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Abstract

In recent years, we have witnessed a big data explosion in genomics, thanks to the improvement in high-throughput
technologies at drastically decreasing costs. We are entering the era of millions of available genomes. Notably, each genome
can be composed of billions of nucleotides stored as plain text files in gigabytes (GBs). It is undeniable that those genome
data impose unprecedented data challenges for us. In this article, we briefly discuss the big data challenges associated with

genomics in recent years.

Introduction

Since 1990s, the whole genomes of different species have
been sequenced by different genome sequencing projects.
In 1995, the first free-living organism Haemophilus influen-
zae was sequenced by the Institute for Genomic Research.
In 1996, the first eukaryotic genome (Saccharomyces cere-
visiase) was completely sequenced. In 2000, the first plant
genome, Arabidopsis thaliana, was also sequenced by Ara-
bidopsis Genome Initiative. In 2003, the Human Genome
Project (HGP) announced its completion. Following the
HGP, the Encyclopedia of DNA Elements (ENCODE)
project was started, revealing a massive number of func-
tional elements in the human genome in 2011 (ENCODE
Project Consortium et al. 2004). The drastically decreasing
cost of sequencing also enables the 1000 Genomes Project
and Roadmap Epigenomics Project to be carried out. Their
results have been published in 2012 and 2015 respectively
(1000 Genomes Project Consortium et al. 2010; Kundaje
et al. 2015). Nonetheless, the massive genomic data gener-
ated by those projects impose an unforeseen challenge for
big data analysis at the scale of gigabytes (GBs) or even
terabytes (TBs).

In particular, next-generation sequencing (NGS) tech-
nologies have enabled massive data generation for dif-
ferent genomes (Wong and Zhang 2014; Mardis 2008);
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for instance, DNA sequencing, protein-DNA binding occu-
pancy (Wong et al. 2013) (e.g., ChIP-seq Visel et al. (2009),
ChIP-exo Ho and Franklin Pugh (2011), and ChIA-PET
Fullwood et al. (2009)), bisulfite sequencing (Bock et al.
2005), transcriptome sequencing (e.g., RNA-seq Mortazavi
et al. (2008)), and chromatin interaction sequencing (e.g.,
Hi-C Lieberman-Aiden et al. (2009)). Thanks to the rela-
tively low costs, those NGS technologies have been readily
applied to human genomes nowadays. The international
projects aforementioned have been successfully launched,
leading to massive NGS data accumulation at an unprece-
dentedly fast pace. Nonetheless, current integrative analyses
are usually limited to traditional machine learning and data
mining methods such as pair-wise correlation analysis, sta-
tistical tests, classification, and feature extraction (Wong
et al. 2015b). Those methods are intentionally designed to
generally fit different types of data. However, the data from
NGS is unique and different from the traditional data; for
instance, the ChIP-seq data is sparse, noisy, and discontinu-
ous. Special care has to be taken to alleviate and transform
those challenges to be taken advantages of (Wong et al.
2015a). In addition, the NGS data is huge (in gigabytes per
each dataset) which imposes a difficulty in applying some
of the existing statistical/computational methods.
Therefore, different genome-scale problems have been
defined and framed to harness those genomic data. Figure 1
aims to provide a concise summary of those challenges.

De novo genome assembly
The advancement in DNA sequencing technologies has
enabled the assembly of whole genome in an economi-

cal and fairly accurate way (Mardis 2011). Nonetheless,
a genome cannot be easily identified in one piece from
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Fig.1 Big data challenges in genome informatics. The challenges are listed from top to bottom; namely, genome assembly, signal profile analysis,

and 3D genome structure reconstruction

wet-labs. Limited by our current DNA sequencing tech-
nologies, each genome has to be shattered into many
non-overlapping small pieces (short DNA sequence reads)
before their DNA nucleotides can get sequenced and iden-
tified as shown in Fig. 1. Therefore, we come to the de
novo genome assembly problem: to sequence and identify
a genome, we have to “stitch” those short DNA sequences
into a single and consistent DNA genome while allowing for
overlaps. There are different benchmark measurements such
as N50, total length, and number of missing nucleotides.
If we already have a reference genome, then the measure-
ments can be more solid than the previous measures such as
NG50 and genome fraction. If a reference genome annota-
tion is available, the number of genes covered can be a good
measurement. More details can be found in Gurevich et al.
(2013). To solve this kind of genome assembly problems
(in GBs or TBs), there are many computational methods
proposed in the past. Nonetheless, most of them depend
on the construction of de brujin graph which is memory-
consuming and computationally intensive. According to the
recent benchmark study, different genome assembly methods
show result disagreement with each other by Bradnam et al.
(2013). In addition, the sequencing errors incurred by wet-
lab experimental conditions are unavoidable, making the
genome assembly problem even more complicated than we
have imagined (Mardis 2011). Therefore, the genome assem-
bly problem remains as a big data challenge to be solved.

Genome signal profile analysis

In addition to genome assembly, there are different genome-
wide signals such as gene regulation (e.g. protein-DNA bind-
ing interactions) and epigenetic interactions (e.g. DNA
methylation) as shown in Fig. 1. Therefore, it is essential
for us to look into those information. To this end, dif-
ferent genome-wide biotechnologies have been developed
such as ChIP-seq, DNase-seq, RNA-seq, CLIP-seq, DNA
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methylation array assay, bisulphite sequencing, Repli-Seq,
and CAGE. To gains insights into those data, tremendous
efforts have been made to pre-process the data such as read
trimming (Bolger et al. 2014), sequencing error correction
(Yang et al. 2013), sequencing replicates (Robasky et al.
2014), and read mapping (David et al. 2011). After the data
has been processed, downstream analysis methods can be
applied to reveal genome-wide signals from it; for instance,
multiple signal profile integrative analysis (Wong et al.
2015a, b) and signal profile peak calling (Zhang et al. 2008).
In particular, the multiple signal profile analysis is very
important for us to understand the complex behavior of the
genome-wide signals (Wong et al. 2015a). Unfortunately,
each signal profile is proportional to genome size since it
has a genome-wide coverage (usually in GBs). Therefore,
if we have multiple signal profiles (e.g., hundreds from the
ENCODE consortium), the computational scalability issue
has to be taken into serious account. Another issue is that
the past wet-lab studies are very limited to fine-scale knowl-
edge (e.g., single gene study). Therefore, the genome-wide
result verification is very difficult to be carried out. At the
current stage, we heavily rely on null hypothesis testing to
ascertain the results’ statistical significances. Therefore, we
can foresee that the genome signal profile analysis will still
be a big data challenge in genome informatics.

3D genome structure reconstruction

In recent years, Hi-C technology has been developed and applied
to reveal the three dimensional organizations of different
cell lines by the chromosome conformation capture method
(Belton et al. 2012). In particular, there is increasing evi-
dence that long-range chromatin interactions are related to
gene co-expression (Babaei et al. 2015; Jin et al. 2013) as
well as protein-DNA interactions (Lan et al. 2012; Mifsud
et al. 2015). Therefore, it is essential to comprehensively
identify and reconstruct the three-dimensional (3D) genome
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shape from those long-range chromatin interactions for
understanding genomes in the three-dimensional space.
Given the GB data size of genome as well as its three-
dimensional nature, such a 3D genome reconstruction is
doomed to be another big data challenge.

Future perspectives

In this article, we have discussed several big data challenges
in genome informatics. Especially, we envision that those
challenges will become intense in the near future, given
the maturing and cost-effective sequencing technologies.
Several future directions are deemed promising: (1) third-
generation sequencing technologies (Schadt et al. 2010)
have been developed and being refined to be of practical
uses. Although its sequencing error rate is still high, we
believe that those third-generation sequencing technologies
will enable another wave of big data challenges in genome
informatics. (2) Single cell sequencing is another promising
direction. In the past, we usually studied specific cell
types or tissue types using the population-based approaches.
However, cell type heterogeneity is often observed in
practice. Therefore, our current single-cell sequencing
technologies can enable us to look at each of the individual
cells; it holds tremendous potential to trigger the next levels
of big data challenges. However, the cell-destructive nature
of single-cell sequencing may limit its capability such as
real-time live tracking, disease prognosis analysis, and stem
cell development. To address those limitations, single-cell
imaging techniques could be promising; it can even offer
insights into the spatial arrangement of individual cells.
(3) Given the genome data in GBs or even TBs, high-
performance computing frameworks such as MapReduce
are definitely needed to handle the exponentially growing
genome data in a scalable but still accurate manner. The
high-throughput computing technologies such as Hadoop,
Spark, and Pig Latin are expected to become more
pronounced than now.
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