongMYBPC3Δ25bp, UPS im-
pairment, and pathologic cardiac remodeling, leading to
cardiomyopathy.

The endoplasmic reticulum (ER) and unfolded protein re-
sponse (UPR) pathway regulate cellular homeostasis by me-
diating protein synthesis, folding, and maturation (Glembotski
2008; Liu and Dudley Jr 2014). The ER lumen contains three
parallel signaling transmembrane sensor proteins, namely
PRKR-like ER kinase (PERK), activating transcription factor
6 (ATF6), and inositol-requiring protein 1α (IRE1α), all of
which detect signs of ER stress in the cytosol and selectively
recognize the accumulation of unfolded and misfolded pro-
teins (Groenendyk et al. 2010; Minamino and Kitakaze 2010;
Minamino et al. 2010). In the absence of ER stress, glucose-

regulated protein 78 (GRP78, or BiP) binds and inhibits these
three pathways. However, when misfolded proteins accumu-
late, GRP78 translocates from the ER lumen by dissociating
from PERK, IRE1α, and ATF6, thereby activating those path-
ways. Accumulation of unfolded andmisfolded proteins in the
cell results in ER stress and activates PERK by autophosphor-
ylation. Activated PERK, in turn, phosphorylates eukaryotic
initiation factor 2α (eIF2α), which reduces cellular translation
by ATF4 and CHOP activation (Halliday et al. 2014; Kitakaze
and Tsukamoto 2010; Thorp 2012). PERK activation pro-
motes apoptosis by inhibiting translational machinery, induc-
ing the pro-apoptotic proteins Bax and Bim, and preventing
the function of antiapoptotic protein Bcl2. Conversely, the
activation of IRE1α and ATF6 induces cell survival by up-
regulating ER chaperones. Furthermore, the accumulation of
high-molecular-weight cMyBP-CΔC10 proteins in the cyto-
plasmmight alter the proteolytic capacity of the UPS and limit
the ability of proteasomes to degrade other substrates. If
shown, the results could elucidate novel therapeutic targets
to augment the UPR pathway, as well as proteasome activity,
and maintain sarcomere integrity, thereby attenuating the nu-
merous types of heart disease linked to proteotoxicity.
Therefore, it is possible that preventing activation of the
PERK-mediated pathway in cMyBP-CΔC10mut expression
would prevent or rescue the HCM phenotype (Groenendyk
et al. 2010).

Nonsense-mediated decay

Nonsense-mediated decay (NMD) is a cellular process in the
cytosol that detects mRNA with nonsense mutations and pre-
vents their translations to mutant proteins. Specifically, NMD
degrades mRNAs with premature termination codons (PTCs).
NMD performs a dual role as it not only degrades PTC-
containing transcripts but also regulates the expression of nor-
mal transcripts. HCM-associatedMYBPC3mutations are pre-
dominantly premature stop codons. As such, the NMD path-
way is the preferred pathway to remove them from the cellular
process (Schlossarek et al. 2011; Vignier et al. 2009).
Interestingly, using human-induced pluripotent stem cell–
derived cardiomyocytes (hiPSC-CMs), Seeger et al. demon-
strated that MYBPC3 PTC mutations involve abnormal calci-
um signaling and molecular dysregulation in the absence of
significant haploinsufficiency of cMyBP-C protein (Seeger
et al. 2019). Also, modulation of the cMyBP-C degradation
pathway through therapeutic approaches may protect normal
levels of cMyBP-C in HCM patients (Helms et al. 2020).
Also, acute inhibition of NMD leads to a restoration of the
HCM phenotype in hiPSC-CMs in vitro. Demonstration of
such a direct relationship between NMD system activity and
HCM development thus challenges haploinsufficiency or poi-
son peptide mechanism as likely causes of MYBPC3 PTC-
mediated HCM (Seeger et al. 2019). We believe that the
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NMD could remove and prevent mutant MYBPC3Δ25bp

mRNA exon 33 skipping or alternative splicing to translate
into cMyBP-CΔC10mut protein, leading to haploinsufficiency
and causing contractile dysfunction, left ventricular hypertro-
phy, and HF.

Impact of MYBPC3Δ25bp with compound
mutations

Not all carriers of the genetic variant MYBPC3Δ25bp show a
cardiomyopathic phenotype (Dhandapany et al. 2009;
Viswanathan et al. 2018). Cardiomyopathy is more likely
and more pronounced when MYBPC3Δ25bp exists with other
sarcomeric gene mutations (Bashyam et al. 2012; Tanjore
et al. 2008; Waldmuller et al. 2003). For example, patients
carrying both MYBPC3Δ25bp and another mutant in MYH7-
E927del present with a severe HCM disease (Waldmuller
et al. 2003). Likewise, when MYBPC3Δ25bp coexists with
TNNT2 mutants, HCM appears to be more likely (Kumar
et al. 2016). Although heterozygous MYBPC3Δ25bp carriers
predominantly present with incomplete penetrance and devel-
op HCM symptoms at late-onset (Dhandapany et al. 2009), a
compound effect of MYBPC3Δ25bp with other sarcomeric
gene mutations (termed “two-hit phenomenon”) can cause
severe HCM and early sudden death (Marian 2001; Morita
et al. 2008; Srivastava et al. 2011) and CAD (Kumar et al.
2016). Homozygous carriers of this MYBPC3Δ25bp variant,
which is an example, in principle, of “two hits” can develop
severe HCM phenotype and early clinical symptoms
(Dhandapany et al. 2009).

Recent studies by our group show an association of
cardiomyopathy/HCM with MYBPC3Δ25bp and MYBPC3D389V

mutations in SA descendants (Viswanathan et al. 2018) (Fig. 5).
SAs living in the USA have a ~ 6% prevalence of the
MYBPC3Δ25bp variant (Viswanathan et al. 2018); ~ 9.6% of
these individuals also harbor a unique missense mutation
(aspartic acid (D) to valine (V) at codon 389 in cMyBP-C) rep-
resented as MYBPC3D389V. This variant is located at exon 12
which codes for the C2 domain of cMyBP-C. The C2 domain
is a critical region of cMyBP-C that directly interacts with the S2
region of myosin in a phosphorylation-dependent manner and
thereby regulates actomyosin and speed of contractions (Ratti
et al. 2011). Interestingly, MYBPC3D389V coexists with the
MYBPC3Δ25bp variant in the same allele. The combined impact
of both mutations predicts changes in actin-myosin interaction,
abnormal Ca2+ transients, and cardiac dysfunction (heart
hyperdynamic state) predisposing to HCM/HF (Viswanathan
et al. 2018). Because MYBPC3D389V is linked to HCM, it is
proposed that MYBPC3D389V is translated and incorporated into
the sarcomere to exert HCM. For instance, if a carrier of the
MYBPC3Δ25bp variant also bears a mutation in MYH7, this
grouping often results in sudden cardiac death (Dhandapany

et al. 2009). Systematic studies are needed to define whether
MYBPC3Δ25bp alone is sufficient to cause LV dysfunction,
LVH, and HCM or whether a definite association with another
mutation or a secondary risk factor is needed (Van Driest et al.
2004).

. Compound mutations with MYBPC3Δ25bp may also
cause cardiac arrhythmias, leading to the likelihood of organ
damage, organ failure, and SCD (Al-Khatib et al. 2018; Hunt
et al. 2001). More than 4 million Americans suffer from re-
current arrhythmias, and this statistic is expected to increase
as the population ages. Almost 40% of all patients seen in
cardiology clinics, including one in four seen for the first
time, present with cardiac arrhythmia or conduction defect
(Vazquez Ruiz de Castroviejo et al. 2005). Current medical
therapies for treating cardiac arrhythmias suppress neurohor-
monal activation first and then treat cardiac fluid volume
overload and function. It has been proposed that antiarrhyth-
mic drugs might slow the progression of HCM. Nevertheless,
the prognosis for patients, including those receiving optimal
treatments, remains poor (Bristow et al. 1996; Coats 2002;
Colucci et al. 1996)These circumstances call for the
development of novel therapies for cardiac arrhythmia
(Bristow 2000; From 1998; Sabbah and Stanley 2002;
Tang and Francis 2003). Cardiac arrhythmias such as
tachycardia, ventricular and atrial fibrillation, and prema-
ture contractions) are the major causes of SCD in HF
(Swaminathan et al. 2012). Arrhythmias also lead to the
worsening of HF by decreasing the efficiency of the whole
organ and disrupting the link between heart rate and cardi-
ac output. Unfortunately, certain treatments for HF, such as
inotropic drugs that change the force of the heart’s contrac-
tions, are contraindicated owing to increased SCD events
(Krell et al. 1986), while conventional antiarrhythmic
treatments, like Ca2+ channel blockers, cannot be used in
HF owing to the worsening function of the failing myocar-
dium with use of this class of drugs (Echt et al. 1991).
Therefore, notwithstanding the association between cardi-
ac arrhythmias and HF, it is difficult to strategize and de-
velop novel therapies that can be used to treat both diseases
without any side effects. In this process, the important first
step is to identify novel therapeutic targets that can reduce
HCM-induced cardiac arrhythmias and HF. Future studies
should involve the elucidation of molecular mechanisms
that cause the abnormal Ca2+ handling in HCM and SCD.
We propose that the confluence of modifiers, including
calcium handling proteins, such as phospholamban,
sarco/endoplasmic reticulum Ca2+-ATPase, ryanodine re-
ceptor (RyR), or histidine-rich Ca2+-binding protein
(HRC) with MYBPC3Δ25bp variant, could contribute to
the development and manifestation of a severe cardiomy-
opathy phenotype and SCD, indicating that a more com-
plex genetic architecture is involved in the disease (Wu
et al. 2015).
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Epigenetic changes and MYBPC3Δ25bp

Epigenetics means “on top of” or “in addition to” the tradi-
tional genetic features involved in gene regulation.
Epigenetics involves DNA methylation, histone modifica-
tions, and RNA-mediated silencing. DNA methylation, such
as methylcytosine and hydroxymethylcytosine, occurs in cy-
tosine nucleotides at CpG sites specifically linked to guanine
by a phosphate. Utilizing anMYBPC3mutant mouse model of
cardiomyopathy, Tabish et al. reported significant epigenetic
changes within the introns of several cardiac genes associated
with pathological cardiac remodeling and heart contractile
dysfunction (Tabish et al. 2019). Based on these data, epige-
netic changes in the intronic region of MYBPC3 may induce
altered splicing causing exon skipping and the rise of
MYBPC3Δ25bp variant. Similarly, some patients within the
same family cohort carrying an MYBPC3Δ25bp variant show
HCM phenotype at the age of 30 years, while other carriers
have healthy hearts, even in old age (Dhandapany et al. 2009).
Others and we have hypothesized that the difference in phe-
notype could be explained by the epigenetic impact of comor-
bidities, such as promoting exon skipping or increasing alter-
native splicing. In addition, it has been suggested that HCM is
directly associated with hypertension (Karam et al. 1989), a
condition well known to exert epigenetic effects (Arif et al.
2019). Thus, theMYBPC3Δ25bp variant–related occurrence of
HCM phenotype in patients at different ages andMetSmay be
classified by differences in epigenetic maps that activate and
promote exon 33 skipping and increase alternative splicing.
Such a notion may also determine the mechanism behind the
differences in severity and onset of HCM at different ages in
MYBPC3Δ25bp carriers.

Diagnosis and innovative therapeutic
approaches

As mentioned earlier, one of the key conundrums of research
in MYBPC3Δ25bp is incomplete penetrance and variable ex-
pressivity (Dhandapany et al. 2009; Waldmuller et al. 2003).
The challenge is, in part, addressed by improving screening
methods to detect asymptomatic cardiac disease. Diagnosis of
HCM using contemporary technologies, such as magnetic res-
onance imaging, PCR, and biomarkers, is still in its early
stages.

Next-generation sequencing–based strategies

Recent advances in DNA sequencing, such as next-generation
sequencing (NGS) screening for genetic variants, are robust
and high-throughput (Gomez et al. 2014), resulting in the
identification of many new variants, as well as establishing
new HCM databases. Such resources would help physicians

make timely diagnostic decisions and start treatment
(McNally and Puckelwartz 2015). The future of precision
medicine will rely on genetic testing, genetic counseling,
and therapeutic decisions based on collaborative efforts.
Whole-genome DNA sequencing allows for the identification
of multiple mutations within the same individual. Given the
phenotypic implications of the association of MYBPC3Δ25bp

with other gene mutations, such asMYH7, TNNT2, or TNNI3,
this constitutes a major advance. The importance is empha-
sized by the understanding that mutations in both MYBPC3
and MYH7 consist about of 80% of the identified HCM-
associated mutations, while another 10% are derived from
TNNI3 and TNNT2 genes (McNally et al. 2015; Morimoto
2008). Therefore, at least 90% of HCM cases caused by mu-
tations in these four major sarcomeric genes can be diagnosed
via the design of an NGS panel. In fact, recent technological
developments enabled researchers to use NGS as a molecular
diagnostic tool for HCM (Chen et al. 2019) and other cardio-
myopathies (Daoud et al. 2019; Forleo et al. 2017). In 2016,
Barefield and coworkers performed a pilot study to develop a
variant-specific diagnostic assay and quickly screen for the
presence of the MYBPC3Δ25bp variant using either a small
volume of blood or saliva from a cohort of SAs (Barefield
et al. 2016). The RNaseH-mediated qPCR assay was used to
diagnose the MYBPC3Δ25bp gene-positive with specific
RNaseH-blocked nucleotide primers. Such assay provides
faster prescreening of SAs who are at a high risk for cardio-
myopathies with MYBPC3Δ25bp for earlier clinical care.
Likewise, other non-sarcomeric gene mutations, such as
ACE and extracardiac disease, can also be associated with
the onset of HCM (Kraker et al. 2016); nevertheless, this is
beyond the scope of this review.

Gene-editing technologies

Gene-editing technologies can be used to cure genetically
caused HCM (Strong and Musunuru 2017). Clustered, regu-
larly interspaced, short palindromic repeats (CRISPR) and
CRISPR-associated 9 (Cas9) can provide specific site-
directed gene editing. These technologies can also correct in-
dividual and selective gene mutations. Once such a system is
validated, it could be an ideal means to treat patients with a
homozygousMYBPC3Δ25bp variant. Recent studies show that
the MYBPC3 mutation can be corrected using the CRISPR/
Cas9 in human pre-implanted embryos and that such non-
carrier embryos, without evidence of off-target mutations,
could be candidates for in vitro fertilization (Ma et al. 2017).
However, in addition to possible ethical issues, it should be
noted that the CRISPR/Cas9 system has some major technical
limitations, e.g., ineffectiveness for repairing homozygous
mutations or the possibility of off-targeting editing which af-
fects other genes and thus induces secondary phenotypes.

1075Biophys Rev (2020) 12:1065–1084



Stem cell technologies: hiPSCs, spheroids, organoids,
and engineered heart

Limitations in the availability of human cells and tissues pres-
ent considerable obstacles to the study of human mutations.
Furthermore, cardiomyocytes, a post-mitotic cell type, are al-
most impossible to maintain under culture conditions, leading
to the inability to study such cells in vitro. A solution is a use
of human-induced pluripotent stem cell (HiPSC) technology,
a method that enables the use of renewable patient-specific
biological material (Shi et al. 2017). The hiPSC system pro-
vides a unique opportunity to study genetic disease in vitro.
These hiPSC-derived cardiomyocytes (hiPSC-CMs) are an
ideal in vitro tool for testing drug cardiotoxicity, screening,
and validation. HiPSCs can be differentiated into 2D
cardiomyocytes (Kamdar et al. 2015), providing researchers
the opportunity to study the importance of sarcomeric gene
mutation and associated mechanisms of cardiomyopathy. For
example, hiPSCs-CMs have been successfully utilized to
study genetic diseases, including Pompe disease (Huang
et al. 2011) and LEOPARD syndrome (Carvajal-Vergara
et al. 2010). Similarly, the impact ofMYBPC3 genemutations
has been studied in hiPSC-CMs (Helms et al. 2020; Ross et al.
2016; Seeger et al. 2019; Tanaka et al. 2014). However, HiPS-
CMs have several limitations including incomplete
reprogramming, an immature adult phenotype with embryon-
ic genetic and epigenetic markers, variabilities, lack of t-tu-
bules, and normal contractility (Knollmann 2013). Therefore,
alternative and improved in vitro models are warranted. HiPS-
CMs, cultured in a three-dimensional (3D) matrix architec-
ture, termed as “spheroids” (Campbell et al. 2019) or
“organoids” (Hoang et al. 2018), is another advancement in
the field of cardiac tissue research. More importantly, these
small 3D units under in vitro culture can be utilized as disease
models (Ho et al. 2018; Mattapally et al. 2018). Another re-
cent breakthrough in the field of cardiac research is the whole
organ bioprinting using 3D tissue printing (Noor et al. 2019).
Such pioneering research could allow cardiac studies to ad-
vance to a level that facilitates the investigation of cardiomyo-
cyte and non-cardiomyocyte crosstalk and physiological func-
tion in a complex cardiac tissue–like environment. Recent
developments in the use of hiPSCs differentiated into
cardiomyocytes have allowed the fabrication of 3D heart mus-
cle and cardiac organoids. Modern cell biology techniques
have led to the generation of iPSC-derived cardiac organoids,
resulting in a valuable approach toward assessing disease
mechanisms and phenotype in vitro. Indeed, for recapitulating
genetic diseases in Petri dishes, such as HCM, cardiac
organoids may be essential. In particular, in vitro cardiac or-
ganogenesis using hiPSCs may lead to new opportunities for
high-throughput modeling to study disease phenotype, deter-
mine disease mechanism, and perform preclinical studies to
screen for therapeutic reagents. Such cardiac organoids may

provide a tool with which to study organ development, cardiac
function, and cardiac injury. HiPSCs-derived cardiac
organoids may be considered a potential method to validate
and assess disease phenotype and preclinical studies in a quick
turnaround time and closely resemble human disease condi-
tions, compared with hiPSC-CMs and mouse models (Marti-
Figueroa and Ashton 2017; Silva et al. 2019). Organogenesis
from hiPSCs may also provide new opportunities to study
disease phenotype, define disease mechanisms, and help in
screening for therapeutic reagents (Li et al. 2014). HiPSCs
are now used to generate cardiomyocytes and engineer tissue,
including 3D heart muscle and cardiac organoids (Mills et al.
2019; Mills et al. 2017). These cardiac organoids can act as a
mechanical tool to study cardiac development, cardiac func-
tion, and cardiac injury (Moretti et al. 2013; Richards et al.
2017).

Gene therapies and pharmacological inhibitors to
treat HCM

The percentage of HCM patients with MYBPC3 mutations is
estimated to be ~ 40%, making it the most common HCM-
associated gene. Importantly, 70% of all MYBPC3 mutations
are predicted to result in incomplete, or truncated, proteins,
that alter sarcomere structure and function and impact cardiac
mechanics (Barefield et al. 2015; Harris et al. 2011; Kuster
et al. 2015; Sadayappan and de Tombe 2014). Recent drug
development has focused on direct manipulation of the con-
tractile apparatus by affecting myosin activators (Cleland et al.
2006; Solaro 2009; Teerlink 2009), modification of single
histidine buttons in cardiac troponin I (cTnI) (Day et al.
2006; Palpant et al. 2009), the introduction of therapeutic
genes via the expression of full-length cMyBP-C (Mamidi
et al. 2014; Mearini et al. 2014; Merkulov et al. 2012), or
the removal of mutant myosin transcripts (Jiang et al. 2013).
Mearini et al. used AAV9-mediated expression of full-length
cMyBP-C to improve haploinsufficiency and affect polypep-
tide expression. However, this study was limited by the fact
that AAV9-mediated cMyBP-C was administered in 1-day-
old mice to prevent HCM, rather than testing in adult mice
once the HCM phenotype had been established (Mearini et al.
2014), or partially rescued. Alternatively, in vitro systems,
such as hiPSC-derived cardiomyocytes (Prondzynski et al.
2017) and engineered heart tissues (Dutsch et al. 2019), have
been used to test the efficacy of gene therapy designed to
improve MYBPC3 mutant–mediated contractile dysfunction;
however, such systems require further in vivo validation using
preclinical models (Prondzynski et al. 2019).

Direct targeting of contractile proteins, effectively
bypassing receptor signaling, could lead to more promising
therapeutic results (Day et al. 2006; James et al. 2005;
Sadayappan et al. 2009; Solaro 2009; Teerlink 2009; Tissier
et al. 2008). Unfortunately, most pharmacologic options
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available today at best only modestly improve symptoms as-
sociated with HF. However, Ho et al. have demonstrated that
diltiazem, a calcium channel blocker used to treat hyperten-
sion, also prevents the development of HCM in patients with
MYBPC3mutations (Ho et al. 2015). A recently studied alter-
native to normalizing actomyosin interactions by manipulat-
ing signaling cascades is direct inactivation or activation of
myosin (Mamidi et al. 2018). Such drugs might be prescribed
to family members at risk at an earlier time before they devel-
op a functional reduction of cardiac output. This approach has
largely been directed toward improving cardiac function in
inherited disease featuring diastolic dysfunction, namely re-
strictive cardiomyopathy (Davis et al. 2007) and HCM (Green
et al. 2016; Kawas et al. 2017). Mavacamten, a myosin inhib-
itor, was established to treat HCM with left ventricular hyper-
trophy, disorganized sarcomere, fibrosis, and diastolic dys-
function. Early research has shown that chronic administration
of mavacamten reduces hypercontractility in LVH, as well as
disarray and fibrosis in the myocardium, and normalizes gene
expression to rescue HCM in a mouse model (Green et al.
2016). In addition, Mamidi et al. demonstrated that
Myk461-induced force reduction is regulated via cMyBP-C
expression levels in the sarcomere (Mamidi et al. 2018).
Mavacamten is a very promising drug to treat HCM and was
recently approved for use in clinical trials (Phase 3 pivotal
EXPLORER-HCM clinical trial, NCT03470545) for HCM
(Heitner et al. 2019). Recently, mavacamten was also used
to improve the hiPSC-CM function carrying a heterozygous
MYBPC3 mutation in vitro (Toepfer et al. 2019a). Based on
this information, molecular inhibitors seem to have the poten-
tial to target the HCM phenotype, yet more focused studies to
design relevant future therapies are needed. Thus, direct ma-
nipulation of the contractile apparatus is now a focus on drug
development and could have significant therapeutic advan-
tages by bypassing receptor-ligand signaling pathways
(Cleland et al. 2006).

Concluding remarks

In SAs, MYBPC3Δ25bp is specifically inherited with an in-
creased, but poorly understood, risk of HCM, HF, and sudden
death. The high prevalence of MYBPC3Δ25bp and associated
risk of cardiomyopathy have prompted urgency for under-
standing pathophysiology as a means to improve outcomes.
This review highlights some of the mechanisms that may ex-
plain the association of MYBPC3Δ25bp with HCM, HF, and
sudden death. Also, we summarize some of the current tools
and techniques that may be helpful for the development of
precision medicine to address the clinical problem of HCM.
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