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Abstract
Alzheimer’s disease (AD) is an irreversible neurological disorder that progresses gradually and can cause severe cognitive and
behavioral impairments. This disease is currently considered a social and economic incurable issue due to its complicated and
multifactorial characteristics. Despite decades of extensive research, we still lack definitive AD diagnostic and effective thera-
peutic tools. Consequently, one of the most challenging subjects in modern medicine is the need for the development of new
strategies for the treatment of AD. A large body of evidence indicates that amyloid-β (Aβ) peptide fibrillation plays a key role in
the onset and progression of AD. Recent studies have reported that amyloid hypothesis–based treatments can be developed as a
new approach to overcome the limitations and challenges associated with conventional AD therapeutics. In this review, we will
provide a comprehensive view of the challenges in AD therapy and pathophysiology. We also discuss currently known com-
pounds that can inhibit amyloid-β (Aβ) aggregation and their potential role in advancing current AD treatments. We have
specifically focused on Aβ aggregation inhibitors including metal chelators, nanostructures, organic molecules, peptides (or
peptide mimics), and antibodies. To date, these molecules have been the subject of numerous in vitro and in vivo assays as well as
molecular dynamics simulations to explore their mechanism of action and the fundamental structural groups involved in Aβ
aggregation. Ultimately, the aim of these studies (and current review) is to achieve a rational design for effective therapeutic
agents for AD treatment and diagnostics.
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Introduction

Alzheimer disease (AD) is the most common neurodegenera-
tive condition and behavioral impairment, which in 1907,
Alois Alzheimer first diagnosed AD in a German woman
(Graeber et al. 1997). AD is considered an age-dependent
disease affecting people of 65, 80, and 90 years of age with
approximately 5%, 20%, and 33% levels of incidence respec-
tively (Hajipour et al. 2017). Based on data from the Center
for Disease Control and Prevention in the USA, AD is the fifth
greatest cause of mortality for those aged 65 years and older.
While deaths from stroke, human immunodeficiency virus
(HIV), and heart disease have reduced in number over the
2000–2013 period by 23%, 40%, and 14%, respectively,
deaths from AD increased by 71% over the same period. In
2015, the prevalence of AD was estimated around 46.8 mil-
lion people worldwide, from which 43% need a high level of
care (such as a home nurse) with an estimated caring burden of
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about 236 billion dollars for people age ≥ 65 years with de-
mentia (Alzheimer’s Association 2016). It is expected that this
number will surge to more than 131.5 million people world-
wide by 2050 (Prince et al. 2016).

In the early stages of the disease, AD is diagnosed with an
impairment in short-term memory, which gradually pro-
gresses and presents as other neurological changes and behav-
ioral disorders (McKhann et al. 1984, Ahmad Fazili et al.,
2015). The elderly population is growing worldwide, and
there is currently no cure for AD. Medical advances are ur-
gently required for the early diagnosis, prevention, and treat-
ment for AD.

AD is likely to become one of the major healthcare and
economic challenges in the world in an early future (Sloane
et al. 2002; Wimo et al. 2013). The limited success of nearly
all therapeutic agents on the course of the development AD
has created great concern for researchers. This has led to the
search for improved diagnostic and therapeutic agents to over-
come such obstacles.

Pathophysiology

Death of neurons and synaptic damages the brain regions in-
cluding the hippocampus, cortex, and ventral striatum which
are the main neuropathological properties of AD. This pathol-
ogy is responsible for brain atrophy and subsequent display of
the cognitive symptoms of AD (Selkoe 2001). Brain atrophy
associated with narrowed gyri, enlarged ventricles, and sulci
can be observed in radiological tests of AD-affected brains
(Rossor et al. 2000). However, these hallmarks are not specific
to AD and may be detected in other dementia disorders.
Nevertheless, the extracellular amyloid plaques, intracellular
neurofibrillary tangles (NFTs), and vascular amyloid deposits
are likely to reveal on postmortem AD brain at histological
examination (Jaruszewski et al. 2012). In particular, extracel-
lular amyloid-β plaques, formed by amyloid-β peptide (Aβ)
aggregation, can be a unique histopathologic feature of this
disease (Mandelkow and Mandelkow 1998).

The many risk factors involved in AD pathogenesis can be
classified into two major categories, genetic and nongenetic.
Both genetic and nongenetic factors play a major role in the
causation and progression of AD. It is estimated that approx-
imately 1% or less of Alzheimer’s cases are reported because
of the mutation in three specific genes (Bekris et al. 2010).
These mutations influence the gene encoding the amyloid
precursor protein (APP) on chromosome 21, and the gene
encoding presenilin 1 (PS-1) protein on chromosome 14 and
the gene encoding presenilin 2 (PS-2) protein on the chromo-
some (Sahni et al. 2011). Mutations in these genes lead to
familial forms of AD.

People with Down syndrome are at high risk of AD. This is
likely due to those with Down syndrome possessing an

additional full or partial copy of chromosome 21 which con-
tains the gene that encodes APP (Lott and Dierssen 2010). The
APOE-e4 allele type is another genetic factor correlating with
AD. Factors such as age, family history, diabetes, obesity,
smoking, cardiovascular disease, and education have been
described as the nongenetic abnormalities. The apolipoprotein
E protein (ApoE) transports triglycerides, lipoproteins, and
phospholipids in blood circulation and are also believed to
play a key role in nerve regeneration and synaptic remodeling
(Ignatius et al. 1986). The ApoE gene on chromosome 19 in
humans has three major isoforms E2, E3, and E4 (Emi et al.
1988). People with the Apo ε4 polymorphism of ApoE gene
are at higher risk and typically present with an earlier start of
AD disease than those without the ε4 allele (Corder et al.
1993). APOE4 can behave like a pathological chaperone for
Aβ peptide and can both significantly enhance Aβ deposition
and diminish clearance of Aβ. However, the small ε2 allele
may be protective against AD (Corder et al. 1994).

In general, two main hypotheses have been proposed to
describe the etiology and pathophysiology observed in AD.
The first, known as the amyloid cascade hypothesis, depends
on an amyloid cascade that stimulates neurofibrillary tangle
formation, with both playing a prominent role in the neurode-
generation processes. According to this hypothesis, AD ad-
vances via enzymatic cleavage of APP leading to overproduc-
tion, clearance failure, aggregation, and ultimately fibrillation
of amyloid-β peptide (Aβ) with amyloid plaque formation.
These conditions are related to inflammation and cell death,
which is reflected in memory damage and behavioral impair-
ment (Fig. 1) (Hardy and Selkoe 2002; Finder and
Glockshuber 2007).

Mutation in APP and presenilin (PS) genes leads to an
increase in Aβ senile plaques in these patients (Mattson
2004). Therefore, according to the proposed mechanism,
probably, Aβ deposition can be the first pathological event
that occurs years before the appearance of clinical symptoms
in the brain. The intracellular neurofibrillary tangles are the
driving forces in the progression towards detectable clinical
symptoms (Knopman 2016; Reiman 2016).

The Aβ protein is produced in the brain and the pe-
ripheral tissues. APP is a large single-transmembrane gly-
coprotein that includes a large extracellular domain (590–
680 amino acids) and cytoplasmic end of 55 amino acids
which plays a role in intracellular trafficking. When the
APP is cleaved through proteolytic processing by en-
zymes of β- and γ-secretases, respectively, a 39–42 ami-
no acid protein fragment is derived from APP cleavage
position (Haass and Selkoe 1993). Aβ40 accounts for
approximately 90% from total formed Aβ peptide while
Aβ42 approximately 10%. It has been reported that Aβ
levels in the brain tissue, CSF, and plasma of a healthy
individual are in equilibrium reflecting this 90:10 ratio,
which is disturbed during AD progression (Fig. 2).
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In addition, it is believed that the blood-brain barrier (BBB)
can help to regulate Aβ levels in the plasma and brain through
the action of the receptor for advanced glycation end products
(RAGE) and low-density lipoprotein receptor–related protein
1 (LRP1) receptor. LRP1 transports Aβ proteins in the
abluminal and luminal direction respectively (Deane et al.
2003; Giedraitis et al. 2007; Deane et al. 2009). Aβ proteins
in the brain parenchyma may form into fibrils or be degraded
via various protease enzymes such as insulin-degrading en-
zyme (IDE), neprilysin (NEP), and angiotensin-converting
enzyme (ACE).

In the AD brain, plaques can be made from several differ-
ent peptides, but their cores are composed primarily of

amyloid-β peptides. Due to the existence of two hydrophobic
residues in the C-terminal of Aβ42 rather than Aβ40, Aβ
shows a higher tendency to misfolding and self-aggregation
as well as more cell cytotoxicity than Aβ40 protein. For this
reason, Aβ42 peptide forms the prominent segment of neuritic
plaques in AD brain, while Aβ40 peptide is later deposited
(Wisniewski and Wegiel 1995). The concentrations of both
of these peptides are decreased in CSF assays of AD patients
providing indirect confirmation of the presence of amyloid
plaque formation (Tamaoka et al. 1997). The Aβ peptides
have various aggregation forms including low molecular
weight oligomers, protofibrils, and mature fibrils that eventu-
ally come together as parenchymal plaques or cerebrovascular

Fig. 2 The distribution and degradation pathway ofAβ peptidemonomer
between brain and blood circulation. BBB can regulate Aβ levels in the
plasma and brain parts through the receptor for advanced glycation end
products (RAGE) and low-density lipoprotein receptor-related protein 1
(LRP1) receptor that transports Aβ proteins to abluminal and luminal

directions, respectively. Aβ proteins in the brain parenchyma may come
together as amyloid plaques in cerebrovascular and parenchymal parts or
degraded via various protease enzymes such as insulin-degrading enzyme
(IDE), neprilysin (NEP), and angiotensin-converting enzyme (ACE) in
liver
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Fig. 1 The pathway of amyloid-β fibrillation formation and cellular
damage. Amyloid precursor protein (APP) is cleaved by proteolytic
enzymes of β- and γ-secretases, respectively, and a 39–42 amino acid
peptide fragment is produced regarding with cleavage position. Unfolded

Aβ monomers self-assembly into soluble toxic oligomers and insoluble
fibrils lead to neural death, synaptic dysfunction, and memory
impairment

Biophys Rev (2019) 11:901–925 903



amyloid deposits. Recent research indicates that soluble low
molecular weight Aβ aggregates are more toxic to neurons
and the BBB endothelial cells and are correlated with greater
loss of cognitive function than the insoluble amyloid plaque
burden (Glabe 2005;Walsh and Selkoe 2007; Hall and Edskes
2009; Hall and Edskes 2012).

Tau protein is a neuronal protein, mostly expressed in
axons of neuronal cells; binds to microtubules; and improves
their stability. The hyperphosphorylated (P-tau) form is one of
the main components in Alzheimer’s neurofibrillary tangles. It
is reported that P-tau cannot effectively interact with microtu-
bules, leading to cellular dysfunction and death. It is also
reported that Ptau levels in cerebrospinal fluid (CSF) raise
are not only elevated in AD but also in other neurodegenera-
tive disorders such as Creutzfeldt–Jakob, depression, and
Parkinson’s disease. Therefore, neurofibrillary tangles are
not specific to AD, and because of their location inside cells,
their presence is difficult to be directly compared with produc-
tion and aggregation of the Aβ peptide (Larbanoix et al.
2011).

The second hypothesis concerns the cholinergic system
deficiency. Based on the hypothesis of the cholinergic path-
way, the cholinergic neurons dysfunction is adequate to create
animal models with a memory impairment similar to AD
(Bartus and Emerich 1999). The obtained results of Rossor
et al. (1980) and Henke and Lang (1983) studies demonstrated
that there is a marked degeneration in cholinergic neurons and
cholinergic markers in the brains of AD patients. Additionally,
both AChE levels and choline acetyltransferase (ChAT) effi-
cacy were decreased in the cortex of AD patients (Rossor et al.
1980; Henke and Lang 1983).

In another study, Soininen et al. (1995) reported AD pa-
tients possessing the APOE-ε4 allele to have a severe defect in
cholinergic systems in comparison with those of without the
APOE-ε4 allele. An effective cure for AD is not yet a reality,
and approved drugs for treatment of the cognitive and behav-
ioral impairments in AD are based on neurotransmitter or
enzyme modulation that can only improve symptoms (Sood
et al. 2014). Acetylcholinesterase (AChE) inhibitors such as
tacrine, donepezil, rivastigmine, and galantamine are currently
being utilized to reduce the rate of AD progression (Han et al.
2015).

Due to their unfavorable pharmacokinetics and pharmaco-
dynamics properties, there are several limitations associated
with therapy such as dizziness, confusion, and adverse gastro-
intestinal effects (such as nausea, constipation, and vomiting)
that most usually result in the defeat of therapy (Mehta et al.
2012; Colovic et al. 2013). In recent years, a significant vol-
ume of research has been focused on achieving a better un-
derstanding of AD pathogenesis and development of a new
class of therapeutic strategies that could stop disease progress
by targeting special pathophysiological mechanisms in the
AD process.

Amyloid hypothesis summary Although the pathogenesis of
AD is not yet entirely understood, among the reported biolog-
ical pathways, the amyloid cascade hypothesis has developed
as the dominant theory to explain the etiology and the funda-
mental focus on neurodegenerative studies. As a consequence,
many scientists are currently investigating therapeutic strate-
gies targeting the molecular mechanisms of the processes of
production, aggregation, and clearance of Aβ. Based on this
hypothesis, Aβ monomers self-assemble into soluble toxic
oligomers and insoluble fibrils, leading to neural death, syn-
aptic dysfunction, and memory impairment. Although Aβ
hypothesis-related therapy strategies are more developed than
other strategies, there have been to date no demonstrated clin-
ical benefits by them.

It is believed that low molecular weight oligomers of Aβ
proteins can be more toxic to neurons and BBB endothelial
cells than the monomers or large fibrils (Hall and Edskes
2009; Laganowsky et al. 2012). Therefore, there are strategies
to prevent or reduce Aβ aggregation that include either metal
chelators or β-sheet breakers based on nanotechnology, or-
ganic molecules, or peptides/antibodies (Figs. 3 and 4).

Different strategies for Aβ fibrillation inhibition have been
designed and proposed in vitro, but experimental investiga-
tions alone are not adequate for having a clear understanding
of the subject. Also, the mechanism of molecular interaction
between inhibitors and the Aβ peptides is often unknown.
Therefore, in order to improve and develop new inhibitor
compounds, it is necessary that the field should acquire suffi-
cient knowledge about interactions at the molecular and atom-
ic levels. Moreover, computational methods, like molecular
docking and molecular dynamics simulations, are an essential
supplement to experimental studies and have provided novel
viewpoints in many fields. Furthermore, these techniques
have been widely applied for the design of Aβ aggregation
inhibitors on the conformational transitions, metal chelation,
and aggregation formation (Bruce et al. 2010; Lemkul and
Bevan 2012; Rao et al. 2015).

Metal chelators

Metal ions have a vital role in the process of production and
clearance of Aβ peptide through the regulation of the activity
of enzymes involved in this process (Sastre et al. 2015). They
are considered an important factor in determining neuronal
function and AD progression. Although the exact mechanism
of metal ion interactions with Aβ peptide is not still clear, a
preponderance of evidence indicates that these ions can attach
with high affinity to N-terminal residues of Aβ peptide, such
as His6, His13, and His14 imidazole, as well as the Asp1 and
Ala2 carbonyl groups (Schöneich and Williams 2002).

It is believed that heavy metal ions like copper, iron,
manganese, zinc, and aluminum (especially copper) can
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stimulate both Aβ aggregation and fibril formation as
well as accelerate oxidative stress by generating neurotox-
ic reactive oxygen species (ROS) containing oxygen free
radicals and hydrogen peroxide (H2O2), thereby causing
synaptic dysfunction (Singer et al. 2005). In addition, it
was reported that Cu2+ ions exhibit a higher catalyzing
effect at slightly acidic condition (< pH 6.8) on Aβ ag-
gregation compared with Zn2+ ions at physiological pH
(Atwood et al. 1998; Pedersen et al. 2015).

Chelation therapy has been suggested as a possible treat-
ment method for AD due to its ability to absorb and reduce the
concentration of available metal ions in the brain. However,
their application may be associated with challenges like low
CNS bioavailability and notable systemic toxicity. In addition,
metal ion chelators can inhibit the interaction of Aβ peptide

with the lipid membrane—a process known to influence Aβ
peptide aggregation (Mandel et al. 2007).

Many metal chelators such as ethylenediaminetetraacetic
acid (EDTA) (Casdorph 1981; Chauhan and Siegel 2007),
diethylenetriaminepentaacetic acid (DTPA), desferrioxamine
(Atwood et al. 2000; Liu et al. 2006), and clioquinol have
been considered agents for inhibition of Cu2+-mediated Aβ
aggregation in vitro (Table 1). Among these traditional metal
chelators, only a few agents, such as clioquinol (CQ) (Ritchie
et al. 2003) and 25,7-dichloro-2-((dimethylamino) methyl) 8-
quinolinol (PBT2) (a 8-hydroxyquinoline derivative), have
been evaluated in murine AD models and AD human patients
(Adlard et al. 2008). The result revealed that they have signif-
icant inhibitor activity and they have currently passed phase II
clinical trials (Crouch and Barnham 2012). However, it is
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Fig. 3 Sigmoid kinetics diagram of Aβ peptide fibrillation formation
including lag, elongation, and saturation phase. a β fibril formation is a
self-assembly process which depends on nucleation, which has three
phases including lag phase (critical oligomer cores formation),
elongation phase (oligomers polymerization), and fibril saturation

phase. b Kinetic profiles of Aβ42 aggregation alone and in the presence
of CyD6IOX (conjugated cyclodextrin to quinoline derivative, Oliveri
et al. 2017). c TEM image of Aβ40 fibrils. d Inhibition of Aβ40-fibril
growth in the presence SLOH (carbazole-based fluorophores, Yang et al.
2012)
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likely that the potential side effects of these metal chelators
may prevent their public clinical use.

Cherny et al. reported modified polymeric nanoparticles
with D-penicillamine via a disulfide bond as a copper chelator
(Cherny et al. 2001; Cui et al. 2005). The resulting nanopar-
ticles displayed a good ability to disaggregate Aβ plaques
in vitro. In another study, an ultra-thin structure of graphite-
phase carbon nitride (g-C3N4) was described as a nanochelator
able to prevent Aβ40 fibrillation (Li et al. 2016). This nano-
structure could specifically bind to Cu2+ ions, thereby
inhibiting fibrillation and causing depolymerization of the de-
posited Aβ40 aggregates in conjugation with Cu2+ ions. Sun

et al. attached iminodiacetic acid (IDA) to the human lyso-
zyme (h-Lys)–coated surface of polymeric-based nanoparti-
cles and demonstrated a strong binding affinity to Zn2+ ions
(Liu et al. 2017a; Li et al. 2018). This nanochelator can inhibit
Aβ40 fibrillation, rapidly destabilizing Zn2+-associated Aβ
aggregates and modulating the resulting cytotoxicity.

In 2019, Liu and colleagues developed a potent multifunc-
tional inhibitor of Cu2+-mediated Aβ aggregation based on
the D-enantiomeric RTHLVFFARK-NH2 decapeptide a pep-
tide sequence shown to act as a high-affinity chelator to Cu2+

ions (Meng et al. 2018; Liu et al. 2019b). In the same study,
they showed that the D-enantiomer peptide had an inhibitory

Fig. 4 a Schematic illustration of the structure of the Aβ fibril. b
Behavioral test for memory impairment in AD model and treated with
1.0 mg/mL (low dose) and 1.5 mg/mL (high dose) with PtII-PW11; la-
tency for escape to platform in the training phase, number of crossing
platform time in probe test and percentage (%) of time spent in the target

quadrant in probe test. c Immunofluorescence images for senile plaques
(Aβ42 deposition) in the hippocampus (HIP) ofWT, AD, and treated with
PtII-PW11 (organoplatinum-substituted polyoxometalate, Liu et al.,
2019a, b, c)
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effect on Aβ40 fibrillogenesis and significantly decreased the
cytotoxicity caused by Aβ42-Cu

2+ complexes in comparison
to that showed by using its L-enantiomeric analog. In a similar
study, the in vivo pharmacodynamics effects of a bifunctional
inhibitor peptide GR (GGHRYYAAFFARR) were investigat-
ed on the basis of its dual ability to act both as a chelator of Cu
ions and a β-sheet breaker able to reduce ROS toxicity and
inhibit Aβ40 fibrils, respectively (Zhang et al. 2016; Wang
et al. 2018). The in vivo results indicated that the GR peptide
could improve damaged spatial memory and reduce the num-
ber of senile plaques within the brain of AD model rats.
Recently, in our research group, a newmultifunctional peptide
LPFFDGNSM for metal chelation and Aβ42 inhibition was
designed based on the iAβ5 peptide lead compound (Shamloo
et al. 2018). Subsequently, its chemical inhibitory mechanism
involving Zn2+ and Cd2+ ions was evaluated using MD simu-
lation techniques. The findings indicated that these ions inter-
act with six druggable regions with considerable affinities on
the Aβ42 peptide. According to the conducted free energy
analysis , the ions showed higher aff ini ty to the
LPFFDGNSM sequence rather than the Aβ42 peptide. In fact,
the formation of the reported LPFFDGNSM-ion conjugates is
easier and more spontaneous than the presented Aβ-ion+

ones.

β-Sheet breakers

The structure of the Aβ42 fibril was first experimentally re-
solved by Lührs et al. (2005) (Fig. 4a). This structure provides
important information about the identification of interacting
regions, which might be targeted by inhibitor compounds
(Lührs et al. 2005). There are at least four important sites with
specific structural properties which either promote interaction
or destabilize Aβ self-assembly: (a) hydrophilic region
formed by electrostatic interaction between Asp23-Lys28;
(b) Glu22 ladder formed between Glu22 residue side chains
of adjacent β-sheets; (c) central cleft in the interior of the U-
shaped turn; and (d) hydrophobic regions by Leu17-Ala21
and Ala30-Val36 residues of the N- and C-terminal β-strands,
respectively.

The salt-bridge formed between Asp23 and Lys28 residues
has a vital role in stabilizing the β-sheet conformations. It is
believed that the salt-bridge can stimulate the oligomerization
of Aβ by stabilizing the Val24-Asn27 turn (Reddy et al.
2009). The hydrophobic residues in the C-terminus moiety
(saddle form) especially Met35 play an important role in fibril
stabilization due to modulating Aβ aggregation via hydropho-
bic interactions. The met35 binding site is therefore consid-
ered a potential site to prevent protein–protein interactions and
inhibit amyloid fibril formation (Friedemann et al. 2015).
However, the central hydrophobic region (17–21) can inhibitT
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fibrillation formation by reducing elongation along the major
fibril axis.

Overall, the central hydrophobic core (K16LVFF20), hy-
drophobic C-terminal residues (29–36), and turn segment are
critical regions on Aβ42 which are able to initiate nucleation,
enhance conformational transition of Aβ, and promote fibril
formation. Therefore, compounds with the potential to act as
β-sheet breakers tend to interact with these binding regions
responsible for the formation of stable β-conformation and
long growth of fibrils. Also, they interfere with hydrophobic
contacts within the monomeric structure required for polypep-
tide collapse and dense conformation by electrostatic, hydro-
phobic, and π–π interactions (Eskici and Gur 2013). In the
following section, we classify them into three main groups,
focusing on new achievements in each class separately.

Nanoparticles

Nanostructures are not employed as a carrier for transporting
active agents across the BBB in the treatment of AD.
Moreover, many studies have focused on designing brain-
specific nanostructures capable of protecting neurons from
aggregated Aβ toxicity by inhibiting Aβ fibrillation and
delaying the accumulation of Aβ oligomeric species
(Table 2). Such nanomaterials can directly interact with the
Aβ peptides or the aggregated amyloid, thereby overcoming
peptide self-assembly into fibrillar plaques or toxic oligomers.
Aβ fibril formation is a nucleated self-assembly process that
has three phases which include the lag phase (critical oligomer
cores formation), the elongation phase (oligomers polymeri-
zation), and a pseudo equilibrium/fibril saturation phase (Fig.
3) (Gillam and MacPhee 2013). Nanotechnology-based
agents can influence both the lag, elongation, and saturation
phases by efficient adsorption of monomers, oligomers, and
protofibrils, features enhanced by their unique properties such
as large surface-to-volume ratio (Cabaleiro-Lago et al. 2008).

Kumaraswamy et al. (2012) obtained liposomes by the
thin-film hydration procedure. Thermal studies revealed that
β-sheet breaker agents inserted into the hydrophobic core,
where it presented a lower surface tension. This characteristic
enabled these liposomes to act as potential therapeutic agents
for the inhibition of amyloid aggregation. In another study,
Aβ proteins were inserted into amphipathic nanogels com-
posed of cholesterol-bearing pullulan (CHP). The amphipath-
ic properties of these CHP gels afforded them properties sim-
ilar to natural chaperones (Ikeda et al. 2006). Recently, Boridy
et al. (2009) indicated a great reduction in Aβ42-associated
toxicity in primary cortical and microglial cell culture after
using CHP nanogels. PEGylated phospholipid nanomicelles
have also been reported capable of inhibiting Aβ self-
assembly (Joshi et al. 2010) by promoting the interaction be-
tween the micellar interfaces and the Aβ peptide. Podolski
et al. (2007) illustrated an anti-assembly effect of C60 hydrated

fullerene (C60HyFn) on the fibrillation of Aβ25–35 fragment.
They demonstrated that injection of 3.6 nM of C60HyFn to
each of the brain ventricles could prevent and improve the
cognitive impairment in AD-affected rats. Kogan et al., in
order to destroy amyloid aggregations, utilized local thermal
energy that was generated by a mixture of gold nanoparticles
(AuNPs) and weak microwave fields (Kogan et al. 2006). The
AuNPs are targeted to Aβ plaques, and when enveloped in a
weak microwave field, thermal energy was produced, helping
to destroy the plaque. Each AuNP provided thermal energy of
approximately 10–14 J/s, whereas the required energy for
breaking a fibril non-covalent bond is about 10–20 J per bond
per μs. It is found that gold NPs of 23 nm can be used as a
probe to detect the formation of Aβ fibrils and oligomers
(Elbassal et al. 2017). It is shown that this simple, low-cost
AuNP-based assay is sensitive to the quantity and oligomeric
structures of both Aβ40 and the Aβ40-K16Nle mutant.

Recent studies have exhibited that curcumin may help to
delay or inhibit amyloid-beta aggregation due to neuroprotec-
tive and cognitive-enhancing properties. However, poor solu-
bility and bioavailability of curcumin have limited its clinical
applications (Anand et al. 2007). Polyvinylpyrrolidone conju-
gated with curcumin coated on the surfaces of gold nanopar-
ticles (PVP–C–AuNP) can increase the bioavailability and
solubility of curcumin (Brahmkhatri et al. 2018). In this study,
the inhibitory effect of curcumin nanoconjugates was evalu-
ated using TEM analysis of fibers formed from the short Aβ1–

16 fragment. It was found that this fragment promotes aggre-
gate formation in the healthy brain. The results showed that
curcumin nanoconjugates could stop Aβ1–16 fibrillation and
decompose formed aggregations (Anand et al. 2007).

NPs can show dual effects of inhibition or acceleration on
the nucleation process according to their physical and chem-
ical features such as size, shape, surface modification, charge,
composition, and concentration (Cabaleiro-Lago et al. 2008;
Yoo et al. 2011; Sudhakar et al. 2017; John et al. 2018). They
show different binding affinity to Aβ monomers and oligo-
mers in various conditions and are therefore also capable of
having different effects on the fibrillation process. NP diame-
ter and surface chemistry can modulate the extent of aggrega-
tion, while NP electric charge influences the aggregation mor-
phology (Moore et al. 2017). Recently, much attention has
been paid to the study of the effect of nanoparticles on the
folding and aggregation of peptides.

Size effects of gold nanoparticles (AuNPs) and
nanoclusters (AuNCs) stabilized with L-glutathione were re-
ported to play a role in inhibiting protein amyloidosis (Gao
et al. 2017). It is described that large AuNPs accelerate Aβ
fibrillation, whereas small AuNPs significantly suppress fi-
brillation process. More interestingly, AuNCs with smaller
sizes can completely inhibit the nucleation and amyloidosis.
In another study, the effects of gold nanoparticles (AuNPs)
with different shapes (nanospheres and cubes) and the same
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Table 2 Nanotechnalogy-based strategies for inhibition of Aβ peptide aggregation

Number Structure Size in
PBS
(nm)

Model of use Therapeutic effect/category Ref.

1 Self-assembled chitosan-hyaluronic
acid composite (CH) NPs

Range
of
80–4-
10

In vitro o Effects of surface charges of nanoparticles on Aβ
aggregation

o Higher inhibitory effect of the surface charges density
and positive CH than the negative one

o Inhibit the conformational transitions of Aβ
o Potent suppressing the nucleation and fibrillation by

electrostatic interactions

(Jiang et al.
2018)

2 Poly N-isopropylacrylamide
(NIPAm)/acrylic acid
(AAc)/N-tbutylacrylamide

(TBAm)
Polymeric NPs (negatively charged

hydrophobic)
and (−)-epigallocatechin-3-gallate

(EGCG)

74.1 ±
4.9

In vitro o An dual-inhibitor system
o Highly effective on the inhibition and detoxification of

Aβ42 at low concentrations of the inhibitor system
o Function in different Ab assembling stages: polymeric

NPs: inhibition of primary nucleation, EGCG
suppression of fibril elongation

(Liu et al. 2016;
Liu et al.
2017a, b)

3 Self-assembled nanogels of
curcumin-hyaluronic acid
conjugates

100–300 In vitro o Synergistic functions of nanogels:
o Higher inhibition effects than free curcumin
o Protection cells from the toxicity of free curcumin

interfere with the interactions between Aβ molecules

(Jiang et al.
2016)

4 Self-assembled biodegradable
EGCG-Fe(III)/PVP
nanoparticles

3.2 In vitro o A dual-inhibitor system
o Ultra-small size
o Good biocompatibility
o Synergistic inhibitory effects: by the PVP

hydrophobicity on the primary nucleation and
antioxidant activity of EGCG on secondary
nucleation during the Aβ40 fibrillation

o Easy synthesis
o High stability in simulated body fluid
o High antifibrillation performances towards the of Aβ40

and Biodegradable property

(Liu et al.,
2019c)

5 Copolymeric
N-isopropylacrylamide:
N-tert-butylacrylamide
(NiPAM:BAM) nanoparticles

40 In vitro o The main effect on the nucleation step of Aβ
fibrillation and unaffected on the elongation step

(Cabaleiro-Lago
et al., 2008)

6 Amino-modified polystyrene
nanoparticles

57–180 In vitro o Inhibition of the fibrillation process at large particle
surface area

(Cabaleiro-Lago
et al. 2010)

7 Single-walled carbon nanotube
(SWNT) surface

- MD simulation o Induced β-barrel formation of Aβ25–35 oligomers
o Assembling Aβ25–35 β-sheets with

antiparallel-parallel strands into β-barrels wrapping
o Inhibition of β-sheet formation and the destabilization

of prefibrillar β-sheets

(Fu et al. 2009,
Li et al.,
2011a, b)

8 Hydroxylated single-walled carbon
nanotubes

- In vitro/MD o Inhibition Aβ42 fibrillogenesis and disaggregates
mature fibrils

o Cytoprotective effects against Aβ42

fibrillation-induced cytotoxicity
o Contribution most of the free energy by binding

nonpolar interactions especially van der Waals forces
o Main regions in interaction H13-Q15 and V36-G38

residues
o Improve inhibitory capacity and protective effect in
o A high ratio of hydroxyl groups in SWNT

(Liu et al. 2018)

9 Gold and silver surfaces - Computational
methods

o Adsorption of peptides onto gold and silver surfaces
o Prone to β-sheet-rich conformations and aggregation
o A new mechanism for the acceleration of fibril

formation based on interaction with nanoparticles

(Soltani and
Gholami
2017)

10 LVFFARK-functionalized
nanoparticles(LK7@PLGA-NP-
s)

161 In vitro o Little cytotoxicity than unconjugated LK7
o Remarkable inhibitory capability against Aβ42

aggregation and Aβ-induced toxicity at a low
concentration (20 μg/mL) than free LK7

(Xiong et al.
2015)
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size on the aggregation of an Aβ40 peptide were evaluated
(Wang et al. 2019); the results demonstrated that nanospheres
show a significant acceleration effect on nucleation and fibril-
lation process in comparison with nanocubes. This effect may
be due to factors such as higher degree of the gold NP surface
availability and greater affinity of nanospheres to Aβ40. In
another report, it was demonstrated that small, spherical
AuNPs have higher anti-fibrillation effects than large,
nanocube ones (Liao et al. 2012). In addition, negatively
charged gold NPs can delay aggregation processing via more
absorption of Aβ monomers rather than positively charged
ones (Liao et al. 2012).

The inhibitory ability of gold nanospheres can also change
with different surface coatings. PAA (polyacrylic acid)-coated
NPs of 18 nm and smaller (8 nm) are superior inhibitors as
they can inhibit aggregation at substoichiometric ratios as low
as 1:2,000,000 with in relation to Aβ (Moore et al. 2017).
Previous reports showed that small iron oxide NPs, with neg-
ative charge, presented higher inhibitory activity than their
large, positively charged ones (Pansieri et al. 2018). Other
investigations illustrated that negatively charged inorganic
CdTe (Yoo et al. 2011) and graphene oxide (Mahmoudi
et al. 2012) grab Aβ monomers and oligomers to postpone
fibrillation phase, while positively self-assembled chitosan-
hyaluronic acid composite (CH) NPs exhibited higher inhibi-
tory effect than did the negatively charged ones (with regard to
Aβ aggregation) (Jiang et al. 2018). The concentration of
nanoparticles can be a decisive factor. Polystyrene NPs

present at a high concentration present a large surface area
that can capture free Aβ peptides and inhibit fibrillation, while
a low concentration can play a role similar to preformed seeds
that improve the fibrillation rate (Cabaleiro-Lago et al. 2010).

Organic molecules

In this section, we review the different groups of natural and
synthetic small molecules which are able to block the initial
stages of Aβ peptide aggregation and toxicity. They may be
described as unique pharmacological agents in Alzheimer’s
diseases (Table 3).

A large number of small molecules such as polyphenols,
inositols, organofluorines, and quinones and their derivatives
were trialed and introduced as potential inhibitors of amyloid
formation (Brahmachari et al. 2017). These compounds pres-
ent significant antioxidant and anti-inflammatory properties
and as such may play a principal role in diminishing age-
dependent oxidative stress and inflammation. Thus, they can
obstruct the start of neurodegenerative disorders. Second to
this is that these compounds may competitively interact with
aromatic amino acids such as phenylalanine in Aβ peptide
and impose barriers between aromatic groups, hereby limiting
the π–π interactions and preventing the self-assembly process
by enhancing the stability of amyloid peptides in the native
state (Ahmad et al. 2011). Third, they may inhibit toxic Aβ
oligomer interaction with the cell membrane by selective neu-
tralization of the toxic Aβ structural conformation. Also, they

Table 2 (continued)

Number Structure Size in
PBS
(nm)

Model of use Therapeutic effect/category Ref.

o Postpone and disruption of conformation transition of
Aβ

o Redirection of Aβ42 aggregation pathways
11 Dual peptide inhibitors coupled on

AuNPs-VVIACLPFFD
(VCD10)@AuNP

- In vitro o Most effective peptide@AuNPs on inhibition and
cytotoxicity of the Aβ42 aggregation

o Increase cell viability from 48 to 82% at a dosage as
low as 40 nmol

o Due to the branched dual-inhibitor sequence, special
surface orientation, and conformation

(Xiong et al.
2017)

12 Epigallocatechin-3-gallate
(EGCG)-stabilized selenium
nanoparticles coated with Tet-1
peptide

- In vitro o Effective inhibition Aβ fibrillation and disaggregate
preformed Aβ fibrils into nontoxic aggregates
significantly enhance in the cellular uptake of
Tet-1-EGCG@Se in cells rather than EGCG@Se

o Remodeling Aβ fibrils into spherical aggregates
(nontoxic and non-β-sheet structure)

o Protection cells against Aβ-induced damage by
suppressing the generation of ROS and DNA
fragmentation

(Zhang et al.
2014)

13 Self-assembled curcumin-poly
(carboxybetaine methacrylate)
nanogels

120–190 In vitro o The higher inhibitory effect on Aβ42 fibrillation, and
cytotoxicity than free curcumin due to the high
hydration nature of the polymer

o Suppress the conformational changes from α-helix to
β-sheet-rich structures

(Zhao et al.
2018)
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may reduce Aβ production via stimulation of the α-secretase
pathway and hindering of the β- and γ-secretase pathways
(Jayasena et al. 2013).

Overall, these molecules contain two aromatic or inositol
groups separated through a backbone of the suitable length
(Porat et al. 2006). It can be inferred that the two terminal
groups interact with Aβ peptide residues to determine the
binding affinity, whereas the linker promotes binding of com-
pounds to specific subregions. It was seen that the polyphe-
nols activity was reduced following the lack of the phenolic
functional groups on the aromatic rings (Porat et al. 2006).

It was also established that the linker segment seems to
be one of the significant features in amyloid inhibition and
the ideal linker region is limited to a fixed length in partic-
ular for curcumin, 8–16 Å. The polar functional groups
(and often, hydroxyls) commonly exist in inhibitor mole-
cules (Reinke and Gestwicki 2007). Studies have demon-
strated that curcumin as a natural polyphenolic antioxidant
can decrease Aβ peptide formation from APP and inhibit
the Aβ fibrillation into pleated sheets. Yamada and co-
workers evaluated the inhibitory activity of curcumin on
Aβ peptide (Ono et al. 2004). These in vitro findings
showed that curcumin could inhibit Aβ40/42 aggregation
and destabilize preformed fibrils. Cole et al. showed
in vivo (Yang et al. 2005) that curcumin hinders the for-
mation of oligomers and aggregates through its ability to
bind to plaques and decrease fibril-derived Aβ toxicity. In
order to determine curcumin permeability through the
BBB, its ability to bind to Aβ plaques and persuade rapid
decomposition of Aβ plaques in brain tissue and the cere-
bral vasculature, in vivo multiphoton microscopy studies,
was applied in mutated mice model of APPs/PS1dE9
which were treated with curcumin for 7 days. The study
revealed reduction of existing plaques. In other studies, it
was found that curcumin could diminish inflammatory cy-
tokine levels such as interleukin-1b and isoprostanes in the
central nervous system (CNS) as well as reduce amyloid
plaque burden in transgenic mice (Ringman et al. 2012).

Modeling studies such as molecular dynamics (MD) sim-
ulation showed that curcumin plays an important role in the
inhibition of Aβ aggregation (Martin et al. 2018). Curcumin
has a dual-inhibitor effect on aggregation process; it can serve
as a valuable β-sheet breaker agent and as a chelator able to
bind to free ions of Cu2+ and Fe2+. Epigallocatechin gallate
(EGCG) is a natural polyphenolic compound which effective-
ly inhibits conformational transition from a random coil to a
β-sheet structure and the formation of Aβ and α-synuclein
fibrils (Rezai-Zadeh et al. 2005). This agent can pass through
the BBB and may be effective as a prophylaxis agent for AD.
In vivo findings showed that it improved spatial cognition
learning ability in rats and converted Aβ fibrils and toxic
oligomers into smaller nontoxic aggregations (Bieschke
et al. 2010).

Natural phytoalexin compounds like resveratrol have ben-
eficial properties such as antioxidative, anti-inflammatory,
antimutagenic, and anticarcinogenic (Marambaud et al.
2005). Experimental results indicated that resveratrol exhibit-
ed inhibitory activity and neuroprotective effects on Aβ fibril-
lation and neuronal cells, respectively, and produced nontoxic
aggregate species instead of toxic oligomers. This compound
reduced secreted and intracellular Aβ peptide by BACE-1
inhibition and also decreased Aβ-associated inflammatory
mediators like NF-kappa B by overexpressing and activating
the SIRT-1pathway. This agent can degrade intracellular Aβ
and reduce extracellular Aβ accumulation through action on
the proteasome and stimulating AMPK activity. It was recog-
nized that compounds like resveratrol directly join the natively
unfolded polypeptides via effective interactions with the
existing aromatic groups, break the π–π contacts, and conse-
quently inhibit their conversion into toxic intermediates.

As noted, EGCG and resveratrol (and their analogs) have
undergone phase II clinical trials (Belluti et al. 2013).
Recently, 3-morpholinosydnonimine hydrochloride (SIN-1),
a synthetic FDA-approved drug in inhibition of platelet aggre-
gation in cardiovascular disease (CVD), has undergone testing
for its ability to inhibit amyloid formation (Ren et al. 2017).
The in vitro and computational results showed that this drug
can effectively inhibit Aβ misfolding and aggregation at dif-
ferent steps of aggregation, prolonging the lag phase, slowing
the aggregation rate, and reducing the total amount of fibril
formation as well as decreasing Aβ-induced cell toxicity in a
dose-dependent manner. It exhibited a remarkable tendency
for binding hydrophobic residues I31−M35 and interrupting
the formation of the C-terminal β-sheet of Aβ peptide and
Aβ−Aβ association (Ren et al. 2017).

Matrine (Mat) is a new natural compound, which is obtain-
ed from traditional Chinese herbs to treat dementia. Cui et al.
(2017) introduced this compound for inhibition of the Aβ
aggregation and blocking the RAGE/Aβ pathway. They dis-
covered that it could inhibit Aβ42-induced cytotoxicity and
stop the Aβ/RAGE signaling pathway in an AD mouse mod-
el. Also, it was observed that it reduced the levels of pro-
inflammatory cytokines and Aβ deposition as well as modu-
lated the memory impairment in AD transgenic mice.
Norepinephrine (NE) is a natural neurotransmitter in the body.
In vitro and computational results suggest that this compound
(Zou et al. 2019) inhibited formation of Aβ aggregation and
destabilized Aβ protofibril via formation of H-bonds with
residues D1, A2, D23, and A42 in Aβ peptide. In addition,
it can reduce inter-peptide β-sheet content and suppress for-
mation of the β-hairpin structure, which leads to a more dis-
ordered coil-rich Aβ dimer.

HP-β-Cyclodextrin (HP-β-CD) is a synthetic sugar deriv-
ative that is used in drug delivery, genetic vector, environmen-
tal protection, and Niemann–Pick disease type C1 (NPC1)
treatment. Its efficiency has been investigated as a sugar-

Biophys Rev (2019) 11:901–925912



Ta
bl
e
3

O
rg
an
ic
m
ol
ec
ul
es
–b
as
ed

st
ra
te
gi
es

fo
r
in
hi
bi
tio

n
of

A
β
pe
pt
id
e
ag
gr
eg
at
io
n

N
um

be
r

S
tr
uc
tu
re

S
ou
rc
e

S
ta
tu
s

T
he
ra
pe
ut
ic
ef
fe
ct
/c
at
eg
or
y

R
ef
.

1
A
po
m
or
ph
in
e

N
at
ur
al
/p
ol
yp
he
no
lic

In
vi
vo

o
In
hi
bi
tio

n
β
-a
m
yl
oi
d
an
d
α
-s
yn
uc
le
in

fo
rm

at
io
n

(A
ng
ui
an
o
et
al
.

20
02
)

2
In
do
ly
l-
tr
if
lu
or
om

et
hy
l-
hy
dr
ox
yp
ro
pi
on
ic
ac
id

O
rg
an
of
lu
or
in
es

In
vi
tr
o

o
Si
gn
if
ic
an
ti
nh
ib
iti
on

of
th
e
ag
gr
eg
at
io
n
of

A
β
-p
ep
tid

e
an
d

di
sa
gg
re
ga
te
d
th
e
ex
is
tin

g
am

yl
oi
ds

(T
ör
ök

et
al
.

20
06
)

3
1,
2-
N
ap
ht
ho
qu
in
on
e

N
at
ur
al
/Q
ui
no
ne
s

In
vi
tr
o

o
E
ff
ec
tiv

el
y
in
hi
bi
tA

β
4
2
ol
ig
om

er
iz
at
io
n

(N
ec
ul
a
et
al
.

20
07
)

4
1,
4-
N
ap
ht
ho
qu
in
on
-2
-y
l-
L
-t
ry
pt
op
ha
n(
N
Q
T
rp
)

N
at
ur
al
/Q
ui
no
ne
s

In
vi
vo

o
R
ed
uc
tio

n
of

th
e
A
β
4
2
ag
gr
eg
at
io
n

o
A
nd

to
xi
ci
ty

w
ith

a
hi
gh

m
ol
ar

ra
tio

of
N
Q
T
rp

(S
ch
er
ze
r-
A
tta
li

et
al
.2
01
0)

5
O
le
ur
op
ei
n

N
at
ur
al
/p
ol
yp
he
no
lic

In
vi
vo

o
In
hi
bi
tio

n
of

th
e
fo
rm

at
io
n
of

so
lu
bl
e
to
xi
c
ol
ig
om

er
s
an
d

am
yl
oi
d
fi
br
ils

o
R
ed
uc
tio

n
of

A
β
le
ve
ls
an
d
pl
aq
ue

de
po
si
ts

o
S
tr
on
g
im

pr
ov
e
co
gn
iti
ve

pe
rf
or
m
an
ce

o
In
du
ce

au
to
ph
ag
y
by

th
e
re
gu
la
tio

n
of

th
e
m
T
O
R
pa
th
w
ay

(R
ig
ac
ci
et
al
.

20
11
)

6
M
yr
ic
et
in

an
d
qu
er
ce
tin

N
at
ur
al
/f
la
vo
no
id
s

In
vi
vo
/M

D
o
N
eu
ro
pr
ot
ec
tiv

e
an
d
an
tio

xi
da
tiv

e
ef
fe
ct
s

o
A
M
PK

ac
tiv

at
io
n

o
In
hi
bi
tio

n
of

B
A
C
E
-1

ac
tiv

ity
o
In
hi
bi
tio

n
of

A
β
fi
br
il
fo
rm

at
io
n
an
d
A
β
-i
nd
uc
ed

to
xi
ci
ty

o
In
hi
bi
tio

n
of

co
nf
or
m
at
io
na
lt
ra
ns
iti
on

of
A
β
In
te
ra
ct
io
n

w
ith

th
e
su
rf
ac
e
of

th
e
β
-s
he
et
vi
a
H
-b
on
di
ng

an
d

w
ea
ke
ni
ng

th
e
in
te
r-
st
ra
nd

hy
dr
og
en

bo
nd
s

(A
ns
ar
ie
ta
l.

20
09
;W

an
g

et
al
.2
01
5)

7
(2
,5
-D

ic
hl
or
o-
N
-(
4-
pi
pe
ri
di
no
ph
en
yl
)-
3-
th
io
ph
en
es
ul
fo
na
m
id
e)

S
yn
th
et
ic
/s
ul
fo
na
m
id
e

In
vi
tr
o/
in

vi
vo
/M

D
o
S
ta
bi
liz
at
io
n
of

na
tiv

e
α
-h
el
ix

co
nf
or
m
at
io
n
of

A
β
4
2
by

in
te
ra
ct
in
g
w
ith

ke
y
re
si
du
es

in
th
e
ce
nt
ra
lh

el
ix

re
gi
on

(1
3–
26
)
w
ith

hy
dr
og
en

bo
nd
s
an
d
π
–π

in
te
ra
ct
io
ns

(S
hu
ai
b
an
d

G
oy
al
20
18
)

8
T
ri
m
er
ic
am

in
op
yr
az
ol
e
ca
rb
ox
yl
ic
ac
id

Sy
nt
he
tic

In
vi
tr
o/
M
D

o
P
ro
te
ct
io
n
of

ce
lls

fr
om

A
β
le
si
on
s

o
T
he

tr
ie
th
yl
en
e
gl
yc
ol

sp
ac
er

as
a
de
st
ab
ili
zi
ng

ag
en
to

f
th
e

tu
rn

of
th
e
U
-s
ha
pe
d
pr
ot
of
ila
m
en
t

(H
oc
hd
ör
ff
er

et
al
.2
01
1)

9
L
um

in
es
ce
nt

ol
ig
ot
hi
op
he
ne

pe
nt
a-
fo
rm

yl
th
io
ph
en
e
ac
et
ic
ac
id

(L
C
O
p-
F
TA

A
)

Sy
nt
he
tic
/th

io
ph
en
e

In
vi
tr
o

o
C
on
ve
rt
in
g
of

to
xi
c
A
β
4
2
sp
ec
ie
s
in
to

no
nt
ox
ic
am

yl
oi
d

fi
br
ils

o
V
is
ua
liz
at
io
n
of

pr
ot
ei
n
ag
gr
eg
at
io
n

o
F
or
m
at
io
n
of

le
ss

hy
dr
op
ho
bi
c
fi
br
ils

an
d
m
or
e
re
si
st
an
tt
o

pr
ot
eo
ly
si
s
by

pr
ot
ei
na
se

K
o
R
ed
uc
tio

n
of

cy
to
to
xi
ci
ty

(C
iv
ite
lli

et
al
.

20
16
)

10
L
ut
eo
lin

an
d
tr
an
si
lit
in

N
at
ur
al
/p
ol
yp
he
no
lic

In
vi
tr
o/
M
D

o
P
ot
en
ti
nh
ib
ito

rs
of

A
b
fi
br
il
fo
rm

at
io
n

(C
hu
rc
he
s
et
al
.

20
14
)

11
L
ov
os
ta
tin

/s
im

va
st
at
in
/p
ra
va
st
at
in

Sy
nt
he
tic

Ph
as
e
IV

o
A
dr
ug

ap
pr
ov
ed

by
F
D
A

o
In
hi
bi
tio

n
of

am
yl
oi
d
fo
r
A
D

(H
an

an
d
H
e

20
18
)

12
Ib
up
ro
fe
n

Sy
nt
he
tic
/N
SA

ID
P
ha
se

IV
o
D
ru
g
ap
pr
ov
ed

by
FD

A
o
In
hi
bi
tio

n
of

am
yl
oi
d
fo
r
A
D

(H
an

an
d
H
e

20
18
)

13
B
ex
ar
ot
en
e

Sy
nt
he
tic

Ph
as
e
II

o
D
ru
g
ap
pr
ov
ed

by
FD

A
as

an
tic
an
ce
r

o
S
el
ec
tiv

e
te
na
ci
ty
fo
ri
nh
ib
iti
on

of
nu
cl
ea
tio

n
ph
as
e
of

A
β
4
2

an
d
pr
ol
on
ga
tio

n
of

th
e
to
xi
c
sp
ec
ie
s
pr
od
uc
tio

n
in

ne
ur
ob
la
st
om

a
ce
lls

(H
ab
ch
ie
ta
l.

20
16
)

14
C
ar
ve
di
lo
l

S
yn
th
et
ic

Ph
as
e
IV

o
D
ru
g
ap
pr
ov
ed

by
FD

A

Biophys Rev (2019) 11:901–925 913



based Aβ inhibitor (Ren et al. 2016). In vitro results indicated
that it prevented Aβ42 aggregation and Aβ-induced toxicity in
a concentration-dependent method as well showing no intrin-
sic cellular toxicity. Simulation studies showed that it has a
high tendency to interact with hydrophobic residues of Aβ at
two β-strands and N-terminal domain. It was also reported
that carbenoxolone (Cbx), as a natural glycyrrhetinic acid–
based compound and FDA-approved drug for the treatment
of peptic and esophageal inflammation, has a neuroprotective
effect and can stop the aggregation of Aβ42 peptide and de-
stabilize the formed fibrillations (Sharma et al. 2017). This
agent forms strong interactions with the available residues in
the amyloidogenic regions of Aβ42 monomers.

Peptides and antibodies

Due to their crucial ability to regulate biological functions,
peptides represent another important pharmaceutical choice
instead of small organic compound–based drugs. Nowadays,
peptides constitute a large fraction of the global drug market
due to their unique properties such as high selectivity, low side
effects and toxicity, low accumulation in tissues, good toler-
ance, synthetic viability and practicality, and diversity of
chemical and biological synthesis routes, along with a possi-
bility for rational design compared with other therapeutic
compounds (Danho et al. 2009). A large number of therapeu-
tic peptides have been proposed as Aβ aggregation inhibitors
for treatment of AD (Table 4). Peptides are well-known as β-
sheet breakers. Peptide candidates are typically assessed based
on their capacity to inhibit Aβ toxicity and self-assembly,
prevent conformational transitions, and increase alternative
nontoxic fibrillation pathways.

As previously reported, various regions of the Aβ peptide
are responsible for the process of Aβ fibrillation. This knowl-
edge is essential for the rational design and development of
peptide inhibitors. According to these vital regions the Aβ
peptide sequence, the peptide-based inhibitors are divided into
two main categories: (1) Aβ sequence-derived peptides and
(2) non-Aβ-derived peptide sequences.

Aβ sequence-derived peptides Peptide inhibitors are princi-
pally derived from the Aβ peptide based on regions of the
central hydrophobic core (CHC) sequence and C-terminal
fragments (CTFs). These peptides are homologous to Aβ pep-
tide and hydrophobic feature but have a low tendency to form
β-sheets as well as a good binding affinity to Aβ peptide. The
central hydrophobic core (CHC) region (residues
K16LVFFA21) of Aβ is also known as a key self-
recognition sequence or the nucleation site within the Aβ
peptide which is responsible for aggregation (Petkova et al.
2002). It was suggested that residues of Ile41 and Ala42 from
Aβ42 peptide could strongly support stabilization of a new
conformation (Li et al., 2011a). Designed short peptidesT
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related to the hydrophobic core residues have been widely
investigated as potential inhibitors based on their ability to
interact with the full-length Aβ peptide. The CTFs on Aβ42

peptide is an important domain with strong rigidity for
targeting of Aβ oligomerization. CTFs are able to adjust in-
termolecular interactions for controlling of Aβ42 oligomer
formation. The CTF domain reacts with several sites on
Aβ42 such as C-terminus and N-terminus (Urbanc et al.
2004). Although the natural amino acid–containing peptides
are effective inhibitor agents against Aβ aggregation, they
suffer from rapid proteolytic degradation in plasma and tend
to self-assemble into fibrils during administration and deliv-
ery. To overcome these problems and improve their binding
affinity to the Aβ peptide, modified peptides with different
approaches were utilized (Bruno et al. 2013). These ap-
proaches include fluorination, use of D-amino acids, and also
the use of retro-inverso cyclization and N-methylation of the
ester bond (Goyal et al. 2017; Yan et al. 2013).

Fluorination of the hydrophobic amino acids valine or phe-
nylalanine in the KLVFF sequence can increase the peptide
inhibitor activity. Fluorinated amino acids bind to hydropho-
bic residues of Aβ peptide and interfere with the hydrophobic
contacts between Aβ peptide monomers and inhibit their ag-
gregation (Loureiro et al. 2014). D-Amino acid–containing
peptides have higher stability against proteolytic enzymes
and demonstrate greater affinity when binding to Aβ peptide
than their L-isomers. Using animal models, D-peptides were
shown to have inhibitor activity against Aβ aggregation
(Jagota and Rajadas 2013). Retro-inverso peptides, produced
using D-amino acids and flipping the NH and CO groups in
the peptide bonds, maintain the same spatial position of the
side chain residues and protect the favorable 3D structure in
comparison with unmodified L-peptides (Chorev and
Goodman 1995). These peptides show advantages with re-
spect to inhibition, higher enzymatic stability, reduced self-
assembly, and an improved BBB permeability in an animal
model in comparison to L-peptides. Cyclic peptides show
strong and specific inhibitor effects towards the formation of
amyloid aggregation compared with their noncyclic ones (Luo
and Abrahams 2014). Due to their high protease resistance,
they are degraded slowly. Methyl group addition to amide
groups is a powerful approach in the development of new
inhibitors. N-methyl groups can both improve the solubility
in aqueous solution and reduce the Aβ toxicity.

Reported N-methylated proprietary peptides such as D-
NH2 (SEN304) (Larbanoix et al. 2011) and SEN1576 can
inhibit Aβ-associated toxicity in in vivo studies (Kokkoni
et al. 2006; Amijee et al. 2012). Importantly, the SEN304
peptide has been not derived from Aβ sequence and yet is a
more potent inhibitor than customized versions of the KLVFF
peptide. These peptides can promote Aβ nucleation into non-
toxic forms, thereby eliminating toxic oligomers. There are
important other factors which can be used in the rational

design of peptide inhibitor. Solvent tension is a crucial factor
in Aβ aggregation (Ghanta et al. 1996).

Glutamic acid and lysine residues have been recognized as
potential enhancing and stabilizing agents (kosmotropes) of
Aβ fibrillation through improving the surface tension, while
arginine residues have been recognized as inhibitions of ag-
gregation through their action as destabilizing agents
(chaotropes) without associating the solvent feature.
Tjernberg et al. (1996) demonstrated that Aβ16–20
(KLVFF) plays an important role in disrupting the aggregation
of Aβ by binding to full-length Aβ peptides and preventing
fibril formation in vitro (Tjernberg et al. 1996). Subsequently,
peptides derived from this short sequence were reported for
their ability to inhibit the aggregation process. Also, this frag-
ment has been modified using different delivery platforms,
such as a dendrimer, polymer, or a few residues of hydrophilic
amino acids, in order to improve their physicochemical prop-
erties and inhibitory effect on the β-sheet formation.

As previously described, the proline amino acid is a proper
β-sheet breaker (Wood et al. 1995). Soto and coworkers ra-
tionally entered proline and aspartic acid residues in place of
valine and alanine, respectively, to obtain a proline-containing
peptide (the LPFFD 5-mer iAβ5) (Soto et al. 1998). This
derived peptide from the KLVFF sequence is a β-sheet break-
er which can inhibit Aβ aggregation and reduce plaque bur-
den, and neurotoxicity (Soto et al. 1998). Proline prevents the
formation of hydrogen bonds in fibrils due to lack of a proton
on the secondary substituted nitrogen in the peptide bond.
These reported short peptides suffer from rapid degradation
by proteolytic enzymes and poor BBB permeability in vivo
study (although they showed a significant in vitro efficacy). In
order to improve their stability in mice brain and a greater
half-life after intravenous (IV) administration, iAβ5p derivate
was introduced which had been modified by N-methylation
between Pro and Phe residues (Cruz et al. 2004).

The in vitro/in vivo results showed that it has a similar
inhibitory effect to the iAb5 peptide against amyloid fibril
formation and neurotoxicity but its resistance to protease deg-
radation is greater than shown by the iAb5 peptide. In addi-
tion, MD simulations indicate that this peptide has stronger
binding and enhanced activity against Aβ40 aggregation when
compared with the iAβ5 peptide. The KLVFWAK motif was
derived from the KLVFF sequence, and a mutation was intro-
duced at the glutamic acid (E22) residue (to lysine (K)) to
improve solubility and disrupt self-assembly by electrostatic
repulsion (Aoraha et al. 2015). This designed motif targets
only C-terminal domain in Aβ oligomers. Results indicated
that this motif showed the smallest self-aggregation potential
and highest binding affinity to Aβ aggregates and fibrils com-
pared with other peptide candidate. On the other hand, it
should have more specificity for reliable detection of Aβ olig-
omer and fibrils in vivo and ex vivo studies. Towards this aim,
D-GRKKRRQRRR-GGGG-DVEFRH (Aβ1−6A2V-TAT)

Biophys Rev (2019) 11:901–925 915



Table 4 Peptide-based strategies for inhibition of Aβ peptide aggregation

Number Structure Status Therapeutic effect/category Ref.

1 NAPVSIPQ (NAP) Failed in
phase III
clinical
trial

o Not derived from Aβ sequence
o Modification: polarized amino acids of Q and N, two

proline residues, and the hydrophobic backbone
o An excellent example of the following investigation

(Ashur-Fabian
et al. 2003;
Matsuoka et al.
2008)

2 RYYAAFFARR (RR) decapeptide In vitro o Design: based on hydrophobic core and the interaction
with other sites like turn region or “salt bridge” region
target: an extended region Aβ11-23 of Aβ40

o Stronger binding affinity for Aβ40 than LPFFD
o Effective inhibition of aggregation and fibrillation
o Reduction of induced cytotoxicity byAβ40 self-assembly

(Liu et al. 2014)

3 D-(PGKLVYA) and D(KKLVFFARRRRA) In vivo o Derived from the KLVFF sequence
o Inhibition of Aβ aggregation and long lifetime in a

transgenic model expressing Aβ42

(Jagota and
Rajadas 2013)

4 ZAb3 affibody In vivo o As a dimeric molecule
o Binding affinity to the Aβ peptides (nanomolar)
o Preventing Aβ aggregation, dissociating preformed

oligomers, and facilitating Aβ degradation
o Complete inhibition of Aβ aggregation at stoichiometric

levels
o Selected by phage display technique

(Luheshi et al.
2010)

5 Cyclic peptide CP-2 - o Nontoxic cyclic peptide
o Stabilizing of small Ab oligomers in CP-2 assembled

form
o Dissolving of formed Aβ fibrils

(Richman et al.
2013)

6 Head-to-tail tandem peptide D3D3
(D-RPRTRLHTHRNRRPRvTRLHTHR-
NR)

In vivo o Not derived from Aβ sequence
o An almost twice inhibitory effect on Aβ42 oligomer

rather than D3 peptide
o Conversion of toxic oligomers to nontoxic and

amorphous aggregations

(Brener et al.
2015)

7 A sequence-scrambled derivative of D3, RD2
(DPTLHTHNRRRR-NH2)

In vivo o Not derived from Aβ sequence
o High binding affinity to Aβ and strong reduction of Aβ

fibrillation formation
o High stability in mouse plasma and organ homogenates
o High oral and subcutaneous bioavailability

(Klein et al. 2016;
Leithold et al.
2016)

8 FDYKAEFMPWDT (AOEP2) In vitro o Not derived from Aβ sequence
o A mimotope of the Aβ oligomer
o Selected by phage display technique
o Binding to all forms of Aβ (monomer, oligomer, and

fibrillation)
o The significant decrease of pro-inflammatory cytokines

TNF-α production

(Zhang et al. 2017)

9 RDLPFFPVRID (iAβ11) In vitro o Derived from the KLVFF sequence
o A similar degree of hydrophobicity to Aβ (17−21)
o Very low propensity to adopt a β-sheet conformation

(Soto et al. 1996)

10 Pentapeptide LPYFD-amide In vivo o Derived from the KLVFF sequence
o Modification: substation of one Phe by Tyr and the

C-terminal COO− anion with CONH2

o Neuroprotective, tau aggregation properties

(Datki et al. 2004;
Granic et al.
2010)

11 Ac-LPFFN-NH2 In vitro/MD o Derived from the KLVFF sequence
o Effective inhibitor of Aβ40 aggregation by stabilization

of the native and nonaggregativeα-helical conformation
of Aβ40

o Prolongation of fibril formation by increasing the lag
phase

(Minicozzi et al.
2014)

12 D-4F peptide In vivo o Not derived from Aβ sequence
o Improvement of cognitive function
o Inhibition of Aβ peptide deposition

(Handattu et al.
2009)

13 Diazirine-equipped cyclo-KLVF(b-Ph)F In vitro o Derived from the KLVFF sequence
o Modification: cyclization, diazirine group
o Selective binding affinity to Aβ42

(Kino et al. 2015)
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peptide was designed and evaluated in vivo (Di Fede et al.
2009; Cimini et al. 2016).

The N-terminal fragment of DAEFRH (Aβ1−6) was mod-
ified by mutation of alanine 2 to valine and conjugation with
the HIV protein transduction domain GRKKRRQRRR (TAT).
The TAT motif improves permeability of peptides into/across
cell membranes and assists in crossing the BBB. This de-
signed peptide showed great proteolytic stability and higher
binding affinity towards Aβ40 fibrils than Aβ1−6 and inhibited
fibrillation formation and elongation in the brain. In order to
maximize electrostatic interactions for disrupting in aggrega-
tion process and reduce the tendency for self-assembly of the
KLVFF segment, RIVFF sequence was designed and modi-
fied based on KLVFF sequence using residue mutations of
lysine16 (K) to arginine (R) and leucine17 (L) to isoleucine
(I) (Ramaswamy et al. 2014).

The results demonstrated that this peptide exhibits reduced
surface tension upon self-aggregating into β-sheet structures
and may practically enhance cytotoxicity. The two peptides
RGKLVFFGR (OR1) and RGKLVFFGR-NH (OR2) are
known as retro-inverso peptides (Austen et al. 2008). These
peptides derived from the KLVFF sequence were modified via
addition of an arginine (R) and glycine (G) residues to en-
hance their solubility, to prevent self-aggregation, and to act
as spacers, respectively. These peptides showed high solubil-
ity and stability against proteases while only OR2 peptide
demonstrated effective inhibitory effects on Aβ oligomer for-
mation and cytotoxicity. In order to further improve these
characteristics, OR2 peptide was modified as HN-rGklvffGr-
Ac (RI-OR2) using acetylation of the C-terminal residue
(Taylor et al. 2010). The resulting peptide showed high resis-
tance against proteolysis with the same previous inhibitory
activity demonstrated in vivo. In another study, the RI-OR2
peptide was conjugated to the TAT peptide to enhance cell
membranes and BBB permeability (Parthsarathy et al.
2013). The findings showed that it decreased Aβ aggregation,

Aβ plaque levels, and oxidative damages while it enhanced
the number of young neurons in the brain.

Ac-LVFFARK-NH2 (LK7) is a peptide derived from the
KLVFF sequence via incorporation of two positively charged
residues arginine and lysine (R and K) (Xiong et al. 2015). It
has been shown to have a dose-dependent inhibitory effect on
Aβ42 fibrillation process, but due to a high self-assembly
properties, it can actually increase cytotoxicity. To reduce this
self-aggregation feature and improve inhibitory activity, the
LK7 peptide was added to polymers, nanoparticles, and che-
lators. The LK7 peptide was conjugated onto poly(lactic-co-
glycolic acid) NPs. The obtained LK7-PLGA-NPs complex
eliminated LK7 self-assembly while also inhibiting Aβ42 fi-
brillation (Xiong et al. 2015). Binding β-cyclodextrin to LK7
(Zhang et al., 2018a) enhanced solubility of LK7 peptide,
suppressed its self-aggregation tendency, and improved its
binding and inhibitory abilities against Aβ aggregation.
Head-to-tail cyclization of LK7 peptide also led to a decrease
of the self-assembly propensity of the LK7, an increase of
proteolytic stability and binding affinity to the Aβ40 peptide.
This derivative also can stabilize the Aβ40 secondary structure
and prevent Aβ40-related cytotoxicity. Another derivative of
LK7 peptide is Ac-LVFFARKHH-NH2 (LK7-HH) in which
LK7 has been attached to the HH ligand as a chelator for
capturing free and complexed ions of Cu2+ and reducing re-
active oxygen species (ROS) production (Zhang et al., 2018a,
b, c). This chelator also improved anti-aggregative effects of
LK7 against Aβ peptide and reduced its self-aggregation
propensity.

Sequences derived from the C-terminal fragments of Aβ42,
including IIGLMGGVVIA (Aβ31−42) and VVIA (Aβ39−42),
have also been shown to act as inhibitors of Aβ aggregation
(Fradinger et al. 2008). It has been shown that the tetrameric
Aβ39−42 peptide interacts with small oligomers and Aβ42
monomers and locates at several positions, specifically at the
N-terminal region in MD simulations. Also, the results

Table 4 (continued)

Number Structure Status Therapeutic effect/category Ref.

o Formation of a β-sheet breaker structure by UV-light
irradiation

o Inhibition of amyloid aggregation, and toxicity of Aβ42

14 A flavin catalyst attached to an Aβ-binding
peptide

In vitro o Derived from the KLVFF sequence
o Modification: cyclization, attachment of a flavin catalyst

inhibition of Aβ aggregation via oxygenation using an
artificial catalyst

o Decreasing of the aggregation potency and neurotoxicity
of Aβ

(Sohma 2016)

15 SGB1 and SGD1 (all D-amino acid
pseudopeptides)

MD o Target: bind to the central hydrophobic region of Aβ,
Aβ13–23 (R)

o The highest ΔG binding to Aβ13–23 for SGB1
oMore tightly bound SGB1-Aβ42 in the R region than the

SGD1 complex
o SGB1 may be a better candidate for developing

(Mehrazma et al.
2018)
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illustrated that VVIA-NH2 peptide inhibits Aβ42 aggregation
and Aβ42-related toxicity preserving synaptic activity at mi-
cromolar levels. However, the acetylated Ac-VVIA sequence
did not show these effects (Zheng et al. 2015). The non-
acetylated VVIA-NH2 sequence interacts particularly with
the C-terminal region while the Ac-VVIA peptide showed a
dispersed binding distribution (Zheng et al. 2015). Recently,
the Ac-IGLMVG-NH2 sequence (Aβ32–37), a hexapeptide de-
rived from the C-terminal fragment, has been evaluated as an
inhibitor of Aβ toxicity in vitro. It revealed a mild efficiency
against Aβ-related toxicity (Bansal et al. 2016).

A different class of Aβ aggregation inhibitor was reported
that might help the development and improvement of new
therapeutics. O-acyl isopeptide (1) and NMe-b-Ala26 (2)
(Aβ42 derivatives) were introduced as inhibitors
(Kawashima et al. 2013). They were derived from the full-
length Aβ sequence with modification of an ester bond at
the Gly25-Ser26 moiety and an N-methyl amide-β-Ala26,
respectively. In vitro results showed that derivative (1)
inhibited the formation of Aβ42 fibrillation at an equimolar
ratio with an inhibitory mechanism different from any other
peptidic inhibitors reported so far. Also, this derivative
showed more aqueous solubility rather than Aβ42 peptides
and rapidly decomposed to Aβ42 monomers under physiolog-
ical conditions through an O-to-N acyl rearrangement reaction
while derivative (2) exhibited higher chemical stability at
physiological conditions.

A novel metalloporphyrin-peptide conjugate based on the
KLVFFmotif was applied as a fluorescent sensor for detection
and visualization of soluble Aβ oligomers in biological fluids
(Villari et al. 2017). The zinc-porphyrin compound was cova-
lently attached to the KLVFFmotif, and the resulting structure
targets histidine residues and hydrophobic region of Aβ42.
This conjugated compound can enhance amyloid
suppression properties and photodynamic therapy as well as
inhibition of the cytotoxic effects of Aβ42 through the
formation of supramolecular bodies with the protein. Gordon
et al. (2001) described Apan or PPI1019 (D-(H-((Me-L)-
VFFL)-NH2)) as an N-methylated peptide inhibitor for Aβ
aggregation and neurotoxicity. This peptide is currently at
phase II clinical trial (Sun et al. 2012).

Non-Aβ sequence-der ived pept ides The pept ide
QSHYRHISPAQV (D1) was reported as a peptide inhibitor
not derived from the Aβ sequence (Wiesehan et al. 2003).
This peptide was selected using a randomized mirror-image
phage display technique. Results showed that it interacts with
all forms of Aβ peptide (oligomers and fibrils and monomers)
and binds specifically to Aβ plaques in the tissue of human
brain. It also reduces Aβ aggregation formation and Aβ-
associated cytotoxicity at high concentrations. A related pep-
tide D-RPRTRLHTHRNR (D3) was also proposed for inhibi-
tion of Aβ aggregation and Aβ-related toxicity (Van Groen

et al. 2008). This peptide was not taken from the Aβ sequence
and was identified by the mirror-image phage display method.
It exhibited great enzymatic stability, good BBB permeability,
and efficient bioavailability in oral administration. Moreover,
it can bind to Aβ oligomers and convert resulting aggrega-
tions to nontoxic amorphous forms via changing of their mor-
phology (Van Groen et al. 2008). In vivo results showed that
this peptide decreased Aβ plaque levels and Aβ-related in-
flammations and improved cognitive impairment in an AD
mouse model. Presently, D3 and its derivatives are being test-
ed in phase III clinical trials and are currently at the stage of
safety analysis.

Carnosine is a natural imidazole dipeptide molecule which
is in muscle and brain tissues. This natural compound was not
taken from Aβ sequence, and like a chelator, it can coordinate
divalent metal ions (Aloisi et al. 2013). The in vitro and
in vivo results showed that it has inhibitory activity against
fibrillation process of amyloidogenic species such as Aβ pep-
tide, natural and glycated α-crystallin, and prion protein and
reduces their associated toxicity on rat brain endothelial and
PC12 cells. This peptide blocks the formation of the intermo-
lecular salt bridge, which is important in stability, and elonga-
tion of fibrillation (Aloisi et al. 2013).

Polyclonal antibodies, due to their intrinsic heterogeneity,
show inferior biological function to monoclonal antibodies
(Dodel et al. 2004). Research has revealed that a monoclonal
antibody directed against a single epitope can identify Aβ
peptide and suppress its aggregation and cytotoxicity (Du
et al. 2003). Previous results have shown that the
bapineuzumab monoclonal antibody acts effectively as an
Aβ aggregation inhibitor. Other mABs have entered in phase
III clinical trial (Nie et al. 2011). These include the
solanezumab (LY2062430) monoclonal antibody which was
designed as a humanized anti-Aβ peptide immunoglobulin
(IgG1). Solanezumab was shown to reduce cognitive and
functional decline in AD by lowering Aβ production.
Currently, it has completed the phase III clinical trial (Han
and He 2018).

Associated challenges with inhibitors of Aβ
aggregation

Inhibitor compounds of Aβ aggregation such as metal chela-
tors, nanostructure-based strategies, organic molecules, pep-
tides, and antibodies that interact and bind to specific domains
of Aβ highlight new developments of amyloid hypothesis-
based therapeutics. These compounds also face challenges
and problems that prevent their entrance to clinical uses. For
this reason, to date, none of these compounds have proven
successful in clinical trials.

It is well that when NPs come into a physiological environ-
ment, their surfaces will be immediately covered by

Biophys Rev (2019) 11:901–925918



biomolecules such as proteins to produce protein crown-like
halos, and the effect of these structures on Aβ fibrillation is
currently being evaluated (Salvati et al. 2013). Another impor-
tant issue with nano-based compounds is their potential tox-
icity although relatively few studies have reported about long-
term toxicity after NP use. It is also known that small mole-
cules produce inadequate steric hindrance effects and are
therefore usually unable to inhibit Aβ aggregation (Wells
and McClendon 2007). Other important challenges around
peptide therapeutic use are BBB permeability, serum stability,
and their self-assembly dring storage. In recent years, a tre-
mendous effort has been employed on combatting these
limitations.

Conclusion

According to the World Alzheimer Report 2016, nearly 46.8
million people worldwide are currently affected by AD. This
number is expected to increase to 131.5 million by 2050
Prince (2015). Yet, there is no cure for AD nor any sensitive
clinical tools for the detection and diagnosis of early onset
AD. As discussed in this Review, one of the main challenges
is that AD is a multifactorial disease that may have different
pathologies and etiologies. Specifically, AD can manifest in a
molecular sense as Aβ aggregation and fibrillation, tau phos-
phorylating kinases ROS, and cell cycle proteins. A large
body of research suggests that production and aggregation of
Aβ peptide causes AD. Therefore, developing methods and
tools to inhibit Aβ aggregation will represent a great step
forward for AD therapy.
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