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Abstract
Dynein motors are biologically important bio-nanomachines, and many atomic resolution structures of cytoplasmic dynein
components from different organisms have been analyzed by X-ray crystallography, cryo-EM, and NMR spectroscopy. This
review provides a historical perspective of structural studies of cytoplasmic and axonemal dynein including accessory proteins.
We describe representative structural studies of every component of dynein and summarize them as a structural atlas that
classifies the cytoplasmic and axonemal dyneins. Based on our review of all dynein structures in the Protein Data Bank, we
raise two important points for understanding the two types of dynein motor and discuss the potential prospects of future structural
studies.
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Introduction

Dyneins are microtubule (MT)-based molecular motors that
perform diverse biological functions (Roberts et al. 2013).
They work as large multiple bio-nanomachines (> 1 MDa)
consisting of a heavy chain (HC), intermediate chain (IC),
light intermediate chain (LIC), and light chain (LC). The HC
possesses ATPase activity and provides the driving force for
power generation to conduct a wide variety of cellular func-
tions. The other chains are involved in regulating the HC and
are therefore called accessary chains. Dyneins are classified as
either cytoplasmic or axonemal on the basis of their physio-
logical function and cellular localization, and there is a clear
distinction between the two types. Cytoplasmic dyneins serve
as power generators for migration and intracellular transport,
whereas axonemal dyneins are located in the axoneme and are
responsible for ciliary/flagellar beating. Complete genome

analysis of several organisms has revealed that there are at
least 15 HC genes present in most organisms; two of which
encode cytoplasmic dyneins, while the others encode axone-
mal ones.

The structural analysis of dynein motors began with the LCs
with relatively smaller molecular weights and then progressed
to the larger chains, such as ICs andHCs (Table 1). The first HC
structure to be published was that of dynein-c (Burgess et al.
2003), which is an isoform of an axonemal dynein purified
from a green alga, Chlamydomonas reinhardtii. Although the
resolution of the negatively stained electron microscopy (EM)
images was not sufficient to build the atomic coordinates, the
first model of the dynein power stroke was proposed from the
two different EM structures with and without nucleotide.
However high-resolution structural information on the HC,
which is crucial to understand the molecular mechanism of
the mechano-chemical coupling of dynein motors, was long
awaited.

Since the establishment of a method for producing func-
tional recombinant cytoplasmic dynein motor domains
(Nishiura et al. 2004), X-ray crystallographic high-resolution
structures have been reported that describe detailed structural
elements, such as the N-terminal linker, AAA+ (ATPases as-
sociated with various cellular activities) ring, stalk/strut coiled
coils with the microtubule binding domain (MTBD), and the
C-terminal non-AAA structure named BC-sequence,^ as well
as revealing the structural changes that occur upon ATP hy-
drolysis (Carter et al. 2008, 2011, Kon et al. 2011, 2012;
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Table 1 Structures of cytoplasmic dynein available in the PDB

PDB
ID

Dynein component Complex Organism
Method

Res.
(Å)

References

Heavy chain

3ERR Cytoplasmic dynein 1 heavy chain 1 MTBD–SRS chimera Mus musculus X-ray 2.27 Carter et al.
2008

3J67 Dynein motor domain Strongylocentrotus
purpuratus

EM 34
.00

Lin et al. 2014

3J68 Dynein motor domain Strongylocentrotus
purpuratus

EM 30.00 Lin et al. 2014

3J1T Cytoplasmic dynein 1 heavy chain 1 MTBD–SRS chimera–MT
complex

Mus musculus EM 9.70 Redwine et al.
2012

3J1U Cytoplasmic dynein 1 heavy chain 1 MTBD–SRS chimera–MT
complex

Mus musculus EM 9.70 Redwine et al.
2012

3J6P Dynein heavy chain, cytoplasmic Dynein MTBD–MT complex Dictyostelium
discoideum

EM 8.20 Uchimura et al.
2015

3QMZ Cytoplasmic dynein heavy chain Saccharomyces
cerevisiae

X-ray 6.00 Carter et al.
2011

3AY1 Dynein heavy chain, cytoplasmic Dynein motor domain–ADP Dictyostelium
discoideum

X-ray 4.50 Kon et al. 2011

3VKG Dynein heavy chain, cytoplasmic Dynein motor domain–ADP Dictyostelium
discoideum

X-ray 2.81 Kon et al. 2012

3VKH Dynein heavy chain, cytoplasmic Dynein motor domain–ADP Dictyostelium
discoideum

X-ray 3.80 Kon et al. 2012

3W-
UQ

Cytoplasmic dynein 1 heavy chain 1 Mus musculus X-ray 3.50 Nishikawa
et al. 2014

4AI6 Dynein heavy chain, cytoplasmic Dynein motor domain–GST
chimera–ADP

Saccharomyces
cerevisiae

X-ray 3.40 Schmidt et al.
2012

4AKG Dynein heavy chain, cytoplasmic Dynein motor domain–GST
chimera–ATP

Saccharomyces
cerevisiae

X-ray 3.30 Schmidt et al.
2012

4AKH Dynein heavy chain, cytoplasmic Dynein motor domain–GST
chimera–AMPPNP

Saccharomyces
cerevisiae

X-ray 3.60 Schmidt et al.
2012

4AKI Dynein heavy chain, cytoplasmic Dynein motor domain–GST
chimera–LuAc derivative

Saccharomyces
cerevisiae

X-ray 3.70 Schmidt et al.
2012

4RH7 Cytoplasmic dynein 2 heavy chain 1 GFP–Cytoplasmic dynein 2
heavy chain 1 synthetic
construct

Homo sapiens X-ray 3.41 Schmidt et al.
2014

4W8F Dynein heavy chain, cytoplasmic Dynein heavy chain–lysozyme
chimera

Saccharomyces
cerevisiae.
Enterobacteria phase
t4 sensu lato

X-ray 3.54 Bhabha et al.
2014

5AFR Dynein heavy chain, cytoplasmic Saccharomyces
cerevisiae

X-ray 5.00 Urnavicius
et al. 2015

5AFU Cytoplasmic dynein Dynein tail–dynactin–BICD2
complex

Sus scrofa EM Urnavicius
et al. 2015

5AYH Cytoplasmic dynein 1 heavy chain 1 Mus musculus X-ray 3.01 Nishikawa
et al. 2016

5NUG Cytoplasmic dynein 1 heavy chain 1 Homo sapiens EM 3.80 Zhang et al.
2017

5NVS Cytoplasmic dynein 1 heavy chain 1 Dynein
tail–IC–RobI–LIC–LC8–Tc-
Tex complex

Homo sapiens EM 8.40 Zhang et al.
2017

5NVU Cytoplasmic dynein 1 heavy chain 1 Phi-particle conformation Homo sapiens EM 15.00 Zhang et al.
2017

5NW4 Cytoplasmic dynein 1 heavy chain 1 Dynactin–BICD2 complex Homo sapiens EM 8.70 Zhang et al.
2017

5VH9 Dynein heavy chain, cytoplasmic EM 7.70
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Table 1 (continued)

PDB
ID

Dynein component Complex Organism
Method

Res.
(Å)

References

Dynein heavy chain–Lis1
complex

Saccharomyces
cerevisiae

DeSantis et al.
2017

5VLJ Dynein heavy chain, cytoplasmic Dynein heavy chain–Lis1
complex

Saccharomyces
cerevisiae

EM 10.50 DeSantis et al.
2017

Light intermediate chain

4W7G Dynein light intermediate chain Chaetomium
thermophilum

X-ray 2.10 Schroeder et al.
2014

Light chain

LC8

1CMI Dynein light chain 1, cytoplasmic LC8–PIN complex Homo sapiens X-ray 2.50 Liang et al.
1999

1F3C Dynein light chain 1, cytoplasmic Rattus norvegicus NMR – Fan et al. 2001

1F95 Dynein light chain 1, cytoplasmic DLC8–BIM peptide complex Rattus norvegicus NMR – Fan et al. 2001

1F96 Dynein light chain 1, cytoplasmic DLC8–NNOS peptide complex Rattus norvegicus NMR – Fan et al. 2001

1RE6 Dynein light chain 2, cytoplasmic Mus musculus NMR – Day et al. 2004

1RHW Dynein light chain 1, cytoplasmic Drosophila
melanogaster

NMR – Makokha et al.
2004

1PWJ Dynein light chain 2, cytoplasmic Rattus norvegicus NMR – Wang et al.
2003

1PWK Dynein light chain 2, cytoplasmic Rattus norvegicus NMR – Wang et al.
2003

1Y4O Dynein light chain roadblock-type 1 Mus musculus NMR – Song et al.
2005

1YO3 Dynein light chain 1, putative Plasmodium falciparum X-ray 1.65 Vedadi et al.
2007

1Z09 Dynein light chain roadblock-type 1 Homo sapiens NMR – Ilangovan et al.
2005

2B95 Dynein light chain roadblock-type 1 Homo sapiens NMR –

2E8J Dynein light chain roadblock-type 1 Homo sapiens NMR –

2HZ5 Dynein light chain roadblock-type 1 Homo sapiens X-ray 2.10 Liu et al. 2006

2P2T Dynein light chain 1, cytoplasmic LC8–IC74 peptide complex Drosophila
melanogaster

X-ray 3.00 Benison et al.
2007

2XQQ Dynein light chain 2, cytoplasmic DYNLL2–peptide complex Homo sapiens X-ray 1.31 Rapali et al.
2011

3BRI Dynein light chain 1, cytoplasmic Drosophila
melanogaster

X-ray 1.70 Benison et al.
2008

3BRL Dynein light chain 1, cytoplasmic LC8(S88E) –Swa peptide
complex

Drosophila
melanogaster

X-ray 1.90

3DVH Dynein light chain 1, cytoplasmic K36P mutant Drosophila
melanogaster

X-ray 2.00 Lightcap et al.
2008

3DVP Dynein light chain 1, cytoplasmic LC8–Pak1 peptide complex Drosophila
melanogaster

X-ray 2.50 Lightcap et al.
2008

3DVT Dynein light chain 1, cytoplasmic Drosophila
melanogaster

X-ray 2.30 Lightcap et al.
2008

3E2B Dynein light chain 1, cytoplasmic LC8–Swallow peptide complex Drosophila
melanogaster

X-ray 2.00 Benison et al.
2008

3GLW Dynein light chain 1, cytoplasmic IC–LC8 complex Drosophila
melanogaster

X-ray 3.15 Hall et al. 2009

3P8M Dynein light chain 2, cytoplasmic DYNLL2–GCN4 complex Homo sapiens X-ray 2.90 Rapali et al.
2011

3RJS Dynein light chain motor protein Toxoplasma gondii X-ray 1.50
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Schmidt et al. 2012). Most recently, a single-particle cryogen-
ic electron microscopy (cryo-EM) structure of a vast complex
of cytoplasmic dynein 1 bound to dynactin and an N-terminal
construct of BICD2 (total molecular mass, 1.4 MDa) has been
reported (Zhang et al. 2017).

To date, many structures of cytoplasmic dynein compo-
nents from different organisms have been analyzed by X-ray
crystallography, cryo-EM, and NMR spectroscopy (Tables 1
and 2). As the number of solved structures of cytoplasmic
dynein increases year by year, the information is becoming

Table 1 (continued)

PDB
ID

Dynein component Complex Organism
Method

Res.
(Å)

References

Qureshi et al.
2013

3ZKE Dynein light chain 1, cytoplasmic LC8–Nek9 peptide complex Homo sapiens X-ray 2.20 Gallego et al.
2013

3ZKF Dynein light chain 1, cytoplasmic LC8–Nek9 peptide complex Homo sapiens X-ray 2.60 Gallego et al.
2013

4D07 Dynein light chain 2, cytoplasmic Dynll2–Myosin 5A tail complex Homo sapiens X-ray 1.85 Bodor et al.
2014

4DS1 Dynein light chain 1, cytoplasmic Dyn2–Nup159 complex Saccharomyces
cerevisiae

X-ray 1.85 Romes et al.
2012

4HT6 Dynein light chain 1, cytoplasmic Dyn2–Pac11 complex Saccharomyces
cerevisiae

X-ray 1.90 Rao et al. 2013

4QH7 Dynein light chain 1, cytoplasmic LC8-Ana2(159–168) complex Drosophila
melanogaster

X-ray 1.83 Slevin et al.
2014

4QH8 Dynein light chain 1, cytoplasmic LC8–Ana2(237–246) complex Drosophila
melanogaster

X-ray 1.90 Slevin et al.
2014

5E0L Dynein light chain 1, cytoplasmic LC8 (DLC1, DYNLL)–Chica
(415–424) complex

Drosophila
melanogaster

X-ray 1.31 Clark et al.
2016

5E0M Dynein light chain 1, cytoplasmic LC8 (DLC1, DYNLL)–Chica
(468–476) complex

Drosophila
melanogaster

X-ray 1.65 Clark et al.
2016

5WOF Dynein light chain 1, putative Plasmodium falciparum X-ray 1.65 Vedadi et al.
2007

TcTex-1

1YGT Dynein light chain TcTex-type Drosophila
melanogaster

X-ray 1.70 Williams et al.
2005

5HXL dynein light chain TcTex-1 Magnaporthe oryzae X-ray 1.97

5JPW Dynein light chain TcTex-type 1 TcTex1–IC2 complex Homo sapiens NMR – Merino-Gracia
et al. 2016

LC7/RobI

3L7H Dynein light chain roadblock Drosophila
melanogaster

X-ray 1.95

3L9K Dynein light chain roadblock RE64145p–IC complex Drosophila
melanogaster

X-ray 3.00

Lis1

1UUJ Platelet-activating factor acetylhydrolase IB
subunit alpha

Mus musculus X-ray 1.75 Kim et al. 2004

1VYH Platelet-activating factor acetylhydrolase IB
subunit beta

Lis1–PAF–AH complex Mus musculus X-ray 3.40 Tarricone et al.
2004

Complex

2PG1 (Dynein light chain 1, cytoplasmic, Dynein
light chain TcTex-type, Cytoplasmic
dynein 1 intermediate chain 2

LC8–TcTex1–IC Drosophila
melanogaster

X-ray 2.80 Williams et al.
2007

3FM7 Dynein light chain 1, cytoplasmic, Dynein
light chain TcTex-type, Cytoplasmic
dynein 1 intermediate chain

IC–TcTex-1–LC8 complex Drosophila
melanogaster

X-ray 3.50 Hall et al. 2009

IC intermediate, LC light chain, MT microtubule, MTBD MT-binding domain
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too complex to assess the accumulated structural data at a
glance (Table 1). By contrast, only four atomic structures of
axonemal dynein are available in the Protein Data Bank
(Table 2) (Mullen et al. 2000; Wu et al. 2003; Kato et al.
2014).

In this short article, we review representative structural
studies of the components that classify cytoplasmic and axo-
nemal dyneins and summarize them as a structural atlas
(Fig. 1) with additional updated structural data on LC1 from
C. reinhardtii obtained by ourselves (Fig. 2).

Light chain

Many structures of LCs from different organisms have been
reported, including LC7, LC8, TcTex-1, and Lis1 (Table 1). It
is thought that the LCs are important for dynein–cargo inter-
actions. Several structures of LC8 (also called DYNLL or
dynein light chain 1) have been determined as a complex with
peptides derived from binding partners by X-ray crystallogra-
phy and NMR (Table 1, Fig. 1). Details of the molecular
function of LC8 remain unknown, but Chlamydomonas cells
of a LC8 deletion mutant lack retrograde intraflagellar trans-
port and display short deficient flagella (Pazour et al. 1998).

Axonemal dynein light chain-1 (LC1) in C. reinhardtii
(DNAL1 in Homo sapiens), whose structure has been solved
by NMR spectroscopy (Mullen et al. 2000; Wu et al. 2003)
(Fig. 2), is a component of outer arm dynein (OAD) (Table 2).
Knockdown of LC1 has been found to reduce beat frequency
in the flatworm planarian (Rompolas et al. 2010), and the
expression of an LC1mutant shows dominant-negative effects
on swimming velocity and beat frequency in C. reinhardtii
(Patel-King and King 2009). These observations suggest that
LC1 acts as a regulator to beat cilia/flagella. Originally, LC1
was thought to be directly bound to tubulins and to tether the
OADγ HC to the microtubule (Patel-King and King 2009).
Furthermore, it has been widely assumed that LC1 associates

with AAA1 and AAA3 or AAA4 of the AAA+ ring in the
gamma heavy chain of OAD (OADγ) in C. reinhardtii

Table 2 Structures of axonemal dynein available in the PDB

PDB ID Dynein component Complex Organism Method Res. (Å) References

Heavy chain

2RR7 Dynein heavy chain 9 Chlamydomonas reinhardtii NMR – Kato et al. 2014

Light chain

LC1

1DS9 Dynein light chain 1, axonemal Chlamydomonas reinhardtii NMR – Mullen et al. 2000

1M9L Dynein light chain 1, axonemal Chlamydomonas reinhardtii NMR – Wu et al. 2003

5YXM Dynein light chain 1, axonemal Chlamydomonas reinhardtii X-ray 1.55 this study

TcTex-1

1XDX Dynein light chain TcTex1 Chlamydomonas reinhardtii NMR – Wu et al. 2005

LC8LC8

LIC

TcTexTcTex

RobIRobI

ICIC

LIS1LIS1

HCHC

LL
TT

RoRoRo

LIC ICIC

LIS1LIS1

LC8LC8

LIC

TcTexTcTex

RobIRobI

ICIC

LIS1LIS1

HCHC

a

b

L

Post-power strokePost-power stroke

Pre-power strokePre-power stroke

Post-power strokePost-power stroke

Pre-power strokePre-power stroke

Fig. 1 Structural atlas of cytoplasmic dynein. a Schematic diagram of the
cytoplasmic dynein complex. b Superposition of solved dynein structures
on the schematic diagram. Atomic structures at a resolution of 4 Å or
higher are shown. From left to right, pre-power stroke (dark gray) and
post-power stroke (light gray) structures of the dynein motor domain,
LIS1 (red), LIC (green), IC (navy) with Robl (cyan), LC8 (orange), and
TcTex (yellow) are shown
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(Benashski et al. 1999). However, it was recently reported that
LC1 is tightly bound to theMTBD of OADγ, which is located
at the tip of stalk region in the motor domain (Ichikawa et al.
2015). This was the first report of an LC interacting with the
MTBD. Moreover, it was also discovered that the binding of
LC1 to the MTBD decreases the MT-binding affinity of the
HC (Ichikawa et al. 2015). Because it has been reported that
the ATPase activity of the HC is increased in the presence of
MTs (Kon et al. 2009), both results imply that LC1 indirectly
changes the ATPase activity of OADγ and regulates ciliary/
flagellar beating. However, the molecular mechanism that
tunes ATPase activity through the MTBD still remains poorly
understood.

Although NMR structures of LC1 are available, we
determined the X-ray structure of LC1 at 1.55-Å reso-
lution to enable a more detailed discussion (Fig. 2a). As
expected from a comparison of the amino acid se-
quences and NMR structures of LC1 (Benashski et al.
1999; Mullen et al. 2000; Wu et al. 2003), the crystal
structure of LC1 shows a leucine-rich repeat conforma-
tion. However, there are large conformational differ-
ences between the X-ray and NMR structures, especially
in the N- and C- terminal regions and the crystal struc-
ture differs from the NMR structures at the secondary
structure level (Fig. 2b, c). In particular, the differences
in the secondary structure between the X-ray and NMR
structures are surprisingly large at Ala22–Glu24 and
Met182–Val184 in the N-terminal and C-terminal re-
gions, respectively (Fig. 2c). These results suggest that
these two terminal regions may play the role of flexible
hinges and that large conformational differences may be
induced when LC binds to its partner proteins.

We also analyzed the anisotropic temperature factors of the
X-ray structure with reference to the main chain conformation
of the NMR structures (Fig. 2d). There were significant cor-
relations between the anisotropic directions of the temperature
factors and the structural differences between the X-ray and
NMR structures, which implies that the intrinsic flexibility of
LC1 is manifested in the structural discrepancy between X-ray
and NMR structures.

Light intermediate chain

The LIC subunit is present in cytoplasmic dynein, but not in
axonemal dynein (Inaba 2007). There are three LIC homologs
in H. sapiens: LIC1, LIC2, and LIC3. On the one hand, LIC1
and LIC2 are associated with cytoplasmic dynein 1 (Hughes
et al. 1995) and are thought to play important roles in cargo
transport and stability of the HC (Trokter et al. 2012). On the
other hand, LIC3 interacts with cytoplasmic dynein 2
(Grissom et al. 2002). Sequence analysis indicates that the
LICs are divided into two domains: a conserved N-terminal

domain and the other domain. The only known structure of
LIC is the structure of the conserved N-terminal domain of
LIC from a thermophilic hyphal fungus, Chaetomium
thermophilum (Schroeder et al. 2014). Although the structure
shows a Ras-like G-protein fold, the nucleotide pocket is emp-
ty. Biochemical experiments confirmed that this fungus LIC
does not bind nucleotide, whereas human LIC1 does bind
nucleotides (Schroeder et al. 2014). To clarify the differences
in LICs by species and isoform, further structural studies and
biochemical experiments will be needed.

Intermediate chain

There are four IC homologs in H. sapiens. DYNC1I1 (cyto-
plasmic IC1) and DYNC1I2 (cytoplasmic IC2) associate with
cytoplasmic dynein HC, while DNAI1 (axonemal IC1) and
DNAI2 (axonemal IC2) interact with axonemal HCs. All IC
homologs possess a conserved WD40 domain in the C-
terminus that interacts with HCs (Tynan et al. 2000). A sec-
ondary structure analysis using Jpred and RONN predicted
that the N-terminal region of cytoplasmic IC1 and IC2 com-
prise coiled coil and highly disordered regions (Williams et al.
2012). However, the secondary structure prediction analysis
also indicated that the N-terminal region of IC1 is highly dis-
ordered but that of IC2 possesses a folded structure in axone-
mal ICs (Williams et al. 2012).

In terms of atomic structure, so far, there is no high-
resolution structure of either the whole IC or its WD40 do-
main (Tables 1 and 2). However, crystal structures of TcTex1

�Fig. 2 Currently available atomic structures of axonemal dynein. a
Crystal structure of LC1 (PDB ID: 5YXM). LC1 crystals were grown
at 4 °C via the sitting-drop vapor diffusion method by mixing 200 nL of
LC1 (20 mg/mL protein) with an equal volume of reservoir solution
(0.1 M ammonium phosphate monobasic, 10% (w/v) PEG3,350). LC1
crystals were soaked in cryo-protectant solution (0.1 M ammonium phos-
phate monobasic, 35% (w/v) PEG3,350, 10 mM Tris-HCl (pH 8.0),
100 mM NaCl) overnight, and then flash-cooled in liquid nitrogen. The
X-ray diffraction experiment was performed on beamline BL44XU,
SPring-8, Harima Japan. The collected images were processed by using
HKL2000 software (Otwinowski and Minor 1997). Molecular replace-
ment and refinement were performed by using Phenix (Adams et al.
2002) and COOT (Emsley and Cowtan 2004). TLS parameters were
analyzed by using the TLSMD server (Painter and Merritt 2006), and
12 TLS groups were introduced in the subsequent refinement. The final
structure was validated by using MolProbity (Lovell et al. 2003). The
detailed crystallographic statistics information can be available in the
PDB (https://pdbj.org/mine/summary/5yxm). The ribbon diagram of
LC1 is shown in green. b Superposition of the X-ray (green) and NMR
(magenta) structures of LC1. A representative NMR structure is shown
(PDB ID: 1M9L). c Amino acid sequence alignment of LC1 with sec-
ondary structure assignments. d Superposition of the X-ray structure with
anisotropic B factors and main chain conformation of the NMR structure
(magenta). e NMR structure of the MTBD of dynein-c (PDB ID: 2RR7).
The additional flap structure which is an insertion sequence in the MTBD
of the axonemal dynein is shown in orange
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and LC8 with IC peptides containing the interaction sites for
LCs have been determined and explain how IC interacts with
LCs (Williams et al. 2007; Hall et al. 2009). Moreover, the
whole structure of a cytoplasmic dynein complex determined
by cryo-EM has revealed the structural arrangement of IC
within the cytoplasmic dynein complex (Zhang et al. 2017).
However, the precise site of the IC–HC interaction remains
unclear due to the low resolution. Thus, more work is needed
to gain structural insights into the dynein ICs.

Heavy chain

The HC is the largest polypeptide of the dynein complex and
contains the motor domain, which is the minimum component
needed for ATP-dependent motor activity. In 2008, Carter and
colleagues determined the first crystal structure of the MTBD
of an HC fused to the seryl–tRNA synthetase (SRS) from
Thermus thermophilus (Carter et al. 2008). Several years later,
a more complete structure of the stalk coiled coil with the
MTBD was reported by our group (Nishikawa et al. 2014,
2016). Since then, many crystal structures of the cytoplasmic
dynein motor domain in different nucleotide states have been
determined (Carter et al. 2011; Kon et al. 2011, 2012, Schmidt
et al. 2012, 2014; Bhabha et al. 2014). According to these
structures, the HC is composed of multiple functional units,
including the tail, linker, AAA+ ring, stalk/strut, and C-se-
quence. Each unit possesses distinct functions to drive force
generation in the motor. In addition to X-ray crystallography,
cryo-EM has more recently revealed the structure of a cyto-
plasmic dynein complex including the HC, IC, LIC, and LC,
both alone and together with dynactin–BICD2 (DDB) (Zhang
et al. 2017). The cryo-EM structures have revealed the relative
arrangement of the cytoplasmic dynein components in an in-
hibitory state and provide insights into how cytoplasmic dy-
nein is inhibited and activated.

In contrast to the genes encoding cytoplasmic dynein HCs,
those encoding axonemal dyneins are many and diverse. The
arrangement of the HC and the characteristics of the motor
activity along the MT differ completely between axonemal
dynein and cytoplasmic dynein. Cytoplasmic dyneins work
as a dimer, whereas the functional oligomeric states of axone-
mal dynein HCs include monomers, dimers, and trimers.
Moreover, an MT gliding assay has revealed that some axo-
nemal dyneins display clockwise translocation of MTs
(Kikushima and Kamiya 2008; Yamaguchi et al. 2015).
These findings indicate that axonemal dyneins are highly di-
verse proteins in terms of the functional properties of their
HCs. Among the axonemal dynein HCs, only the NMR struc-
ture of the MTBD of dynein-c from C. reinhardtii has been
determined so far (Kato et al. 2014) (Fig. 2e). As compared
with cytoplasmic dynein, the molecular mechanism underly-
ing the motor activities of axonemal dyneins remains

relatively unclear. Clearly, structural and functional studies
of axonemal dynein HCs need to be addressed as soon as
possible.

Conclusions and future prospects

Dynein motors are biologically important bio-nanomachines.
In parallel with recent developments in structural biology,
such as single-particle cryo-EM and synchrotron-based X-
ray nano-crystallography, more and more fascinating three-
dimensional structures of dyneins have become available.
Based on the survey of the structures available at atomic res-
olutions shown above, we would like to point out two impor-
tant directions for future research. One is the imbalance in
structural information between cytoplasmic and axonemal dy-
nein. Atomic data are very much focused on cytoplasmic dy-
neins and remarkably less structural work on axonemal dy-
neins has been reported. The oligomeric states of axonemal
dyneins are so diverse that each dynein is likely to have a
specific structural role. The expansion of structural informa-
tion on axonemal dyneins is greatly anticipated.

The second point is that structures of dynein on MTs are
lacking. This point is important because the dynein that walks
along the MT is really the functional molecule. For the other
cytoskeletal motors, kinesin andmyosin, not only structures in
different nucleotide states but also structures in complex with
the α, β-tubulin dimer or actin filament have been reported.
Two structures of the dynein MTBD and MT complex have
been solved by cryo-EM using a helical averaging technique
(Table 1), one of which was done by a collaborative team
including one of the authors. However, the resolutions of the
two structures are 9.7 and 8.2 Å, and only flexible docking
based on the available crystal structures is applicable at those
resolutions. In 2014, Imai and his colleagues reported the
structure of dynein walking on MTs using engineered chime-
ric dynein construct (Imai et al. 2015), but the resolution is not
high enough to discuss the structure at the residue level. We
await with impatience a high-resolution structure of dynein
walking on MTs.
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