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Finding cancer driver mutations in the era of big data research

Rebecca C. Poulos1,2 & Jason W. H. Wong1,3

Received: 19 December 2017 /Accepted: 16 March 2018 /Published online: 2 April 2018
# International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
In the last decade, the costs of genome sequencing have decreased considerably. The commencement of large-scale cancer
sequencing projects has enabled cancer genomics to join the big data revolution. One of the challenges still facing cancer
genomics research is determining which are the driver mutations in an individual cancer, as these contribute only a small subset
of the overall mutation profile of a tumour. Focusing primarily on somatic single nucleotide mutations in this review, we consider
both coding and non-coding driver mutations, and discuss how such mutations might be identified from cancer sequencing
datasets.We describe some of the tools and database that are available for the annotation of somatic variants and the identification
of cancer driver genes.We also address the use of genome-wide variation in mutation load to establish backgroundmutation rates
fromwhich to identify driver mutations under positive selection. Finally, we describe the ways in whichmutational signatures can
act as clues for the identification of cancer drivers, as these mutations may cause, or arise from, certain mutational processes. By
defining the molecular changes responsible for driving cancer development, new cancer treatment strategies may be developed or
novel preventative measures proposed.
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Selection

The big data revolution

Sequencing of the first human genome was completed in
2003, at a cost of almost three billion US dollars. In the
15 years that followed, the costs of whole genome sequencing
have reduced remarkably, toward the well-known US$1000
target. This has been made possible in the most part through
significant technological improvements and the implementa-
tion of next-generation sequencing (NGS). NGS platforms

allow high-throughput and parallelisable DNA sequencing.
These technologies generally utilise short read sequencing,
followed by mapping of sequence reads against a reference
genome in the analysis stage [reviewed in (Goodwin et al.
2016)]. Reductions in DNA sequencing costs have enabled
the commencement of large-scale cancer genome sequencing
projects. As cohort sizes have increased, data processing and
storage requirements have necessarily become much more
demanding. Hosting sequencing data for even a handful of
whole human genomes requires hundreds of gigabytes of stor-
age. Further, cancer genomics analyses often incorporate ad-
ditional datasets from the fields of epigenomics and tran-
scriptomics, thus increasing the complexity of such studies.
These factors have enabled cancer genomics to join the big
data revolution.

The Cancer Genome Atlas (TCGA) project was launched
in 2005 and recently completed, having produced sequencing
data from tumour and matched normal tissues frommore than
30 cancer types (Tomczak et al. 2015). The International
Cancer Genome Consortium (ICGC) commenced in 2008,
similarly seeking to whole-genome sequence thousands of
cancer samples and provide the data for research access
(Zhang et al. 2011). Many processed datasets from these
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projects are ‘open access’, and raw datasets are generally
available after application, for researchers to download and
analyse for their own genomics projects. For researchers with-
out the significant computational infrastructure that can be
necessary to download and process datasets of these sizes,
the National Cancer Institute (NCI) has sponsored the devel-
opment of three cloud resources, which can enable scientists
to analyse and visualise large datasets in a cloud environment
(Hinkson et al. 2017).

Driver mutations and cancer development

It has been known for many years that cancer develops as a
result of chromosomal abnormalities, and the specific muta-
tion profile of a tumour has important implications for cancer
treatment (Nowell 1976). Mutations can develop in cellular
DNA through exposure to external DNA-damaging agents or
from internal deficiencies in DNA replication or repair
(Vogelstein et al. 2013). These processes result in the accumu-
lation of potentially hundreds of thousands of somatic muta-
tions in a single cancer genome, primarily taking the form of
single nucleotide mutations, but also including insertions and
deletions (indels) or larger structural rearrangements and copy
number aberrations (Vogelstein et al. 2013). Of these somatic
variants, only a handful will be responsible for malignant
transformation, by conferring a selective advantage to the sub-
population of cells that harbour the variant (Tomasetti et al.
2015). Such mutations are termed ‘driver mutations’; they
undergo positive selection in a tumour and cause cells to result
in the hallmarks that are characteristic of malignancy
(Hanahan andWeinberg 2011). Different cancer types harbour
different numbers of driver mutations, averaging approxi-
mately four per tumour (Martincorena et al. 2017). The re-
maining variants are termed ‘passenger mutations’, and they
confer little functional impact (Stratton et al. 2009). One of the
challenges facing cancer genomics research is deter-
mining which are the handful of driver mutations from within
the vast background of passenger mutations in a cancer ge-
nome. The focus of this reviewwill be single nucleotide driver
mutations, though we will address indels and larger structural
rearrangements and copy number aberrations in some
instances.

Types of driver mutations

Cancer develops when cells accumulate somatic mutations, as
shown in Fig. 1. It is worth noting that germline variants can
also contribute toward how the mutational landscape of a can-
cer develops [for examples, see (Waszak et al. 2017)], and can
contribute to oncogenesis by predisposing cells toward cancer
development.

Protein-coding driver mutations

Most cancer driver mutations identified to date lie within
gene bodies, and the function of these mutations can gen-
erally be ascertained by examining their impact on the
encoded protein. Oncogenes are genes that are activated
by mutations, allowing cells to acquire a selective advan-
tage (Vogelstein et al. 2013) (Fig. 2a). In contrast, tumour
suppressor genes contribute to cancer development through
the selective advantage gained by their inactivation, which
generally arises through truncating mutations or frameshift
indels (Vogelstein et al. 2013) (Fig. 2b). Not all driver mu-
tations have such clear function however. For example,
synonymous mutations may also be driver events in cancer
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if they differentially regulate gene splicing (Supek et al.
2014). Similarly, larger structural variations and copy num-
ber aberrations such as genomic deletions may lead to gene
fusion events that truncate tumour suppressor genes, or cre-
ate tumourigenic novel proteins (Mertens et al. 2015).
These genetic alterations can subsequently lead to dysreg-
ulation of important pathways, resulting in cancer develop-
ment. When first published in 2004, the Cancer Gene
Census [hosted by the Catalogue of Somatic Mutations in
Cancer (COSMIC) database (Forbes et al. 2015; Forbes
et al. 2011)] had annotated 291 well-characterised ‘cancer
genes’ (Futreal et al. 2004). This list now contains more
than 500 entries. Some driver genes are commonly mutated
across cancer types, including TP53, ARID1A, KRAS and
PIK3CA, while other driver genes are more tumour specific
(Gonzalez-Perez et al. 2013).

Non-coding driver mutations

Many germline variants associated with cancer and other dis-
eases are situated in the non-coding genome (Maurano et al.
2012). In recent years, decreasing genome sequencing costs
have enabled the identification of somatic cancer driver mu-
tations in the ~ 98% of the genome that is non-coding. Far

fewer non-coding than coding cancer driver mutations have so
far been identified, with current examples generally impacting
oncogenesis by altering cis-regulation (Fig. 2c).

Non-coding somatic driver mutations may impact tran-
scription factor binding by removing an existing binding mo-
tif, or creating a de novo binding site and even an entirely
novel regulatory element. For example, the promoter of the
TERT gene is mutated in more than 50 cancer types [reviewed
in (Bell et al. 2016)]. TERT promoter single nucleotide muta-
tions create a transcription factor binding site that upregulates
TERT expression, and were first described in melanoma (Horn
et al. 2013; Huang et al. 2013). Other cancer driver mutations
in promoter elements have since been discovered, mutating
regulatory sites for cancer driver genes such as FOXA1
(Rheinbay et al. 2017). Indels are also able to alter gene cis-
regulation by creating or removing transcription factor bind-
ing sites [for examples, see (Abraham et al. 2017; Mansour
et al. 2014; Rahman et al. 2017)]. On a larger scale, structural
variations and copy number aberrations can duplicate, remove
or relocate cis-regulatory elements, leading to the dysregula-
tion of enhancer-promoter interactions, and contributing to
oncogenesis [for examples, see (Groschel et al. 2014; Zhang
et al. 2016)]. In addition to these direct alterations to cis-
regulatory elements, the nature of cis-regulation means that
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these sites are also susceptible to epigenetic dysregulation,
through alterations to DNA methylation, nucleosome occu-
pancy or the accessibility of chromatin [reviewed in (Poulos
and Wong 2017); please also see this reference for a more
comprehensive description of recent efforts undertaken to
identify non-coding driver mutations in cancer genomes].
Non-coding driver mutations may also lie outside of cis-
regulatory regions, affecting other genomic elements, such
as long non-coding RNAs [for example, see (Lanzós et al.
2017)]. Further research efforts will be necessary to fully elu-
cidate the role of non-coding mutations, which may have less
clear impacts on cellular function.

Tools for annotating variants to identify
driver mutations

A number of computational tools are available for the anno-
tation of putative driver mutations. These tools typically as-
sess a combination of measures in order to determine the like-
ly functional impact of a given variant. Measures of function
in the protein-coding genome generally focus on the impact
that a somatic variant will have on protein translation,
prioritising missense and nonsense mutations over synony-
mous variants. Measures of function in the non-coding ge-
nome generally consider conservation and transcription factor
binding motifs, as well as epigenetic features. Table 1 briefly
describes a selection of the tools available for the annotation
of variants in either the protein-coding or non-coding genome.
Many other tools are available for such variant annotation, and
this list is not exhaustive. Ultimately, choosing the correct tool
for a specific analysis will depend on the downstream appli-
cations required.

Positive selection and driver identification

Defining positive selection

Negative selection is common in evolutionary history, but it is
rare in cancer development, with only ~ 1% of protein-coding
mutations undergoing negative selection in cancer
(Martincorena et al. 2017). Instead, positive selection for driv-
er mutations is much more common in oncogenesis. One
method commonly used to detect genes undergoing positive
selection in coding regions is analysis of the dN/dS ratio,
which is a calculation of the ratio of non-synonymous (dN)
to synonymous (dS) amino acid substitutions given a certain
gene. Researchers can discover cancer driver genes by exam-
ining those genes that harbour an excess of non-synonymous
mutations. Oncogenes and tumour suppressor genes generally
harbour an excess of missense and nonsense mutations, re-
spectively (Martincorena et al. 2017).

Here, we briefly discuss some of the tools that are avail-
able for analyses of positive selection in cancer DNA.
OncodriveFML (Mularoni et al. 2016) detects positive se-
lection in both coding and non-coding genomic regions by
assessing mutation function. e-Driver (Porta-Pardo and
Godzik 2014) and OncodriveCLUST (Tamborero et al.
2013a) similarly measure positive selection, specifically
examining the internal distribution of variants within a gene
to detect domains harbouring an excess of mutations.
ActiveDriver (Reimand and Bader 2013; Reimand et al.
2013) is a statistical method that detects positive selection
by analysing phosphorylation-associated variants. MuSiC
(Dees et al. 2012) relies on measures of mutation recur-
rence, together with clinical and coverage data in order to
statistically evaluate cancer sequencing datasets for poten-
tial drivers. Researchers using multiple complementary
methods for these types of analyses should detect greater numbers
of high-confidence cancer driver events (Tamborero et al.
2013b).

Establishing expected background mutation loads

Mutational processes do not act equally throughout the ge-
nome, and certain regions of DNA are more likely to ac-
quire somatic mutations in cancer. For example, lowly
expressed genes and regions of heterochromatin are less
commonly subjected to transcription-dependent repair
mechanisms, and such sites generally accumulate higher
mutation loads (Schuster-Bockler and Lehner 2012;
Zheng et al. 2014). Similarly, late replicating regions accu-
mulate more mutations, likely due to mismatch repair being
less active at such sites (Supek and Lehner 2015), exhaus-
tion of the free nucleotide pool and/or difficulty navigating
heterochromatin (Stamatoyannopoulos et al. 2009).
Considering mutation rates at smaller scales, exons accu-
mulate fewer mutations than intronic regions due to in-
creased mismatch repair activity at such loci (Frigola et al.
2017). In addition, regions of transcription factor binding,
such as at promoter elements or CTCF binding sites, ac-
quire high mutation loads in some cancers because nucleo-
tide excision repair machinery is inhibited from repairing
mutagenic DNA lesions (Perera et al. 2016; Poulos et al.
2016; Sabarinathan et al. 2016). At nucleotide resolution,
highly methylated cytosines are more often mutated in
some cancers, due to the increased tendency for methylated
cytosines to deaminate to thymine, and due to particular
features of DNA replication and repair at such loci
(Poulos et al. 2017).

Drivermutationsconferagrowthadvantage,andtheycon-
sequently undergo positive selection in a cellular subpopula-
tion.However,accurateinferencesofpositiveselectioncanbe
hindered by some of the mutation rate variations described
here. It is vital for researchers to understand which

24 Biophys Rev (2019) 11:21–29



combinations of these andothermutational processesmaybe
operative in a given cancer genome.Analyses of this kind are
particularly important because researchers typically use the
recurrenceofamutationtodeterminethelikelihoodofitsbeing
acancerdriver,ortoselectcancer-associatedgenes.Suchanal-
yses can therefore lead to the false-positive identification of
cancer driver mutations and geneswhich simply lie in highly
mutated regions of the genome (Lawrence et al. 2013). It
should be noted though, that even mutations accumulating
due to increased mutability at certain loci may still be driver
events.However,byaccuratelymodelling theexpectedback-
ground mutation rates in a cohort under investigation, re-
searchersshouldbebetterable toexcludespurioushighlymu-
tated regions, instead identifying true driver mutations and
genesthatwillstandoutfromamongthecorrectedbackground
ofpassengermutations.

One commonly used analytical method for calculating
mutation rate variation is MutSigCV (Lawrence et al.
2013). This tool combines sample-specific mutation fre-
quency with measures of gene-specific mutation rate, using
gene expression and replication timing data (Lawrence
et al. 2013). Similar methods have also been developed
specifically for analyses of the non-coding genome— such
as MutSigNC (Rheinbay et al. 2017) and LARVA
(Lochovsky et al. 2015). These tools can assist researchers
in the identification of genes that are mutated at low to
intermediate frequencies. Though, saturation analyses have
demonstrated that even with such models, highly mutated
cancer cohorts could require thousands of samples of a sin-
gle cancer type in order to accurately identify less frequent-
ly mutated driver genes (Lawrence et al. 2014).

Table 1 Description of some of
the tools available for the
annotation of coding and
non-coding variants identified
from cancer sequencing data

Tool Description Citation

Annotate Variation
(ANNOVAR)

ANNOVAR provides annotations for the functional
consequences of single nucleotide and indel variants
in the genomes of humans and other organisms.
http://annovar.openbioinformatics.org/

(Wang et al.
2010)

Combined Annotation
Dependent Depletion
(CADD)

CADD produces a ‘C-score’ for any given single
nucleotide or small indel genome-wide, by combining
multiple annotations of genetic variation. http://cadd.gs.
washington.edu/

(Kircher
et al.
2014)

Ensembl Variant Effect
Predictor (VEP)

VEP predicts the effects of variants on proteins and
regulatory elements, for variants ranging in size
from single nucleotide mutations to larger structural
rearrangements. https://www.ensembl.org/vep

(McLaren
et al.
2016)

FunSeq2 FunSeq2 prioritises annotations of non-coding somatic
variants in cancer, using a weighted scoring system
that combines measures of conservation, transcription
factor binding, recurrence and regulatory networks.
http://funseq2.gersteinlab.org/

(Fu et al.
2014)

Genome-Wide Annotation
of Variants (GWAVA)

GWAVA prioritises the annotation of non-coding
variants, combining ENCODE and GENCODE
data with consideration of factors such as GC
content and conservation. http://www.sanger.ac.
uk/science/tools/gwava

(Ritchie
et al.
2014)

OncoCis OncoCis annotates cis-regulatory mutations, using
cell-type-specific epigenome datasets and
sample-specific gene expression data, as well as
consideration of conservation and transcription
factor binding motifs. https://powcs.med.unsw.edu.
au/OncoCis/

(Perera et al.
2014)

Polymorphism Phenotyping
v2 (PolyPhen-2)

PolyPhen-2 predicts the impact of a single nucleotide
variant on amino acid substitution and protein function
by measuring protein structure and conservation.
http://genetics.bwh.harvard.edu/pph2/

(Adzhubei
et al.
2013)

RegulomeDB RegulomeDB is designed to annotate regulatory variants,
by combining experimental data and computational
predictions to prioritise putative functional variants.
http://www.regulomedb.org/

(Boyle et al.
2012)

Sorting Intolerant From
Tolerant (SIFT)

SIFT annotates amino acid changes, considering sequence
homology, protein structure and conservation to
determine the impact on protein function. http://sift-dna.org/

(Kumar
et al.
2009)
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Tumour heterogeneity and driver
identification

Individual cells within a tumour will acquire mutations
throughout their lifetime, and the resultant tumour mass will
consist of a heterogeneous population of cells (Fig. 1). With
the exception of data produced from single-cell sequencing
applications, the results of cancer exome or genome sequenc-
ing will generally represent the combination of mutation pro-
files that were present within the subsection of tumour that
was sequenced. These mutation profiles can theoretically be
separated into distinct clones and subclones, revealing impor-
tant insights into cancer pathogenesis, and specifically, which
coding or non-coding mutations are the drivers that conferred
a growth advantage. Research of this kind is particularly im-
portant when considering personalised cancer treatments, as
mutations that are only present in a small subclone can be-
come key drivers of cancer relapse (Schmitt et al. 2016).
Subclones can be ident i f ied by analys ing copy
number-corrected variant allele frequencies for each of the
somatic mutations present in a tumour. Mutations in distinct
subclones will generally exhibit similar allele frequencies
(Yates and Campbell 2012). Some of the tools available for
the analysis of cancer clonality include ABSOLUTE (Carter
et al. 2012), THetA (Oesper et al. 2013), SubcloneSeeker
(Qiao et al. 2014), SciClone (Miller et al. 2014), PyClone
(Roth et al. 2014) and SuperFreq (Flensburg et al. 2017). In
order to study subclonal heterogeneity in a given cancer sam-
ple comprehensively, researchers may require sequencing data
from multiple samples from an individual’s tumour [for ex-
ample, see (Yates et al. 2015)].

Mutational signatures as clues in the cancer
genome

One method for understanding and visualising the mutational
processes operating in a cancer genome is to generate muta-
tional signatures (Alexandrov et al. 2013a). Mutational signa-
tures represent the frequencies of each type of mutation (C >
A, C > G, C > T, T > A, T > C, T > G), together with their
flanking nucleotides, and are presented as the counts of the
96 possible trinucleotide mutation combinations. To date, the
COSMIC database (Forbes et al. 2015; Forbes et al. 2011)
describes 30 distinct mutational signatures that have been
identified in cancer samples so far, with each representing
the action of a mutational process. For example, signatures
have been identified that represent endogenous mutational
processes such as defective DNA proofreading following
Polymerase Epsilon (POLE) mutation (signature 10), deficient
mismatch repair (signature 6) or the action of AID/APOBEC
enzymes (signatures 2 and 13) (Alexandrov et al. 2013a).
Mutational signatures have also been defined that result from

exposure to exogenous mutagens such as cigarette smoke (sig-
nature 4) or ultraviolet light (signature 7) (Alexandrov et al.
2013a). A cancer genome will generally harbour mutations
arising from a number of different mutational processes, each
operating at differing intensities and/or over differing periods
of time (Alexandrov et al. 2013b). The final mutational land-
scape will therefore be combinatorially affected by a number
of mutational signatures (Alexandrov et al. 2013b).

By understanding the mutational signatures that are present
in a particular cancer, researchers may gain insights into which
driver mutation(s) might also be present in that tumour. For
example, the presence of signature 10will not only implicate a
likely mutation in the exonuclease domain of POLE, but the
modified trinucleotide mutation frequencies that result from
POLE mutation may also predispose the cancer to gaining
truncating mutations in APC or TP53 (Poulos et al. 2017). In
another example, by analysing the DNA of cancers with large
numbers of C > T mutations (associated with signature 1, fol-
lowing the deamination of methylated cytosines), researchers
uncovered a germline mutation in the DNA glycosylase
MBD4 that may predispose cells to subsequently developing
certain driver mutations that accelerate oncogenesis (Sanders
et al. 2017). Research associating mutational signatures with
specific variants may uncover further mutated genes that are
responsible for the generation of certain mutational profiles
that drive cancer development.

Databases of driver mutations and cancer
sequencing data

For researchers seeking robust lists of established cancer driv-
er genes, there are a number of databases available for analy-
sis. Two such databases are the Cancer Gene Census and
IntOGen. As previously discussed, the COSMIC database
(Forbes et al. 2015; Forbes et al. 2011) hosts the Cancer
Gene Census (Futreal et al. 2004), which contains a list of
genes, undergoing ongoing curation, that have been well
established in cancer development (http://cancer.sanger.ac.
uk/census/). Similarly, IntOGen (Gonzalez-Perez et al. 2013)
is a web platform that uses annotation tools to provide lists of
cancer drivers identified from large cancer sequencing
datasets (https://www.intogen.org/). It is worth noting that
well-established non-coding driver mutations are still rare in
cancer research, and curated databases therefore primarily fo-
cus on protein-coding variants. Researchers intending to ex-
amine non-coding driver mutations may need to manually
examine the literature for such examples [some current exam-
ples reviewed in (Cuykendall et al. 2017) and (Poulos and
Wong 2017)].

Researchers can also interrogate databases of mutations
that have been curated from large-scale cancer sequencing
projects. TCGA data is stored at the Genomic Data
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Commons (GDC), which can be accessed at https://portal.gdc.
cancer.gov/ (Grossman et al. 2016). ICGC data is stored at the
ICGC Data Portal, which can be accessed at https://dcc.icgc.
org/ (Zhang et al. 2011). Both websites provide user-friendly
interfaces, allowing searches by gene, cancer type and muta-
tion. Similarly, the COSMIC database (http://cancer.sanger.ac.
uk/) contains records of somatic mutations identified in
cancer, including manually curated expert data, as well as
data from large sequencing projects such as TCGA and
ICGC (Forbes et al. 2015; Forbes et al. 2011). cBioPortal
(http://www.cbioportal.org/) is another resource that
researchers can use to interrogate cancer genomics datasets,
via a web interface that allows accessible data visualisation
and analysis (Gao et al. 2013).

Future directions in cancer driver discovery

Through the advent of large-scale cancer sequencing projects,
many new cancer driver genes and mutations have been iden-
tified. This endeavour has been greatly enhanced by the de-
velopment of new analytical and statistical methods for
selecting recurrently mutated loci with an excess of functional
variants. However, driver mutations in many cancers have not
yet been fully established. Many driver mutations likely lie
within cancer driver genes that are yet to be identified
(Martincorena et al. 2017), as well as within non-coding re-
gions that have not yet been examined in sufficient detail due
to limited sample sizes and availability of epigenomic datasets
(Cuykendall et al. 2017; Poulos and Wong 2017). Such mu-
tations may be detected as cancer cohort sizes increase.

The search for driver mutations in cancer genomes is a vital
step in the move toward personalised approaches to cancer
treatment. By identifying the molecular changes responsible
for driving cancer, drugs can be designed that specifically
target mutated or dysregulated genes. Further, by defining
the mechanisms underlying the formation of such driver
events, new strategies may be developed that prevent damage
or even enhance repair to commonlymutated regions of DNA.
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