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Abstract
Generalized-ensemble algorithms are powerful techniques for investigating biomolecules such as protein, DNA, lipid mem-
brane, and glycan. The generalized-ensemble algorithms were originally developed in the canonical ensemble. On the other
hand, not only temperature but also pressure is controlled in experiments. Additionally, pressure is used as perturbation to
study relationship between function and structure of biomolecules. For this reason, it is important to perform efficient confor-
mation sampling based on the isothermal–isobaric ensemble. In this article, we review a series of the generalized-ensemble
algorithms in the isothermal–isobaric ensemble: multibaric–multithermal, pressure- and temperature-simulated tempering,
replica-exchange, and replica-permutation methods. These methods achieve more efficient simulation than the con-
ventional isothermal–isobaric simulation. Furthermore, the isothermal–isobaric generalized-ensemble simulation samples
conformations of biomolecules from wider range of temperature and pressure. Thus, we can estimate physical quantities
more accurately at any temperature and pressure values. The applications to the biomolecular system are also presented.

Keywords Generalized-ensemble algorithm · Molecular simulation · High pressure · Protein folding

Introduction

Molecular dynamics (MD) and Monte Carlo (MC) simula-
tions play a crucial role to obtaining properties of biomolecules
from the atomic level. In many cases, however, MD and
MC simulations sample conformations only in a few local-
minimum free-energy states because of its time scale and
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degrees of freedom. This hampers accurate estimation of
physical quantities such as free-energy differences. The spe-
cially designed hardware has extended upper limit of the
time scale up to milliseconds (Shaw et al. 2010; Lindorff-
Larsen et al. 2011). On the other hand, highly optimized soft-
ware such as GENESIS (Jung et al. 2015; Kobayashi et al.
2017) and MODYLAS (Andoh et al. 2013) have extended
upper limit of the system size. Yet, it remains difficult to
sample sufficient conformations in the phase space.

Generalized-ensemble algorithms (Mitsutake et al. 2001)
were developed to overcome the sampling difficulties. In a
multicanonical ensemble (Berg and Neuhaus 1991, 1992b;
Hansmann et al. 1996; Nakajima et al. 1997), the target
system performs a free one-dimensional random walk in the
potential-energy space; thus, the target system does not get
trapped in local-minimum free-energy states. In a simulated
tempering method (Lyubartsev et al. 1992; Marinari and
Parisi 1992), temperature is treated as a dynamic variable so
that a random walk in the temperature space can be realized.
These methods introduce non-Boltzmann weight factors,
which are not known a priori, and have to be determined
before simulations. A replica-exchange (Hukushima and
Nemoto 1996; Sugita and Okamoto 1999) and a replica-
permutation (Itoh and Okumura 2012) methods are other
generalized-ensemble algorithms, which are not necessary
to determine the weight factor in advance. We prepare
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non-interacting copies (or replicas) of the target system at
different temperatures and perform simulation in parallel.
During the simulation, temperature exchange/permutation
is conducted among the replicas. Each replica performs a
random walk in the temperature space, which helps the target
system to escape from a local-minimum free-energy state.

The generalized-ensemble algorithms were originally
proposed in the canonical ensemble. In the canonical
ensemble, the volume of the simulation box is constant
and pressure is not controlled. In contrast, pressure as well
as temperature is controlled in experiments; thus, physical
quantities estimated from experiments follow isothermal–
isobaric ensemble. Based on this point, the isothermal–
isobaric ensemble simulation is important to compare the
simulation results with experiments.

In this review article, we focus on a series of the
generalized-ensemble algorithms in the isothermal–isobaric
ensemble, namely multibaric–multithermal, pressure- and
temperature-simulated tempering, replica-exhange, and
replica-permutation methods. These methods achieve the
efficient conformational sampling in the wider range of tem-
perature and pressure. We also present applications of the
generalized-ensemble algorithms in the isothermal–isobaric
ensemble to the biomolecule systems: chignolin, AK16
peptide, C-peptide, and ubiquitin.

This review is organized as follows. First, we introduce
the basics of the isothermal–isobaric ensemble and then
we review the generalized-ensemble algorithms in the
isothermal–isobaric ensemble. In the following section,
the applications of the isothermal–isobaric generalized-
ensemble algorithms to biomolecular systems are presented.
The final section is devoted to conclusions.

Basics of isothermal–isobaric ensemble

In this section, we briefly review the fundamentals of ther-
modynamics and statistical mechanics for the isothermal–
isobaric ensemble as described in many textbooks for
example, McQuarrie and Simon (1997).

Isothermal–isobaric ensemble

In the isothermal–isobaric ensemble, the number of particles
N , pressure P , and temperature T are treated as parameters.
Let us considerN-particle system in a boxwith volumeV . The
system is specified by the coordinates q ≡ {q1, · · · , qN },
momenta p ≡ {p1, · · · , pN }, and volume of the box V .
The potential energy of the system is given as a function of the
coordinates and volume: U(q, V ). The probability
distribution PNPT(U, V ; T , P ) is given by the product of den-
sity of states n(U, V ) and distribution function WNPT(U, V ;
T , P ), as follows:

PNPT(U, V ; T , P ) = n(U, V )WNPT(U, V ; T , P ). (1)

The distribution function in the isothermal–isobaric ensem-
ble is given by

WNPT(U, V ; T , P ) = exp−β(U + PV )

= exp−βH, (2)

where β = 1/(kBT ) is the inverse temperature (kB is
the Boltzmann constant) and H is the enthalpy. Scaled
coordinates are used in the isothermal–isobaric molecular
simulation (McDonald 1972). When an isotropic box is
used, the coordinates are scaled as s = V −1/3q. In this case,
the distribution function is transformed as

exp[−β{U(q, V ) + PV }]dq = exp[−β{U(s, V ) + PV }]V Nds

= exp[−β{U(s, V ) + PV − NkBT logV }]ds. (3)

Thermodynamic quantities

The difference in the Gibbs free-energy �G between states
A and B is calculated as follows:

�G = GB − GA = −RT log

(
fB

fA

)
, (4)

where R is the gas constant, fA and fB are fractions of
the states A and B, respectively. In the case of evaluating
protein stability, for example, fA and fB are probabilities

of the folded and unfolded states, respectively. The
differences in the partial molar enthalpy �H , the heat
capacity �CP , and the partial molar volume �V are
calculated as follows:

�H = −R

[
∂ log(fB/fA)

∂(1/T )

]
P

=
[
∂ (�G/T )

∂ (1/T )

]
P

, (5)

�CP = −T

(
∂2�G

∂T 2

)
P

, (6)

�V = −RT

[
∂ log(fB/fA)

∂P

]
T

=
[
∂�G

∂P

]
T

. (7)
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The differences in the internal energy �U and the entropy
�S are calculated as follows:

�U = �H − P�V, (8)

�S = �H − �G

T
. (9)

The temperature and pressure dependence of �G can
be fitted by the following equation proposed by Hawley
(1971):

�G(T , P ) = �G0 − �S0(T − T0) − �CP

[
T

{
ln

(
T

T0

)
− 1

}
+ T0

]

+�V0(P − P0) + �β

2
(P − P0)

2 + �α(P − P0)(T − T0). (10)

Here, T0 and P0 are the reference temperature and pressure.
�G0, �S0, and �V0 are the differences in the Gibbs free-
energy, entropy, and partial molar volume between states A
and B, respectively, at T0 and P0. �α and �β are the differ-
ences in the thermal expansivity factor and compressibility
factor between states A and B, respectively; these factors
are related to, but are not identical to the thermal expansion
coefficient and compressibility in thermodynamics, respec-
tively. By substituting (10) into (5) and (7), the temperature
and pressure dependence of �H and �V are obtained:

�H(T , P ) = �G0 + T0�S0 + (T − T0)�Cp

+ �V0(P − P0) + �β

2
(P − P0)

2 − �α(P − P0)T0, (11)

�V (T , P ) = �V0 + �β(P − P0) + �α(T − T0). (12)

Generally, from Le Chatelier’s principle, the volume of a
substance becomes smaller by applying pressure. In other
words, the probability of the smaller volume state increases
as pressure increases.

Generalized-ensemble algorithms
in isothermal–isobaric ensemble

In this section, we first introduce the general view of
Markov chain Monte Carlo algorithms (Berg 2004). Then,
we review formulations on a series of generalized-ensemble
algorithms in the isothermal–isobaric ensemble: multibaric–
multithermal, pressure- and temperature-simulated temper-
ing, replica-exchange, and replica-permutation methods.

Markov chain Monte Carlo algorithm

Let us consider the Markov chain Monte Carlo (MCMC)
algorithm. We assume here that the number of candidates
for a state transition is n. Each state i has a weight wi

and transits to state j with a transition probability P(i →
j). To converge the unique distribution, Markov chain
should satisfy ergodicity (that is, the transitions are regular

and non-periodic). In addition, the following equations are
imposed to obtain the required equilibrium distribution
(Manousiouthakis and Deem 1999) such as isothermal–
isobaric ensemble:

n∑
i=1

P(i → j) = 1, (13)

n∑
i=1

wiP (i → j) = wj . (14)

Equation 13 is the normalization condition and Eq. 14 is
the balance condition. These equations are summarized by
using a stochastic flow from state i to state j defined by
v(i → j) = wiP (i → j), as follows:

n∑
i=1

v(i → j) =
n∑

i=1

v(j → i). (15)

The Metropolis algorithm (Metropolis et al. 1953) (its gen-
eralization is called Metropolis–Hastings algorithm (Hast-
ings 1970)) and heat bath (Gibbs sampler) algorithm
(Geman and Geman 1984) are the two most practical imple-
mentations of the MCMC algorithms. These algorithms
only satisfy the detailed balance condition, which is the
sufficient condition for Eq. 15:

v(i → j) = v(j → i). (16)

In the Metropolis algorithm, the amount of stochastic flow
from state i to state j is given as follows (see Fig. 1a):

v(i → j) = 1

n − 1
min

(
wi, wj

)
, i �= j, (17)

where the coefficient 1/(n − 1) arises from the random
selection of state j from n − 1 candidates except state i. In
the heat bath algorithm, the amount of stochastic flow from
state i to state j is given as follows (see Fig. 1b):

v(i → j) = wiwj∑n
k=1 wk

, ∀i, j . (18)
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Fig. 1 Schematic figures of the
a Metropolis, b heat bath, and c
Suwa–Todo algorithms

Recently, Suwa and Todo proposed a new type of MCMC
algorithm (Suwa and Todo 2010), which satisfies (15)
without imposing the detailed balance condition (16). This
method succeeds in minimizing the rejection ratio, and in
many cases, the rejection ratio becomes zero. The amount
of stochastic flow is given as follows (see Fig. 1c):

v(i → j) = max[0,min[�ij , wi+wj−�ij , wi, wj ]], (19)

where

�ij ≡ Si − Sj−1 + wk,

Si ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i∑
j=k

wj , for i ≥ k

n∑
j=k

wj +
i∑

j=1

wj , for i < k,

S0 ≡ Sn,
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and wk is a maximum weight among n states. Note that
the Suwa–Todo algorithm is identical to the Metropolis
algorithm when n = 2.

Multibaric–multithermal method

A multibaric–multithermal (MBT) method (Okumura and
Okamoto 2004a, b, c, 2006) was proposed as an extension
of the multicanonical method. In the MBT method, the
uniform distribution in the potential energy and volume
spaces is realized so that the system can perform a random
walk in the potential energy and volume spaces, as shown
in Fig. 2a. Hence, we can obtain the isothermal–isobaric
ensemble in a wide range of temperature and pressure values
from one MBT simulation.

In the MBT method, a non-Boltzmann weight factor

WMBT{U(q, V ), V } ≡ exp[−β0HMBT{U(q, V ), V }] (20)

is used instead of the usual distribution function in the
isothermal–isobaric ensemble given in Eq. 2. Here, β0 =

1/(kBT0) is a reference temperature and HMBT is the
multibaric–multithermal enthalpy. HMBT is determined so
as to realize the uniform probability distribution of the
potential energy and volume:

PMBT(U, V ) = n(U, V )WMBT(U, V )

= n(U, V ) exp[−β0HMBT{U(q, V ), V }]
= const.

To perform the MBT simulation, the non-Boltzmann
weight factor (or multibaric–multithermal enthalpy) must
be determined in advance. An iterative procedure of trial
simulations (Berg and Celik 1992a; Lee 1993; Okamoto
and Hansmann 1995; Mitsutake et al. 2001) or Wang–
Landau method (Wang and Landau 2001a, b) is used to
obtain the weight factor (also see Refs. Okumura and
Okamoto 2008, 2012). By using the obtained weight factor,
we perform one long multibaric–multithermal simulation.
For MC simulation, the transition probability is calculated
using multibaric–multithermal enthalpy HMBT instead of

Fig. 2 Schematic figures of
generalized-ensemble
algorithms in
isothermal–isobaric ensemble: a
multibaric–multithermal, b
pressure- and temperature-
simulated tempering, c
replica-exchange, and d
replica-permutation methods
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the enthalpy H (Okumura and Okamoto 2004b, c). For
MD simulation, the enthalpy term H = U + PV in
the equations of motion is substituted by multibaric–
multithermal enthalpy HMBT (Okumura and Okamoto
2004a, 2006).

Pressure- and temperature-simulated tempering
method

Let us introduce a simulated tempering (ST) method associated
with pressure and temperature (PTST) (Mori and Okamoto
2010). The PTST realizes a uniform distribution in the temper-
ature and pressure spaces by treating those as dynamic vari-
ables. Temperature and pressure as well as the coordinates
and momenta are changed during the PTST simulation.

The weight factor for the PTST is given by

WPTST(U, V ; T , P ) ≡ exp{−β(U + PV ) + g(T , P )}. (21)
Here, g(T , P ) is introduced to realize the uniform
distribution in the temperature and pressure spaces. g(T , P )

is determined so as to satisfy the following equation:

PPTST(T , P )=
∫ ∞

0
dV

∫
V

dqWPTST{U(q, V ), V ; T , P } = const.,

(22)

and thus, g(T , P ) is written as

g(T , P ) = − ln

[∫ ∞

0
dV

∫
V

dq exp[−β{U(q, V ) + PV }]
]
. (23)

We find that g(T , P ) corresponds to a dimensionless Gibbs
free-energy omitting a constant. In practice, the temperature
and pressure are discretized. Let us consider using M0

temperatures and M1 pressures. Here, we introduce indices
m0 and m1 that indicate one of the M0 temperatures and
one of M1 pressures, respectively. The weight factor and the
dimensionless Gibbs free-energy gm = g(Tm0 , Pm1) at Tm0

and Pm1 are given as follows:
WPTST(U, V ; Tm0 , Pm1 ) = exp

{−βm0 (U + Pm1V ) + gm

}
, (24)

g(Tm0 , Pm1 )=− ln

[∫ ∞

0
dV

∫
V

dq exp[−βm0 {U(q, V )+ Pm1V }]
]
. (25)

The weight factor (i.e., the dimensionless Gibbs free-energy)
should be determined before performing the PTST simulation.
The weight factor is determined by an iterative procedure of
short trial simulations (Irbäck and Potthast 1995; Hansmann
and Okamoto 1997; Mitsutake et al. 2001) or short
replica-exchange simulation combining with reweighting
techniques (Kumar et al. 1992; Shirts and Chodera 2008).
On-the-fly weight determination scheme during the ST
simulation was also proposed (Nguyen et al. 2013).

The PTST simulation is performed as follows (schematic
figure is shown in Fig. 2b): (i) isothermal–isobaric MD or
MC simulation at temperature Tm0 and Pm1 is performed for
certain steps, (ii) calculate the transition probability from
(Tm0 , Pm1) to another set of temperature and pressure value
(Tn0 , Pn1) in M0 temperatures and M1 pressures, and (iii)

update the temperature and pressure following the obtained
transition probability. Usually, the transition probability is cal-
culated by the Metropolis algorithm. Instead of the Metropo-
lis algorithm, the Gibbs sampler (heat bath algorithm) or
Suwa–Todo algorithm is also applicable to enhance acceptance
ratio (Chodera and Shirts 2011; Mori and Okumura 2015).

Isothermal–isobaric replica-exchangemethod

In an isothermal–isobaric replica-exchange method (TP-
REM) (Okabe et al. 2001; Mori and Okamoto 2010), sim-
ulations at different thermodynamic states, characterized
by a set of temperature and pressure λm = [Tm0, Pm1],
are performed in parallel. M0 different temperatures and
M1 different pressures are assigned to M(= M0 × M1)

non-interacting replicas (copies of the system). A state in
the TP-REM is expressed by a combination of the ther-
modynamic state indices and the replica indices: Xα =[
x

[i(1)]
1 , x

[i(2)]
2 , . . . , x

[i(M)]
M

]
=

[
x

[1]
m(1), x

[2]
m(2), . . . , x

[M]
m(M)

]
,

where i(m) is a permutation function from the thermody-
namic state index to replica index and m(i) is the inverse.

The weight factor for the state Xα is given by the
product of the weight factor of each replica i (or each
thermodynamic state m):

wR(Xα) =
M∏
i=1

exp
[
−βm(i)

{
H(x

[i]
m(i)) + Pm(i)V (x

[i]
m(i))

}]

=
M∏

m=1

exp
[
−βm

{
H(x[i(m)]

m ) + PmV (x[i(m)]
m )

}]
. (26)

In the TP-REM, exchange trials for a pair of parameters

Xα = [. . . , x[i]
m , . . . , x

[j ]
n , . . . ] → Xγ = [. . . , x[i]

n , . . . , x
[j ]
m , . . . ] (27)

are performed during the simulation (Fig. 2c). Typically,
neighboring parameters are selected as a pair of replica
exchange. The temperature exchange and pressure exchange
trials are performed alternately or randomly. TheMetropolis
algorithm is employed to calculate the amount of stochastic
flow v(Xα → Xγ ) and transition probability P(Xα →
Xγ ). Note that the weight factors wi and wj in Eq. 17 are
replaced by wR(Xα) and wR(Xα), respectively.

Isothermal–isobaric replica-permutationmethod

An isothermal–isobaric replica-permutation method (TP-
RPM) (Yamauchi and Okumura 2017, 2019) is an improved
alternative to the TP-REM. In the TP-RPM, the parameter
permutation among more than two replicas is performed
during the simulation (Fig. 2d):

Xα =
[
x

[1]
m(1), · · · , x

[M]
m(M)

]
→ Xγ =

[
x

[1]
n(1), · · · , x

[M]
n(M)

]
, (28)

where m and n are permutation functions. All possible per-
mutations between replicas and parameters are considered;
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thus, γ takes values from 1 to M!. However, it becomes
impractical to consider all possible permutations as the
number of replicas increases, especially exceeding ten repli-
cas. To avoid this problem, the temperature permutations
and the pressure permutations are performed alternately. If
the number of permutation candidates is still large, the sets
of temperatures or pressures are divided into several sub-
sets. Usually, subsets are set so that the number of replicas
in each subset is the same and the temperature or pressure
labels in each subset are sequential and cyclic. Parameter
permutation is performed among the replicas in each subset.

The weight factor for state Xα is identical to the REM
as in Eq. 26. The Suwa–Todo algorithm is employed to
calculate the amount of stochastic flow v(Xα → Xγ ) and
transition probability P(Xα → Xγ ). Of course, instead
of the Suwa–Todo algorithm, the Metropolis or heat bath
algorithm is also able to be employed. However, sampling
efficiency, such as transition ratio of the parameters, is lower
than the Suwa–Todo algorithm (Yamauchi and Okumura
2017). The comparison of the transition ratio of temperature
and pressure values between TP-RPM with the Suwa–Todo,
Metropolis, heat bath algorithms, and TP-REM is presented
in Figure 3. Here, the transition ratio at a parameter label
(i.e., a set of temperature and pressure labels) is defined as a
probability with which the replica at that parameter label is
transferred to other parameter labels. These results clearly
show that the TP-RPM with the Suwa–Todo algorithm
achieves the highest transition ratio, indicating that it is the
most efficient among the four methods.

Estimation of physical quantities: reweighting
techniques

After performing the generalized-ensemble simulation, we
can obtain statistical averages of physical quantities by
using reweighting techniques.

For the MBT method, a single-histogram reweighting
technique (Ferrenberg and Swendsen 1988, 1989a, Oku-
mura and Okamoto 2004c) is employed to obtain the density
of states and probability distribution at any temperature and
pressure values.

For the PTST, TP-REM, and TP-RPM, the arithmetic
mean of the trajectory data from the one equilibrium state
gives the isothermal–isobaric average at the set temperature
and pressure values for the simulation. On the other hand,
a weighted histogram analysis method (WHAM) (Kumar
et al. 1992; Chodera et al. 2007), which is also called
multiple-histogram reweighting techniques (Ferrenberg and
Swendsen 1989b), and a multistate Bennett acceptance
ratio (MBAR) method (Shirts and Chodera 2008) are
widely applied to calculate the isothermal–isobaric averages
of the physical quantities. These methods enable us to
evaluate the physical quantities more precisely because of
considering all trajectory data from multiple equilibrium
states. The WHAM gives the density of states, whereas the
MBAR cannot directly calculate. However, the histogram
construction of the WHAM makes bias due to the binning,
and is a time-consuming process. The MBAR does not
require making the histogram; thus, the MBAR provides
the weight for each trajectory and the direct estimation of
statistical errors.

A generic transition-based reweighting analysis method
(TRAM) (Wu et al. 2016) has been developed, which is
a general formalization of the WHAM and MBAR. The
TRAM takes advantage of the Markov states model. The
key assumption of the TRAM is that the data are sampled
from the local equilibrium distributions, while the WHAM
and MBAR assume those from the global equilibrium distribu-
tion of each ensemble. The TRAMprovides not only statisti-
cal average of the physical quantities, but also the transition
probability from one state to the other states. Thus, we can
obtain information about kinetics of the target system.

Fig. 3 Comparison of the transition ratio between TP-RPM with the Suwa–Todo algorithm and a TP-REM, b TP-RPM with the heat bath
algorithm, and c TP-RPM with the Metropolis algorithm
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Application of isothermal–isobaric
generalizedmethods to biomolecules

Pressure dependence for β-hairpin formation
peptide: chignolin

Chignolin is an artificially designed peptide comprised of
ten amino acid residues, and its amino acid sequence is
GYDPETGTWG (Honda et al. 2004). Chignolin folds into a
β-hairpin structure. Molecular dynamics simulation studies
revealed that chignolin is able to form two types of β-
hairpin structure: one is a folded structure and the other is a

misfolded structure (see Fig. 4a and b) (van der Spoel and
Seibert 2006; Satoh et al. 2006; Suenaga et al. 2007; Harada
and Kitao 2011; Kührová et al. 2012).

To investigate the folding–unfolding mechanism of chig-
nolin, the multibaric–multithermal molecular dynamics
simulation was performed (Okumura 2012). Folding and
unfolding processes were discussed by calculating free-
energy landscapes. The unfolding process begins from only
the C terminus or both C andN termini of the β-hairpin struc-
tures. The intermediate structures, for example, 310-helix
and α-helix, can be formed under the unfolding pathway.
The folding is the reverse process. Chignolin is denatured

Fig. 4 Typical conformations of
the a folded and b misfolded
chignolin. c The pressure
dependence of fraction for
folded, misfolded, and unfolded
chignolin
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by not only temperature but also pressure. The pressure
denaturation occurs because water molecules approach the
hydrophobic residues with increasing pressure, and the water
molecules break the hydrophobic contacts among side chains.

The isothermal–isobaric replica-permutation MD simu-
lation was also performed (Yamauchi and Okumura 2017),
revealing that the fraction of themisfolded structure increases
while that of folded structure decreases with increasing
pressure (see Fig. 4c). The partial molar volume difference
was estimated as �V = Vmisfold − Vfold = −4.6 ± 0.2
cm3/mol at 300 K, indicating that the misfolded structure
has smaller partial volume. The molecular mechanism of the
different stability between folded and misfolded structures
under high pressure arises from different orientation of the
Tyr2 and Trp9 side chains (Fig. 4a and b). For the folded
structure, as pressure increases, water molecules approach
not only hydrophobic core, but also intra-hydrogen bonds
from the opposite side of the hydrophobic core. There-
fore, the water molecules break the intra-hydrogen bonds
as well as the hydrophobic core. On the other hand, in the
misfolded structure, the hydrogen bonds that are impor-
tant to form the misfolded structure are covered with the
Try2 and Trp9 side chains. The side chains protect the hydro-
gen bonds from the approaching water molecules. There-
fore, the misfolded structure becomes more stable with
compressing its structure under high-pressure condition.

Pressure dependence for helix formation peptide:
AK16

AK16 peptide is comprised of 16 amino acid residues, and
its amino acid sequence is YGAAKAAAAKAAAAKA.

AK16 peptide forms α-helix conformation at room temper-
ature and atmospheric pressure (Chakrabartty and Baldwin
1995). FT-IR spectroscopic studies investigated pressure
dependence of the alanine-rich peptide including AK16
peptide, revealing that the fraction of α-helix conformation
increases with increasing pressure (Takekiyo et al. 2005;
Imamura and Kato 2009).

To understand the molecular mechanism for the pressure-
induced conformation changes of AK16 peptide, the ST
simulations associated with pressure were performed (Mori
and Okumura 2013, 2014). The pressure dependence of
the fraction for helical conformation and the partial molar
volume difference between folded and unfolded structures,
�V = Vunfold−Vfold, were calculated, as presented in Fig. 5a,
b. In the high-pressure condition, especially more than 0.6
GPa, the fraction for the helical conformation increases
and the �V takes a positive value. These results are
consistent with experimental results (Takekiyo et al. 2005).
The typical conformations of the AK16 peptide at various
pressures are illustrated in Fig. 5c. As pressure increases,
the diameter of the helix structure and the distance between
hydrogen bonds that form the helix structure become short.
These results indicate that the helical structure at high pressure
is more compressed from the longitudinal and transversal
directions than that at atmospheric pressure. This is also the
reason why the �V takes positive value at high pressure.

Pressure dependence for helix formation peptide: C
peptide

C-peptide analogs are polypeptides that exist at the
N terminus of ribonuclease A. Here, we only discuss

Fig. 5 Pressure dependence of
the a fraction for the folded
AK16 peptide and b partial
molar volume difference. c
Typical conformations of the
AK16 peptide at P = 0.1 MPa,
0.6 GPa, and 1.4 GPa
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Fig. 6 Pressure dependence of
the a fraction for the folded
C-peptide and b partial molar
volume difference. c Typical
conformations of the C-peptide
at P = 0.1 MPa, 0.6 GPa, and
1.4 GPa

the C-peptide analog comprised of thirteen amino acid
residues (AETAAAKFLRAHA). Hereafter, we refer to this
C-peptide analog as simply C-peptide. The C-peptide forms
α-helix conformation with stabilization of a salt bridge
(ionic interaction) between Glu2 and Arg10 (Scholtz and
Baldwin 1992).

To reveal the pressure-induced conformation changes
of the C-peptide, the ST simulations associated with
pressure were performed (Mori and Okumura 2014).
Figure 6a presents pressure dependence of the fraction
for the helical conformation. Below 0.6 GPa, the fraction
of the helical conformation of the C-peptide decreases
as pressure increases. In contrast, above 0.6 GPa, the
fraction of the helical conformation increases. Figure 6b
presents partial molar volume difference between folded
and unfolded structures: �V = Vunfold − Vfold. The
partial molar volume difference takes a positive value at
high-pressure conditions. The typical conformations of the
C-peptide at various pressures are illustrated in Fig. 6c.
It is noteworthy that the helical conformation of the C-
peptide at high pressure does not form the salt bridge.
This is a different point from the helical conformation
at atmospheric pressure. The salt bridge contributes to
the stabilization of the helical conformation at room
temperature and atmospheric pressure. As the pressure
increases up to 0.6 GPa, the salt bridge is broken by
the hydration of water molecules. This is the reason why
the fraction for helical conformation takes minimum value
around 0.6 GPa. As further pressure is applied, the volume

of the helical conformation becomes smaller than the helical
conformation at the atmospheric pressure and the unfolded
structure; thus, the helical conformation is stable under
high-pressure conditions. Indeed, the diameter of the helix
structure and distance between hydrogen bonds that form
the helix structure gradually become short with increasing
pressure. These results reflect compression of the helical
conformation under the high-pressure condition.

Ubiquitin

Ubiquitin (UB), consisting of 76 amino acid residues, is
involved in many cellular phenomena such as proteasomal
degradation of damaged proteins. Its structure, functions,
and protein folding have been studied thoroughly both in
experimental and theoretical aspects. NMR experiments
detected conformational change of the UB induced by pres-
sure perturbation (Kitahara et al. 2001, 2003, 2005, Nisius
and Grzesiek 2012). The pressure-simulated tempering
(PST) simulations also demonstrated the pressure-induced
conformational changes of the UB (Mori and Okamoto
2017). In particular, larger fluctuations were found between
7–9 and 30–40 amino acid residues during the simulations.
As presented in Fig. 7a, the peak position of the distribu-
tion for the distance between Leu8 and Glu34 is shifted with
increasing pressure from 0.1 MPa to 1.0 GPa, which is con-
sistent with the constant pressure MD simulation (Imai and
Sugita 2010). The conformations at 0.1 GPa and 1.0 GPa are
illustrated in Fig. 7b, c. The water molecules penetrate into



Biophys Rev (2019) 11:457–469 467

Fig. 7 a The probability
distribution of the distance
between Leu8 and Glu34.
Typical conformation of
ubiquitin at b P = 0.1 MPa and
c P = 1.0 GPa

the inside of the UB in the high-pressure condition, which
induces denaturation. The trajectory data from the PST sim-
ulations were also employed to 15N NMR chemical shift
estimation (La Penna et al. 2016). This technique is useful
to integrate experiment and simulation results.

Conclusions

In this review, we outlined the generalized-ensemble
algorithms in the isothermal–isobaric ensemble and its
applications to the biomolecule system. The generalized-
ensemble simulation in the isothermal–isobaric ensemble
enables us to sample conformations of the target system
at various temperature and pressure values. Furthermore,
a random walk in the parameter spaces enhances the
sampling efficiency in the conformational space; thus,
physical quantities are estimated more precisely.

We also reviewed the application of the generalized-
ensemble algorithms in the isothermal–isobaric ensemble
to the following biomolecular systems: chignolin, AK16
peptide, C-peptide, and ubiquitin. The physical quantities,
such as�V and 15N chemical shift, were estimated from the
simulations. We can directly compare these quantities from
simulations with those from experiments. Furthermore, the
generalized-ensemble simulation in the isothermal–isobaric
ensemble enables us not only to elucidate the mechanism
behind the conformational change, but also to predict the
stable conformation under high-pressure conditions. We
believe that integrating experimental and theoretical results
will lead to deep understanding of life system.

Although we only focused on the conformational
change induced by pressure pertubation in this review,
the generalized-ensemble methods in the isothermal–
isobaric ensemble are also powerful tools to investigate
the molecular mechanism of the conformational change
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induced by cold temperature (Privalov 1989). To access
higher pressure and lower temperature region, more
efficient generalized-ensemble algorithms are necessary.
The post analysis methods such as reweighting become
key techniques for not only estimating physical quantities
more accurately but also extracting more information
from the generalized-ensemble simulations. Furthermore,
it should be emphasized that using accurate force field,
especially water model, is crucial for quantitative estimation
of physical quantities at various temperature and pressure
values (Yang et al. 2014; Best et al. 2014).

Acknowledgments This work was supported by JSPS KAKENHI (no.
JP16H00790) and the Okazaki Orion Project of National Institutes of
Natural Sciences.

Compliance with Ethical Standards

Conflict of interest Masataka Yamauchi declares that he has no
conflict of interest. Yoshiharu Mori declares that he has no conflict of
interest. Hisashi Okumura declares that he has no conflict of interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

Andoh Y, Yoshii N, Fujimoto K, Mizutani K, Kojima H, Yamada
A, Okazaki S, Kawaguchi K, Nagao H, Iwahashi K, Mizutani
F, Minami K, Ichikawa S, Komatsu H, Ishizuki S, Takeda Y,
Fukushima M (2013) Modylas: a highly parallelized general-
purpose molecular dynamics simulation program for large-scale
systems with long-range forces calculated by fast multipole
method (fmm) and highly scalable fine-grained new parallel
processing algorithms. J Chem Theory Comput 9(7):3201–3209

Berg BA, Neuhaus T (1991) Multicanonical algorithms for first order
phase transitions. Phys Lett B 267(2):249–253

Berg BA, Celik T (1992a) New approach to spin-glass simulations.
Phys Rev Lett 69:2292–2295

Berg BA, Neuhaus T (1992b) Multicanonical ensemble: a new
approach to simulate first-order phase transitions. Phys Rev Lett
68(1):9

Berg BA (2004) Markov chain Monte Carlo simulations and their
statistical analysis. World Scientific, Singapore

Best RB, Miller C, Mittal J (2014) Role of solvation in pressure-
induced helix stabilization. J Chem Phys 141(22):12B621 1

Chakrabartty A, Baldwin RL (1995) Stability of α-helices. Adv
Protein Chem 46:141–176

Chodera JD, Swope WC, Pitera JW, Seok C, Dill KA (2007) Use
of the weighted histogram analysis method for the analysis of
simulated and parallel tempering simulations. J Chem Theory
Comput 3(1):26–41

Chodera JD, Shirts MR (2011) Replica exchange and expanded
ensemble simulations as gibbs sampling: Simple improvements
for enhanced mixing. J Chem Phys 135(19):194110

Ferrenberg AM, Swendsen RH (1988) New monte carlo technique for
studying phase transitions. Phys Rev Lett 61:2635–2638

Ferrenberg AM, Swendsen RH (1989a) Newmonte carlo technique for
studying phase transitions. Phys Rev Lett 63:1658–1658

Ferrenberg AM, Swendsen RH (1989b) Optimized monte carlo data
analysis. Phys Rev Lett 63:1195–1198

Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images. IEEE T Pattern Anal
6(6):721–741

Hansmann UH, Okamoto Y, Eisenmenger F (1996) Molecular
dynamics, langevin and hydrid monte carlo simulations in a
multicanonical ensemble. Chem Phys Lett 259(3-4):321–330

Hansmann UHE, Okamoto Y (1997) Numerical comparisons of three
recently proposed algorithms in the protein folding problem. J
Comput Chem 18(7):920–933

Harada R, Kitao A (2011) Exploring the folding free energy landscape
of a β-hairpin miniprotein, chignolin, using multiscale free energy
landscape calculation method. J Phys Chem B 115(27):8806–8812

Hastings WK (1970) Monte Carlo sampling methods using Markov
chains and their applications. Biometrika 57(1):97–109

Hawley SA (1971) Reversible pressure-temperature denaturation of
chymotrypsinogen. Biochemistry 10(13):2436–2442

Honda S, Yamasaki K, Sawada Y, Morii H (2004) 10 residue folded
peptide designed by segment statistics. Structure 12(8):1507–1518

Hukushima K, Nemoto K (1996) Exchange monte carlo method and
application to spin glass simulations. J Phys Soc Jpn 65(6):1604–
1608

Imai T, Sugita Y (2010) Dynamic correlation between pressure-
induced protein structural transition and water penetration. J Phys
Chem B 114(6):2281–2286

Imamura H, Kato M (2009) Effect of pressure on helix-coil transition
of an alanine-based peptide: an ftir study. Proteins 75(4):911–918
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