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Abstract

Mechanosensing is increasingly recognised as important for tumour progression. Tumours become stiff and the forces that
normally balance in the healthy organism break down and become imbalanced, leading to increases in migration, invasion
and metastatic dissemination. Here, we review recent advances in our understanding of how extracellular matrix properties,
such as stiffness, viscoelasticity and architecture control cell behaviour. In addition, we discuss how the tumour microenviron-
ment can be modelled in vitro, capturing these mechanical aspects, to better understand and develop therapies against tumour
spread. We argue that by gaining a better understanding of the microenvironment and the mechanical forces that govern tumour
dynamics, we can make advances in combatting cancer dormancy, recurrence and metastasis.
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Introduction

One of the biggest challenges in the treatment of cancer is to
develop better ways to predict, detect and eradicate the spread
of tumour cells to distant tissues. Cancer cells interact dynam-
ically with their surrounding environment and not only re-
model the nearby extracellular matrix but also affect immune
cell infiltration, local fibroblasts and distant tissues. Pancreatic
ductal adenocarcinoma (PDAC) provides an example of a
cancer that is characterised by aggression fuelled by the mi-
croenvironment. PDAC tumours are often highly fibrotic with
excessive deposition of extracellular matrix (ECM) mole-
cules, including fibrillar collagen. Excess matrix deposition
not only contributes to the aggressiveness of the malignancy
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but also poses major constraints on the delivery of chemother-
apeutic reagents to the tumour (Kleeff et al. 2016). This so-
called desmoplastic, collagen-rich stroma has been the target
of recent therapeutic intervention strategies, with attempts to
‘normalise’ the stroma to allow better access of chemotherapy
or immunotherapy, reviewed in (Vennin et al. 2018).
However, the role of this dense matrix is complex and it re-
mains poorly understood which stromal aspects prevent or
promote tumorigenesis. Unfortunately, attempts to ablate the
matrix have so far not led to patient benefit and may even
cause harm (reviewed in (Neesse et al. 2015)). We will explore
how recent developments in bioengineering might improve
modelling the interactions between tumour cells and the mi-
croenvironment to hopefully improve development of new
therapies against metastasis and recurrence (Table 1).
Epithelial tumours are a complex mixture of cancer cells,
normal cells and extracellular matrix. Tumours disrupt organ
structure and break the normal rules of organisation, growth
control and boundary respect. They harbour fibroblasts and
immune cells, as well as their own vasculature and lymphatic
vessels. Tumours are inflamed and have been described as
wounds that never heal, having lost normal signals that allow
tissues to maintain their structural and biological framework
(Dvorak 2015). In particular, wound healing is a
multiparametric process of stochastic events including cell
infiltration, ECM deposition and remodelling, where
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Table 1 Summary of processes

affected by mechanical properties Mechanical properties

Processes affected

Processes affected References

of the environment and associated

references Stiffness Mechanosensing Yap/Taz, integrin Aragona et al. 2013;
signalling, RTK Diamantopoulou et al.
signalling, Wnt 2017; Dupont et al. 2011;
signalling, Piezo, Halder et al. 2012; Lin
GTPases et al. 2015; Panciera et al.
2017; Zanconato et al.
2016
Viscoelasticity Mechanosensing Yap/Taz, integrin Bennett et al. 2018;
signalling, Chaudhuri 2017; Chen
GTPases etal. 2015; Wang et al.
2018a, b
Architecture

Fibre alignment

Matrix geometry-pore size

genomic instability

Topography curvature

cytoskeleton/signalling?

Migration direction cell
density

Nuclear squeezing,
rupture

Curvature sensing

Ahmadzadeh et al. 2017;
Chaudhuri et al. 2014;
Conklin et al. 2018;
Drifka et al. 2016; Fraley
et al. 2015; Mouw et al.
2014; Nuhn et al. 2018;
Patel et al. 2018; Yang
etal. 2017

Bennett et al. 2017; Denais
et al. 2016;
Elosegui-Artola et al.
2017; Harada et al. 2014;
Isermann and
Lammerding 2017;
Lautscham et al. 2015;
Lombardi et al. 2011;
Rothballer et al. 2013;
Wolf et al. 2013;
Woroniuk et al. 2018

Harada et al. 2014; Chen
et al. 2012; Heath and
Insall 2008

Actin dynamics,
adhesion

Nesprin/SUN
proteins

DNA damage

BAR domain
proteins

mechanical regulation restores tissue homeostasis and archi-
tecture. However, loss of mechanical checkpoints could facil-
itate neoplasm generation and growth. In addition, tumour
vasculature is tortuous and leaky, giving access to tumour cells
and preventing oxygen and nutrient delivery in areas of the
tumour. When combined with the excessive mutation rates
and genomic instability of cancer cells, the aforementioned
parameters can drive tumours to break away from their prima-
ry site and metastasise. Thus, a thorough understanding of
mechanical forces that organise normal and malignant tissues
is essential. We argue that recent advances in bioengineering
can make exciting contributions to combatting tumour pro-
gression and dissemination by revealing how forces shape
tissues and tumours.

While normal tissue development follows an orderly pro-
gramme, cancer and metastasis are chaotic. During develop-
ment, stem cells give rise to more differentiated precursors and
migration follows orderly programmes. Blood vessels invade
tissues and form networks to deliver oxygen and nutrients
(Fig. 1). ECM mechanics guide developmental migration,
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stem cell formation and organogenesis (reviewed in (Kumar
et al. 2017)). Physical forces in normal tissues are balanced to
maintain identity and architecture (Butler and Wallingford
2017; Gilbert and Weaver 2017; Vijayraghavan and
Davidson 2017). During tumorigenesis, aspects of the devel-
opmental process can be mimicked, but in a chaotic way
(Fig. 1). The balance that maintains normal tissue architecture
is lost by overgrowth and inappropriate matrix deposition,
leading to increased cell crowding and nutrient starvation.
These changes promote migration away from the primary tu-
mour into the extracellular matrix or invasion into the lymph
or vascular systems. Cancer cells can also be shed into the
imperfect tumour vasculature and gain access to the circula-
tion to disseminate widely. The vast majority of disseminated
tumour cells die, either from shear forces in the blood or be-
cause they land in a hostile environment. However, if even
one cell in a million survives, it can gain the potential to form a
new tumour or to lie dormant in a tissue until conditions trig-
ger new tumour formation. Disseminated cells can land in a
niche that promotes stem cell characteristics or alternatively
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Fig. 1 During embryogenesis, forces balance as cells proliferate,
differentiate and sort into specific tissues and organs. Angiogenesis
allows oxygenation of the growing embryo and migration, both
collectively and individually, drives sorting and homing of cells
and tissues. Embryonic tissue shows plasticity in cell fate, but as
development progresses, cells become more committed, and stem
cells form in specific niches, where they continue to maintain
tissues and organism in the adult. Programmed cell death is also
important for pruning out cells during sculpting, such as in the
formation of digits. The differentiated epithelium (shown right) is
an example of a tissue that maintains stem cells in a niche,
progenitor cells and differentiated cells in a continuous state of
equilibrium in the adult. There is much less cell motility in adult
tissues than embryonic, and growth is generally balanced by death
and pruning. Unlike the well-organised embryo, tumours behave in
more unpredictable and chaotic ways. However, in common with
embryos, they show increased angiogenesis and cell migration. The
blood vessels in tumours are generally leaky and tortuous, resulting

make their way back and colonise in the primary tumour and
thus increase its heterogeneity and aggressiveness (Kim et al.
2009) (Fig. 1).

®

from and causing further force imbalances. Tumours also have stem-
like cells and have altered capacity for proliferation, often
hyperproliferating or suppressing programmed cell death to become
crowded and deprived of nutrients. If the stem-like cells escape from
the primary tumour, they may land in lymph nodes or travel through
the bloodstream, where they can seed new tumours (metastases) at
distant sites. Most escaping tumour cells are thought to die due to the
hostile conditions and the body’s surveillance system, but if even a
few survive, they can start new tumours. New tumour formation can
start immediately or after years of dormancy, a poorly understood
state where the cells lie in the host tissue, but the tumour is not
detectable. Dormancy may be quiescence and fails to grow, or may
be a balance of growth and death that keeps the small cluster
undetectable. However, these small micrometastases re-awaken and
can result in full metastasis. Metastases can also shed cells into the
bloodstream that return to the primary tumour and increase its
aggressiveness and diversity

This review will focus on how mechanical constraints or
imbalances, imposed by the extracellular matrix and cell
crowding of malignant tissues, shape cell behaviour and drive
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tumour progression and metastasis. We will also discuss how
biophysical methods and engineered environments could pro-
vide reliable in vitro platforms to measure mechanical force
imbalances and determine their consequences for cancer cell
behaviour. We highlight the need for a comprehensive bio-
physical approach to better understand the interactions be-
tween the cancer cells and their environment, ultimately facil-
itating the design of novel and effective therapeutic strategies.

ECM mechanical properties—I. Rigidity
sensing governs proliferation, migration
and identity

Normal cells display anchorage-dependence, a process by
which cells sense adhesion to the ECM via transmembrane
receptors, especially integrins, which signal to the nucleus to
regulate proliferation and survival. Integrins bind to ECM
ligands, such as fibronectin or collagen, mainly through their
arginyl-glycyl-aspartic acid (RGD) motifs. Binding and ten-
sion against the substratum cause integrins to undergo a con-
formational change promoting their activation and clustering,
triggering adhesion and proliferation (Schwartz 2010). The
controlled presentation of ECM molecules on normal epithe-
lial tissues can maintain and regulate the homeostasis of tissue
growth and architecture. However, during tumorigenesis, ex-
tensive ECM remodelling and deposition of a different reper-
toire of ECM molecules by cancer cells and cancer-associated
fibroblasts perturb this balance. Furthermore, genetic changes
in the tumour cells, frequently leading to increased Ras and
MAP kinase signalling, render them anchorage-independent
(Kang and Krauss 1996). Strikingly, Ras GTPases can also
activate integrin-dependent signalling cascades in an adhesion
independent manner, a process known as ‘inside-out’ integrin
activation (reviewed in (Kinbara et al. 2003), see Fig. 2). All
of these changes impact on control of proliferation and sur-
vival, allowing cancer cells to override signals from a hostile
environment designed to eliminate them.

Integrin adhesions not only control proliferation but also
motility, via direct connections with the actin cytoskeleton.
Vinculin and talin are mechanosensitive proteins that couple
actin to integrins at focal adhesions. They form what is termed
a molecular clutch (Fig. 3) whereby actin polymerises and is
pushed and pulled back from the plasma membrane toward
the cell centre by myosin-II in a phenomenon known as ret-
rograde flow. When the clutch is engaged on a rigid substra-
tum, the actin tethers to the focal adhesions and force is gen-
erated to drive motility. When cells are on a softer substratum,
the clutch is less engaged and adhesions are weaker—
preventing accumulation of the tension that drives forward
translocation of the cell. In particular, talin can be periodically
stretched in an actin flow dependent manner, revealing cryptic
vinculin-binding sites on the talin molecule (del Rio et al.
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2009; Wang 2007). Rigidity sensing is mediated by a series
of cytoskeletal-dependent contraction forces on the edge of
the cells (Iskratsch et al. 2014). Essentially, it seems that cells
sense their underneath matrix by contracting it through a series
of sequential events involving actin polymerisation and focal
complex assembly and reinforcement. How cells sense and
respond to stiffness is still a very active area of study, and a
recent screen for receptor tyrosine kinases (RTKs) involve-
ment implicated Axl and ROR2 phosphorylating tropomyosin
2.1, myosin IIA and filamin A (Prager-Khoutorsky et al. 2011;
Yang et al. 2016). These signalling pathways provide a direct
connection between the cytoskeleton and RTKs in
mechanosensing, which could have broad implications for
cancer if they turn out to be general.

Do cancer cells sense rigidity? Or have they lost this con-
trol? A recent study demonstrates that some cancer cells can
maintain high proliferation rates even on low adhesion envi-
ronments (Yang et al. 2018). However, physical and chemical
gradients in the tumour microenvironment are crucial for tu-
mour progression (Oudin and Weaver 2016) suggesting that
transformed cells still sense and respond to ECM rigidity.
Tumours not only secrete more matrix than normal tissues,
but they remodel it differently, leading to increased stiffness,
breach of basement membrane barriers and hypoxia. Different
types of collagens, fibronectin, tenascins and other ECM mol-
ecules are abundant in the microenvironment of tumours (for
examples, see Box 1); these contribute to the alteration of
ECM mechanical properties. In addition, tumour ECM be-
comes infiltrated by immune cells and fibroblasts, which de-
posit ECM as well as increasing crowding, pressure and nu-
trient consumption. Both tumour cells and surrounding
cancer-associated fibroblasts (CAFs) show enhanced expres-
sion of the collagen crosslinking catalyst lysyl oxidase (LOX)
(Erler et al. 2006; Erler and Giaccia 2006; Miller et al. 2015).
Collagen crosslinking increases ECM stiffness and promotes
invasion and cancer malignancy (Levental et al. 2009). LOX
expression may also increase in the pre-metastatic niche lead-
ing to changes that promote survival or growth of metastases
(Erler et al. 2009). Furthermore, it has been suggested that
Caveolin-1 expression by CAFs increases ECM stiffness in
the tumour microenvironment promoting cell invasion.
Caveolin-1 can control the phosphorylation of the RhoGAP
p190, an important regulator of Rho GTPase activity. This
results in defective contractility and increased invasiveness
of fibroblasts but also to the deposition of an altered highly
crosslinked collagen matrix (Goetz et al. 2011). Together,
these increase tumour ECM stiffness, a property that is cur-
rently emerging as one of the most important biophysical
manifestations of the tumour microenvironment.

ECM stiffness promotes matrix remodelling and invasion
via signalling pathways such as FAK-dependent activation of
Racl (Bae et al. 2014; Charras and Sahai 2014). Cancer cells
respond to increased stiffness by assembling invadopodia,
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Fig. 2 Integrin activation and importance for balanced growth. Integrins
lie at the roots of cellular mechanosensing, as they are considered to be
the main membrane receptors mediating cell-ECM interactions. They are
heterodimers of «- and (3-subunits forming an elongated extracellular
ligand binding domain and a short cytoplasmic tail. In the absence of
stimuli, integrin subunits have an inactive bent conformation. Integrin
subunit elongation and activation can occur either through ECM protein
ligand binding on the extracellular site (‘outside-in’) or by intracellular
signalling events mediated mainly by focal complex or actin cytoskeleton
associated protein such as talin (‘inside-out’). Integrin activity can
enhance remodelling of the surrounding microenvironment which can
also promote more integrin activation indicating a positive loop.

actin-rich structures that not only exert force on the matrix but
also engage matrix metalloproteases, which degrade ECM
(Eddy et al. 2017; Haage and Schneider 2014; Yu et al.
2012). Invadopodia and actin-based protrusions are important
mediators of invasion and metastatic spread of pancreatic tu-
mours in vivo (Li et al. 2014). In pancreatic tumours with
SMAD4 mutations, ECM stiffness was linked to high
STAT3 signalling activity inducing increased tension and fi-
brosis, favouring an aggressive phenotype (Laklai et al. 2016).
Furthermore, ECM stiffness can promote angiogenesis, alter-
ing normal vasculature integrity to mimic cancer-associated
vasculature (Bordeleau et al. 2017).

ECM stiffness impacts on gene expression signatures in
both normal and tumour tissues, enhancing programmes that
determine cell identity and differentiation or stemness. ECM
stiffness is linked to induction of epithelial-to-mesenchymal
transition (EMT), a developmental process that goes awry in
cancer and is linked to progression of epithelial cancers such
as PDAC (Krebs et al. 2017; Morris and Machesky 2015).
Specifically, Twistl is a critical transcriptional regulator that
acts as an EMT promoter and is regulated by increased ECM

Signalling-Mediated

Tension-Mediated

Inside-Out Outside-In or Inside-Out

“'\\\

\ AN

Traction force,
mechanotransduction

Tension and mechanical force arising either from ECM or cytoskeletal
dynamics can also extend, activate and cluster integrin subunits. Non-
transformed cells require a degree of ECM adhesion and integrin
signalling to sustain their proliferation and growth. Malignant
transformation, however, maintains cell proliferation even in the
absence of ECM adhesion. At the same time though, transformed cells
display integrin enrichment and imbalanced cell-ECM dynamics.
Tumours frequently display an increase in ECM stiffhess, which can be
further enhanced by inflammation and fibrosis. This can drive increased
cytoskeletal activation as well as signalling downstream of integrin
activation

stiffness, favouring invasion and metastasis (Wei et al. 2015).
In addition to integrin-actin connections, the nucleus is
coupled with adhesions and actin to cause transcriptional
changes that regulate many tumour-promoting processes.
The nuclear translocation of two transcriptional co-factors,
Yap and Taz, mediates transcriptional responses to ECM
mechanosensing in many cells and tissues (Panciera et al.
2017). Yap/Taz and the transcriptional factor TEAD are part
of the well-known Hippo pathway, an evolutionarily con-
served developmental pathway that controls tissue morpho-
genesis and homeostasis (Panciera et al. 2017).

ECM rigidity triggers integrin clutch engagement and leads
to nuclear translocation and activation of YAP/Taz signalling
(Halder et al. 2012). In the absence of mechanical stress, Yap/
Taz are localised to the cytoplasm where they can be phos-
phorylated by LATS1 and turned over in the proteasome
(Panciera et al. 2017). Activation of Yap/Taz signalling trig-
gers a transcriptional programme that affects cell stemness and
differentiation (Lian et al. 2010). Multiple targets downstream
of Yap/Taz are affected by mechanosensing, including the
matricellular matrix protein CCN1, which promotes cancer
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Fig. 3 Cells generate force against stiff ECM, leading to clutch
engagement. When cells experience soft or viscous matrix, where
adhesions do not generate enough tension to stretch mechanosensitive
proteins and trigger a response, the molecular clutch remains
unengaged. In this situation, actin polymerisation at the leading edge is
uncoupled from adhesion, and retrograde flow of newly generated
filaments occurs in the direction away from the plasma membrane.
Adhesions remain small, and the cell is not able to use actin-based
protrusion to move against the substratum. However, upon a threshold

cell intravasation and metastasis (Reid et al. 2017). Another
transcriptional regulator FHL2 (four-and-a-half LIM domain
family protein 2) translocates to the nucleus on soft substrates,
where it induces the transcription of p21, negatively regulat-
ing cell proliferation (Nakazawa et al. 2016). While
mechanosensitive transcriptional targets are beginning to be
uncovered, much more needs to be done to fully understand
how mechanosensing impacts on cell identity and differentia-
tion. Furthermore, although some actin regulators have been
implicated in Yap/Taz connection to the cytoskeleton
(Aragona et al. 2013), the connections between Yap/Taz and
the molecular clutch warrant further investigation.

The nucleus is physically connected with the cytoplasm
and is under stress in normal cells. Disruption of this connec-
tion affects its size and shape with important implications for
genome function (Mazumder and Shivashankar 2010). In par-
ticular, the nucleus is coupled to the actin cytoskeleton and
focal complexes via nesprins and the nuclear LINC complex
(Lombardi et al. 2011). The LINC complex consists of
nesprins, KASH and SUN proteins that span the nuclear
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of ECM stiffness, mechanosensitive cytoskeletal linkers, such as vinculin
and talin, engage and form a molecular clutch. The clutch catches the
ECM-derived force and transmits it to the cytoskeletal cortex. As
adhesions increase in size due to integrin clustering and the
cytoskeleton couples to the rigid matrix, actin polymerisation results in
membrane protrusion and promotes motility. During tumorigenesis, high
ECM stiffness, enrichment and hyperactivation, the mechanosensing
machinery can promote invasion, migration and metastatic dissemination

membrane and interact both with chromatin and the actin cy-
toskeleton (Rothballer et al. 2013) (Fig. 4). The LINC com-
plex regulates cell cycle progression in response to stress, for
example in Drosophila melanogaster muscle (Wang et al.
2018a). In addition to transmitting force to chromatin, ECM
stiffness couples with nuclear pores, exposing their interiors to
the cytoplasm and thus triggering active nuclear import. This
is thought to work by causing captured protein targets, includ-
ing YAP, to unfold and be imported from the cytoplasm
(Elosegui-Artola et al. 2017). Mechanisms of this increased
import are still unknown, but perhaps nuclear softening, due
to altered expression of lamins, could further enhance
mechanosensitivity.

One of the most direct ways that cell mechanosense is via
ion channels. Ion channels are pore-forming transmembrane
proteins that control the flow of ions across the cell membrane.
They can be rapidly influenced by ECM derived force or
pressure, regulating a variety of cell behaviours. Specifically,
the Piezo channel is a massive 38-transmembrane spanning
channel that translates mechanical stimuli into calcium signals
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Fig. 4 Nuclear forces are balanced by the cytoskeleton. The nucleus is
connected to the cytoskeleton via transmembrane proteins, including
nesprins and SUN proteins. These assemblies are called the LINC,
linker of the nucleoskeleton and cytoskeleton complex. The LINC
complex connects to the cytoskeleton, including actin filaments,
microtubules and intermediate filaments through the nuclear envelope
to chromatin. The LINC complex is usually composed by the SUN
protein subunits connected to lamins intranuclearly and the nesprin

(Wang et al. 2018b; Zhao et al. 2018). Piezo is important for
stem cell mechanosensing in the Drosophila midgut, mediat-
ing proliferation and differentiation (He et al. 2018), as well as
for touch sensation in neurons (Ranade et al. 2014; Woo et al.
2015). When cells crawl through a confined space, Piezo is
activated to increase intracellular calcium levels, leading to
negative regulation of protein kinase-A (Hung et al. 2016).
This pathway works in concert with myosin-II to sense con-
finement and regulate cell migration, as well as setting up a
positive feedback of myosin-II-activated calcium influx
(Hung et al. 2016). Piezo is implicated in pressure-induced
pancreatitis, a form of pancreatic inflammation resulting from
trauma, duct obstruction or any medical procedure that puts
pressure on the pancreas (Romac et al. 2018). Inhibiting Piezo
can reduce pancreatitis, suggesting potential for therapy and
perhaps scope for further exploring a role of Piezo channels in
pancreatic cancer. Considering also the deregulated calcium
signalling that cancer cells exhibit and that targeting calcium
signalling emerges as a potential cancer therapy (Cui et al.
2017), elucidating how ECM stiffness is communicated with-
in the cancer cells by ion channels will be crucial to under-
stand promotion and dissemination of malignancy.

Among their multiple functions, Rho-family GTPases
emerge as major signal transducers of ECM stiffness sensa-
tion. In particular, RhoA is one of the most important actomy-
osin regulators, and Racl mediates new actin assembly

.. Intermediate
"i %~  Filaments

Balanced ECM force

Epithelial polarity, regulated growth
optimal cytoplasm/nucleus ratio

Unbalanced ECM force

Irregular growth, stretching
of nuclear pores, altered gene
expression

Cell Invasion/Migration

Cells squeezing through tight spaces.
Limited by size of nucleus and
chromatin condensation.

proteins on the cytoplasm. This complex is thought to relay cytoskeletal
changes to alterations in chromatin organisation and affect gene
expression. Additionally, increased force can lead to stretching of
nuclear pores and increased exchange of proteins between the nucleus
and the cytoplasm. When cells invade through pores of the ECM or
intravasate into a blood vessel and travel through the bloodstream; the
associated squeezing and shear forces affect chromatin organisation and
stability of the genome

stimulating a plethora of downstream events. Piezo activation
causes RhoA activation in response to mechanosensing in
cancer cells (Pardo-Pastor et al. 2018). In addition, the Rho-
GEF obscurin mediates RhoA activation in breast cancer in
response to increased ECM stiffness (Stroka et al. 2017).
STEF/TIAM2 RacGEF mediates Rac activity in concert with
NMMIIB to maintain the cell’s perinuclear actin cap
(Woroniuk et al. 2018). The perinuclear actin cap is an
actinomyosin structure connecting the nucleus to the actin
cytoskeleton via nesprin and SUN proteins (Chambliss et al.
2013). Mechanical stimulus triggers the actin cap to relay
signals to the Yap/Taz pathway as well as maintaining nuclear
structure and orientation during migration (Diamantopoulou
et al. 2017). Considering the multiparametric role of GTPases
in cancer progression, it will be worth investigating how the
aforementioned pathways are affected by ECM-derived force
in tumorigenesis.

Modelling stiffness in vitro

The first and still most commonly used materials to recapitu-
late the ECM of tumours in vitro are natural ECM-derived
components, including fibronectin, collagen, cell-derived ma-
trices or reconstituted basement membranes. Their major ad-
vantages over artificially generated systems are their intrinsic
biocompeatibility and cell adhesion properties. However, there

@ Springer



1702

Biophys Rev (2018) 10:1695-1711

is a need to engineer surfaces that not only mimic biomechan-
ical properties of the ECM but also offer the option to control
dynamics, degradability and protein composition, while main-
taining other properties. Standard 2D systems for probing the
mechanoresponsiveness of cells have included either PDMS
(polydimethylsiloxane) surfaces or hydrogels usually com-
posed by acrylamide. The latter can be mechanically tuned
by varying the crosslinker concentration to modulate the stiff-
ness and incorporate RGD adhesive peptides to facilitate cell
adhesion (Kandow et al. 2007). Alginate (a polysaccharide
derived from algae) and reconstituted basement membrane
are also materials that can be incorporated into a synthetic
interpenetrating polymer network. Their stiffness can be mod-
ulated by altering the ionic crosslinking of alginate, without
changing other parameters including polymer concentration
(Chaudhuri et al. 2014). Recent innovations allow the produc-
tion of controllable synthetic hydrogels that support organoid
and cancer spheroid growth. These offer exciting opportuni-
ties for studying cell behaviour in 3D allowing complex cel-
lular co-cultures and defined physical properties (Cruz-Acuna
and Garcia 2017). Polyethylene glycol (PEG) and
poly(lactide-co-glycolide) (PLG) are commonly used to con-
trol mechanical properties in 3D hydrogels. They are often
engineered to incorporate cell adhesion ligands as well as
biodegradable crosslinkers to increase bio- and cyto-compat-
ibility. The stiffness of those synthetic 3D hydrogels can be
varied by changing the length and density of crosslinkers and
have already been applied to studies of cancer cell properties,
including growth, invasion and migration (Singh et al. 2015)
(Fig. 5). Not only stiffness but also composition is important.
It is worth noting that complex 3D systems require precise
characterisation to identify the exact properties that the encap-
sulated cells sense. In addition, cells interact dynamically with
their milieu, an interaction that includes degradation, secretion
and deposition of extracellular molecules (Ferreira et al.
2018).

Since ECM stiffness changes dynamically through exten-
sive remodelling and protein deposition, it is important to
generate smarter materials that will allow us to study how cells
respond to dynamic, periodic or reversible alterations of the
mechanical properties. Classic synthetic hydrogels are irre-
versibly remodelled by cells, and their mechanical properties
usually cannot be tuned after their generation. However, re-
cent chemical developments allow novel material applications
to engineer 3D microenvironments that can be rapidly and
reversibly modified in a controllable manner—reviewed in
(Rosales and Anseth 2016). For example, the use of
photoswitchable crosslinkers has allowed stiffening of a syn-
thetic hydrogel upon light stimulus (Frey and Wang 2009;
Guvendiren and Burdick 2012; Lee et al. 2018; Yeh et al.
2017). Enzymic reactions have also been recently applied to
mediate stiffening of hydrogels in situ (Liu et al. 2017). Thus,
it is now possible to dynamically assess cancer cell responses
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to acute and local changes of the stiffness of their environment
in controlled conditions. This could be especially relevant in
the pre-metastatic niche, where immune cell activity,
wounding or trauma might trigger awakening of dormant can-
cer cells and promote metastatic growth.

ECM mechanical properties—II. Viscosity has
a similar role to rigidity, but is relatively
unexplored

Viscoelasticity of the tumour matrix is
an understudied relative of stiffness

While stiffness is an established driver of biological
mechanosensing, the importance of viscosity and viscoelastic-
ity of the ECM is just beginning to be understood.
Elastography on human patients showed malignant breast tu-
mours to be more viscous or fluid-like than benign lesions,
suggesting physiological relevance (Sinkus et al. 2007). In
addition, interstitial fluid in the tumour niche might contribute
to the viscous properties of the ECM. Viscosity engages the
molecular clutch in much the same way as stiffness does, and
triggers adhesion assembly and Yap/Taz signalling (Bennett
et al. 2018). Changing matrix composition, including differ-
ential expression of collagens, laminins and fibronectin, as
well as accumulation of hyaluronan and other viscous ECM
components will create an altered viscosity in the tumour mi-
croenvironment. Hyaluronan accumulation, for example, cor-
relates with increased cancer stemness and aggressiveness of
tumours (Chanmee et al. 2016a, b). Further research is needed
to unravel the contribution of those viscous properties on tu-
mour progression. Matrix viscoelasticity impacts proliferation
and cell spreading by mechanisms that are not yet understood
(Bauer et al. 2017; Chaudhuri et al. 2015). Identifying the
liquid/solid states of desmoplastic tumours, such as pancreatic
ductal adenocarcinoma, could open up new therapeutic
possibilities.

Not only ECM viscosity, but viscosity of the tissue at the
level of cell-cell interactions, governs normal and cancer cell
organisation. Tumours contain masses of tightly packed cells,
which have been described as physically jammed. It is me-
chanically challenging for packed cells forming cell-cell junc-
tions to flow past each other or move freely. This has been
modelled in vitro using cell monolayers, which are fluid dur-
ing low confluency, but then jammed as the cells proliferate
continuously and pack more tightly in a confined space
(Chepizhko et al. 2018). Upregulation of endocytic trafficking
can un-jam epithelial cancer cells, promoting flow and collec-
tive movement. In particular, the small GTPase Rab5a, an
important mediator of endocytosis, induces collective cell mo-
tility upon physical constraints and jammed monolayers, a
process that is interrupted by increasing fluid efflux
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Fig. 5 Hydrogels recapitulate mechanical aspects of the
microenvironment. a Sketch of a hydrogel, showing cells embedded in
the 3D environment. b Details of an example hydrogel, showing
crosslinker, which can be varied to control pore size and stiffness;
polymer, which can also be varied to change mechanical and chemical
properties; protein, which can represent an endogenous tissue or tumour

(Malinverno et al. 2017). In addition, E-cadherin trafficking is
thought to play a major role in unjamming cells (Song et al.
2013). Many tumours still express E-cadherin, and its mobil-
ity correlates with metastatic potential (Erami et al. 2016).
Cancer predominantly invades in a collective manner, and
thus it will be important to study the viscosity of invasion
streams and surrounding matrix to inform about likelihood
of metastasis or response to treatments.

Modelling viscoelasticity in vitro
Various models are in development to model ECM viscoelas-

ticity. Engineered lipid bilayers can be manipulated to present
different cellular stress relaxation properties (Bennett et al.

Crosslinker

Polymer

matrix protein such as fibronectin; growth factor, which can be included
in the hydrogel and presented either upon stimulus or constitutively. ¢
Micrograph showing spheroid of mouse pancreatic cancer cells growing
in a hydrogel. Sketches courtesy of Sara Trujillo-Munoz, University of
Glasgow

2018). Interestingly, it is also possible to generate hydrogels
of constant stiffness but of variable viscoelasticity. This is
achieved by modifying the molecular weight of the
crosslinkers and therefore their mobility (reviewed in
(Chaudhuri 2017)). It would thus be possible to test whether
dynamic-mechanical phenomena (e.g. stress relaxation) could
trigger awakening of dormant cancer cells or affect invasive
capabilities. This new idea bears testing, as tissues and tu-
mours are differently viscoelastic in nature, and their proper-
ties change over relevant timescales. For example, when the
lungs inflate and deflate, shear stress is created and even small
changes in viscosity may lead to increased epithelial damage
(Chen et al. 2015). This damage could activate an increased
stretch response in dormant cells, as well as causing local
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inflammation and thus affecting recurrence of lung cancer or
lung metastases of other cancers.

A key study from Shenoy and colleagues highlights the
most relevant parameters to consider for modelling the impor-
tance of viscosity on cell spreading. These are the timescales
for binding of the molecular clutch, the lifetime of engage-
ment of the molecular motors and the substrate relaxation
times (Gong et al. 2018). Only by comparing the timescales
of cellular events with substrate relaxation events can we re-
veal the impact of viscoelastic properties on cell behaviour.
These authors concluded that for soft substrates, there was an
optimal viscosity with characteristic relaxation time that slows
down the response to cell pulling and stiffens the material and
thus promotes cell spreading. In contrast, on rigid substrates,
viscosity made little difference to cell engagement since the
bound clutches are already saturated by stiffness. Importantly,
this study used three different types of hydrogels to demon-
strate these effects, including hyaluronic acid, alginate and
polyacrylamide, with biological matrix molecules such as col-
lagen incorporated. They also used different cell types to show
robustness at the biological level and supported their conclu-
sions with a Monte-Carlo model. Another recent study used
encapsulation of deformable high molecular weight long lin-
ear polyacrylamide within crosslinked polyacrylamide
hydrogels to have independent control of elasticity and vis-
cosity and model soft tissues (Charrier et al. 2018). Use of
these new materials revealed that differentiation of hepatic
stellate cells could be dependent on viscosity, showing a rele-
vance of viscosity in biological processes. Further develop-
ment of tuneable viscosity hydrogels will enable a thorough
study of viscosity.

Tightly packed cells such as in epithelial monolayers have
been compared with particles in a tightly packed suspension,
which can jam when the temperature is low, the density is high
and the suspension acquires a yield stress. Cell-cell viscosity
in jammed epithelia has been mathematically modelled, and
although this is still a relatively new idea, studying the jam-
ming transitions using models developed for physical systems
may be applicable to biological systems (Gamboa Castro et al.
2016). Cells of mesenchymal or epithelial phenotype were
mixed together in varying densities. Velocity was measured
as a function of density, which revealed that motility arrest
occurred in certain conditions and could be modelled similar
to jamming in physical systems. However, another study of
cell jamming argues that cellular contraction and adhesion are
key components of motility behaviour that are overlooked in
such models, challenging therefore the idea that cells behave
like particles in a suspension (Vig et al. 2017). More studies
are needed to determine the usefulness of the various analo-
gies and models.

Recent developments in tissue decellularization tech-
niques allowed the isolation of various native ECM environ-
ments from whole organs and subsequent study of
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viscoelastic properties. In particular, in situ decellularization
oftissues (ISDoT) not only allows decellularization of whole
organs but also seems to leave ECM architecture intact
(Mayorca-Guiliani et al. 2017). That allowed proteomic
mapping of the ECM components and could also facilitate
correlation of such profiles with viscoelastic mechanics of
different ECM environments including for example pre-
metastatic and metastatic niches. Study of decellularized tis-
sues could also promote the design of more intricate ECM-
mimicking materials. Such advances could reveal the contri-
butions of ECM viscoelastic properties to tumour
progression.

ECM architecture—I. Density, linearity
and alignment govern migration and cell
identity

Matrix fibre alignment reinforces migration patterns
and enhances stiffness signals

In addition to stiffness, tumour matrix displays abnormal
architecture: typically, fibres align radially away from the
centre of tumours and are frequently bundled into high-
ways traversed by cells at the invasive edges (Han et al.
2016; Sander 2014). Fibre alignment promotes invasive
behaviour and has been modelled using collagen gels
(Ahmadzadeh et al. 2017; Fraley et al. 2015).
Additionally, collagen alignment has been correlated to
alpha-SMA expression indicating a transformation of nor-
mal residing pancreatic fibroblasts, known as stellate
cells, toward cancer-associated fibroblasts (Drifka et al.
2016). Thus, both tumour and stromal cells are trans-
formed to a more aggressive phenotype by fibre align-
ment. Fibre alignment not only affects migration but also
may contribute to hypoxia at the centre of tumours, set-
ting up a self-reinforcing pro-metastatic programme.
High-density collagen hydrogels triggered cancer cells to
migrate and degrade their surrounding matrix when they
were under hypoxic conditions (Lewis et al. 2017).
Hypoxia promotes changes in composition and remodel-
ling of the ECM. The hypoxia-inducible factor 1 (HIF-1)
alters ECM deposition and remodelling genes to promote
fibre alignment, stiffening and further intensifying hypox-
ia (Gilkes et al. 2013). A correlation between collagen
architecture and hypoxic areas has also been reported
in vivo (Kakkad et al. 2010). Interestingly, alignment of
collagen fibres is correlated with reduced survival in a
cohort of 114 PDAC patients (Drifka et al. 2016). It is
worth exploring whether fibre alignment additionally
might set up barriers to chemotherapy and immune thera-
py and exploring how immune cells react to the radially
aligned tumour matrix.



Biophys Rev (2018) 10:1695-1711

1705

Modelling fibre alignment in vitro

Collagen is one of the most commonly used biopolymers
to study 3D cell behaviour in vitro. The study of collagen
architecture has been facilitated by the development of
advanced optical techniques, including second-harmonic
generation (SHG) microscopy (Vennin et al. 2018) which
takes advantage of the helical arrangement of collagen
(see Box 1) to image scattered photons. SHG imaging of
human tumours, combined with other stromal markers,
associated collagen ECM architecture with PDAC pro-
gression (Drifka et al. 2016). Another promising method,
liquid crystal-based polarised light imaging, provides
label-free imaging of collagen fibre orientation and align-
ment (Keikhosravi et al. 2017). Collagen matrix align-
ment can be performed, and cell migration was studied
in vitro using methods such as rotational 3D alignment
of collagen fibres (Nuhn et al. 2018) and reviewed in
(Wolf et al. 2009). Self-assembling 3D collagen matrices
engineered with the crosslinking enzyme transglutaminase
II have been informative of the role of matrix alignment
and topography to MMP activity in cell migration (Fraley
et al. 2015). The stiffness of 3D collagen gels can be
controlled using glycation, a monosaccharide-dependent
modification of collagen residues. This modification can
increase the rigidity of the gels without affecting architec-
ture (Bordeleau et al. 2017; Nuhn et al. 2018). Fibre
alignment can be accompanied by another change, with
impact on bone metastasis and mineralisation. The latter
is essentially a composition of type I collagen fibrils with
intrafibrillar crystals of non-stoichiometric carbonated hy-
droxyapatite. A polymer-induced liquid-precursor (PILP)
process has been applied to mimic intrafibrillar collagen
mineralisation in vitro, demonstrating that collagen
mineralisation can increase cell motility (Choi et al.
2018). Some PDAC tumours show mineralisation, but this
has not, to our knowledge, been correlated with fibre ar-
rangement or invasiveness and may be interesting for fu-
ture study.

While reconstitution of collagen matrix provides im-
portant insights, synthetic fibres offer increased control
of mechanical properties and alignment on nano-, meso-
and micro-scales. Electrospinning, a method whereby an
electrical field is used to draw viscoelastic polymer solu-
tions out of a reservoir and by electrical repulsion, causes
them to jet into a thin filament that is a longstanding
technique to generate fibres of controlled composition,
alignment and physical properties (Pham et al. 2006).
Recently, electrospun fibres have been combined with na-
tive ECM proteins, such as laminin and collagen (Kwon
et al. 2017), to reconstitute 3-dimensional scaffolds for
cells and tissues. By manipulating the alignment of
electrospun fibres, it is possible to recapitulate in vivo

architecture, such as those found in wounds (radial) or
tendons (uniaxial) (Pham et al. 2006). An alternative to
electrospinning is flow spinning, where a fluid reservoir
draws out the jets of viscoelastic polymers into fibres with
various dimensions and topology (Madurga et al. 2017).
The fibres are aligned onto substrates of desired dimen-
sion in the centre of the well. This method avoids high
voltages and may be more biocompatible.

ECM architecture—II. Geometry: Confinement
and topography

Matrix geometry influences migration and tumour
progression

Curvature is another important consideration of ECM, as cells
contain curvature sensing proteins, and, for example, nanopit-
patterned surfaces decrease cell adhesion compared to flat
substrates (Martines et al. 2004). The BAR domain comprises
a curved protein domain that self-assembles and can sense
curvature or induce curvature in membrane surfaces (Chen
et al. 2012). Bar proteins interact with small GTPases, such
as Racl, and can influence signalling, cytoskeletal architec-
ture and membrane dynamics (reviewed in (Vogel and Sheetz
2006)). BAR domain—containing proteins also generate cur-
vature on endocytic membranes, and they can possibly drive
formation of filopodia and lamellipodia, structures that trigger
cell motility and dissemination of cancer cells (Heath and
Insall 2008). Some BAR proteins are upregulated or mutated
in cancer and have been implicated in EMT (Chen et al. 2012).
BAR proteins also contribute to the invasiveness of cancer
cells, promoting invadopodia formation (Pichot et al. 2010;
Yamamoto et al. 2011). In addition to BAR proteins, the nu-
clear LINC complex is implicated in curvature sensing, via
transmission of stretch when a cell is on a convex surface.
When tested on cell-sized nano-pits, cells positioned them-
selves into concave pits where the nucleus was under the least
tension (Pieuchot et al. 2018; Werner et al. 2017). It is intrigu-
ing to ask whether membrane curvature alterations might also
contribute to the reawakening of quiescent or dormant tumour
cells.

Related to curvature is pore size, another important prop-
erty of ECM that varies widely in vivo and in cancer. ECM
porosity in particular has been studied extensively in relation
to cell migration (reviewed in (Charras and Sahai 2014)).
Development of a 3D cell culture system uncoupling collagen
concentration from collagen gel microarchitecture indicated
that cancer cells acquired a more motile and invasive pheno-
type when exposed to small pores (Carey et al. 2012).
Migration through small pores has been linked to DNA dam-
age and genomic instability (reviewed in (Isermann and
Lammerding 2017)). A migrating cell can squeeze through
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very small openings, sometimes down to a few microns in
diameter, but is limited by how much it can compact its nu-
cleus. Extreme nuclear compaction can damage the nuclear
envelope inducing increased exchange between cytoplasmic
and nuclear proteins (Denais et al. 2016). To overcome limited
ECM pore size, cancer cells can employ proteolytic activity
and ECM degradation (Wolf et al. 2013). Not only are pores
limiting, but nuclear squeezing during migration can lead to
rupture and increased genomic instability. For example, cyto-
plasmic nucleases could enter into the nucleus causing DNA
damage (Irianto et al. 2017). In addition, normal cells have
mechanisms to repair nuclear envelope rupture (Olmos et al.
2015, 2016; Vietri et al. 2015), such as the endosomal sorting
complexes required for transport (ESCRT) machinery
(Isermann and Lammerding 2017). Defects in the repair of
nuclear envelope ruptures during migration through restricted
ECM pores could further contribute to cancer aggressiveness.
Since the nucleus is mechanically coupled to the actin cyto-
skeleton (Fig. 4), it is also vulnerable to the forces transmitted
through it. There is evidence that ECM stiffness increases
genome instability (Pfeifer et al. 2017). DNA damage caused
by migration through constricted pores can hinder the prolif-
eration of cancer cell lines (Pfeifer et al. 2018). It is not yet
clear how significant the effect of matrix geometry is on DNA
damage in vivo, as other factors (e.g. DNA repair mecha-
nisms) also play a major role.

Interestingly, ECM geometry and confinement can also
regulate signalling pathways, including YAP signalling. Cell
confinement and spreading can induce Yap nuclear transloca-
tion (Dupont et al. 2011), as can stretching or inducing curva-
ture to a confluent monolayer (Aragona et al. 2013), with
mechanical stress being transmitted through cell-cell junctions
(Benham-Pyle et al. 2015). Thus, it seems that the curvature
and the topography of the ECM could be important regulators
of YAP activity in cancer. Apart from the confinement of
cancer cells or proteins, ECM nano- and micro-conformation
could also confine diffusible factors in limited spaces. These
could signal to cancer cells and trigger chemotactic responses
with important implications to cancer spread (Tweedy et al.
2016).

Modelling ECM topography in vitro

When trying to model ECM topography, an important chal-
lenge is how to uncouple it from intrinsic mechanical proper-
ties, such as viscoelasticity. Carey et al. recently presented an
improved collagen gel culture system, where collagen poros-
ity could be studied independently from concentration (Carey
et al. 2012). In addition, semi-3D microfabricated substrates
have been applied to mimic confined microenvironments
(Booth-Gauthier et al. 2013). 3D microchannel scaffolds of
collagen and glycosaminoglycan have been used to model
ECM porosity to study fibroblast migration (Harley et al.
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2008). Microfluidic devices are useful to study cell migration
in conditions that could mimic cell crawling inside the tissues
in vitro (Irimia et al. 2007). Recent advances include the in-
corporation of native decellularized tissue ECM into tissue
matrix scaffolds to fabricate porous hydrogel systems with
tissue-like architectural integrity (Rijal and Li 2017).
Synthetic porous hydrogels can also be generated using a va-
riety of methods, including PEG cryogels (Dispinar et al.
2012), electrospinning of fibres (Kwon et al. 2017;
Matthews et al. 2002; Pham et al. 2006) or alginate hydrogels
with engineered microcavities (Zeng et al. 2014). 3D PEG
hydrogels fabricated with micro- or macro-pores have been
useful to study angiogenesis and vascularisation (Dziubla
and Lowman 2004; Oliviero et al. 2012). PEG chains can also
be used as porogens to generate hydrogel membranes with
controlled permeabilities (Decock et al. 2018).

It will be desirable to develop materials with reversible or
dynamically altered properties. This might be facilitated by
the development of controllable porogens or by the use of
nano- or micro-patterned silk fibres (Xiao et al. 2018) that
could mimic native tissue architecture. In particular, engineer-
ing ECM topography would be facilitated by recent advances
in 3D bioprinting. For example, direct ink writing allows to
combine hydrogels, ECM components and cells into complex
‘tissue-mimicking’ constructs on a layer by layer fashion even
in the absence of scaffolds (reviewed in (Ji and Guvendiren
2017)). Such systems are currently used to study stem cell
differentiation with evident applications in regenerative med-
icine (Gopinathan and Noh 2018), but incorporating malig-
nant ECM along with stromal or cancer cells in such structures
would significantly enhance our palette of tools for under-
standing the role of ECM in cancer. Further technical devel-
opments as well as the incorporation of bioinks derived from
different ECM environments such as decellularized tissues
(Choudhury et al. 2018) would rapidly improve our control
of the architecture, mechanics and biology of fabricated ma-
terials, in a precise and reproducible way, paving the way to
the design and development of reliable ‘organ-’ or even
‘tumour-"on-a-chip approaches.

Outlook for the future and translation

Tumorigenesis destabilises normal tissue architecture and thus
throws forces in the affected tissue out of balance. Gaining a
full understanding of how the different physical and biological
aspects of the ECM control cancer cell behaviour, from ge-
nome integrity to motility and invasion, will be informative
for appreciating what delineates metastatic disease and dor-
mancy. To achieve this formidable task, better tools need to be
developed not only to monitor and visualise ECM properties
in vivo but also to precisely and controllably model them
in vitro. Elastography, a method to image collagen density
shows great promise for identifying tissue stiffness in
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biopsies, correlating to disease stage. This has been further
expanded to assess viscoelastic properties (Sinkus et al.
2007). However, further progress is required to increase im-
aging quality and to apply more sophisticated image analysis
algorithms to stratify patients and hopefully to predict meta-
static spread or disease recurrence. To further understand the
involvement of ECM in cancer progression and in the control
of quiescent versus proliferative properties of tumour cells,
engineered materials with controlled properties, on a revers-
ible and independent manner, are required. This might be fa-
cilitated by the use of novel chemicals and the incorporation of
full-length native ECM-derived proteins. These could act as
scaffolds to present different growth factors or diffusible
chemical signals to cells, on a controllable or stress-related
way. Fibronectin, for example, has the ability to bind growth
factors such as TGF-3 or BMP-2 and keep them in a latent
form to be presented to cells (Grigoriou et al. 2017).
Controllable stretching or degradation of these growth fac-
tor—bound fibres might not only change the mechanical prop-
erties but also causes release of signalling molecules causing
them to present to cells in a physiologically relevant way.

The ultimate aim is to identify therapies that could target
cancer cells using an efficient and holistic approach.
Understanding which aspects facilitate or restrict cancer
spread, how dormant tumorigenic cells are awakened and
what are the requirements for successful seeding of a dis-
tant secondary tissue will contribute to therapeutic devel-
opments. Since chemotherapeutic agents must diffuse into
the ECM to access the tumour bulk, ECM topography,
confinement and vascularisation are important aspects to
consider when designing and testing new agents. Novel
engineered microenvironments will prove useful for drug
screening allowing more physiologic tests of drug
efficiency.

ECM mechanics play key roles in a variety of diseases, so
cross-disease studies may offer new insights, such as correlat-
ing the effects of fibrosis or arthritis and cancer. It seems that
reshaping of the cancer ECM along with common chemother-
apeutic strategies might provide promise in the future (Vennin
et al. 2018). However, elucidating further how ECM mechan-
ics and architecture shape malignancy will expand both our
understanding and therapeutic tools against malignancy.
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