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Abstract Although it has become routine to consider DNA in
terms of its role as a carrier of genetic information, it is also an
important contributor to the control of gene expression. This
regulatory principle arises from its structural properties. DNA
is maintained in an underwound state in most bacterial cells
and this has important implications both for DNA storage in
the nucleoid and for the expression of genetic information.
Underwinding of the DNA through reduction in its linking
number potentially imparts energy to the duplex that is avail-
able to drive DNA transactions, such as transcription, replica-
tion and recombination. The topological state of DNA also
influences its affinity for some DNA binding proteins, espe-
cially in DNA sequences that have a high A + T base content.
The underwinding of DNA by the ATP-dependent topoisom-
erase DNA gyrase creates a continuum between metabolic
flux, DNA topology and gene expression that underpins the
global response of the genome to changes in the intracellular
and external environments. These connections describe a fun-
damental and generalised mechanism affecting global gene
expression that underlies the specific control of transcription

operating through conventional transcription factors. This
mechanism also provides a basal level of control for genes
acquired by horizontal DNA transfer, assisting microbial evo-
lution, including the evolution of pathogenic bacteria.
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Introduction

DNA carries the genetic information needed to build and oper-
ate the cell. Although the expression of this information is
controlled at multiple levels, regulation at the level of transcrip-
tion initiation allows a gene to be controlled at the earliest stage
of its expression. The literature is replete with examples of
regulatory proteins that control transcription initiation and the
history of the field is dominated by examples of protein-
dependent control mechanisms, such as those controlling the
life cycle of bacteriophage lambda or the expression of the lac
operon (Lewis 2011; Oppenheim et al. 2005; Wilson et al.
2007). Research that has focused intensively on protein regu-
lators for more than five decades has pushed the regulatory role
of DNA into the background where, at best, it is regarded as
contributing to gene control by providing cis-acting sites for the
binding of regulatory proteins or through its possession of a
structural flexibility that facilitates interactions between bound
proteins via DNA looping (Schleif 2013; Semsey et al. 2005).
This regulatorymodel, where DNAplays largely a passive role,
is incomplete because it omits the active contribution that is
made by DNA itself through its topological dynamism.

In most cells, DNA is found to have a deficit of helical
turns and this underwound state places the DNA duplex under
torsional stress (Bauer et al. 1980; Boles et al. 1990; Vinograd
et al. 1965). This stress is a reflection of the energy content of
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the DNA and, in bacteria, the ultimate source of this energy is
metabolic activity (Westerhoff and van Workum 1990; van
Workum et al. 1996). The physical manifestation of its
underwound state is seen in the adoption by DNA of a mini-
mal energy conformation in which the helical axis writhes
about itself; it can also be expressed through the opening of
part of the DNA helix through a loss of base-pairing or by a
combination of the two (Bauer et al. 1980). The writhing of
the underwound duplex is described as negative supercoiling
(Higgins and Vologodskii 2015). In a bacterium such as
Escherichia coli, about half of the DNA supercoils are
constrained by interaction with proteins (Bliska and
Cozzarelli 1987; Pettijohn and Pfenninger 1980), but the en-
ergy in the unconstrained portion is available to drive DNA
transactions (Booker et al. 2010). The constrained and uncon-
strained regions of the chromosome are unlikely to be fixed,
displaying a dynamism that reflects changes in growth rate,
growth phase and changes in the nature and sizes of the pop-
ulations of DNA binding proteins that decorate the DNA.

DNA gyrase is the bacterial topoisomerase that underwinds
DNA, using energy from ATP hydrolysis to drive the reaction
(Gellert et al. 1976; Higgins et al. 1978) (Fig 1). Gyrase activity
is sensitive to the ratio of ATP to ADP in the cell and this is, in
turn, a reflection ofmetabolic flux. Cells that are growing rapidly
with a high metabolic flux have a higher ratio of ATP to ADP
compared to metabolically quiescent cells (van Workum et al.
1996). The resulting enhancement in the negative supercoiling
activity of DNA gyrase causes the DNAwithin rapidly growing
bacteria to be more negatively supercoiled than the DNA of
slow-growing or non-growing cells (Conter et al. 1997).

Rapidly growing bacteria also support more transcription,
especially of the genes and operons that express the transla-
tional machinery of the cell and, as we will see below, tran-
scription also contributes to DNA topological change, albeit at
a local level (Rovinskiy et al. 2012). It is also prudent to keep
in mind that E. coli and related bacteria also possess DNA
topoisomerase IV, an enzyme with a structure that is closely
related to that of gyrase but which lacks the ability to nega-
tively supercoil DNA (Kato et al. 1990). Topo IV is also ATP
dependent and is the principal decatenase of the cell, respon-
sible for the topological separation of daughter chromosomes
at the end of genome replication; Topo IValso has the ability
to relax negatively supercoiled DNA (Bates and Maxwell
2007; Zawadzki et al. 2015; Zechiedrich et al. 2000). Like
DNA gyrase, Topo IV is sensitive to adenylylation by FicT
toxins that interfere with ATP binding activity (Harms et al.
2015). Topo IV is not found in all bacteria. For example,
Mycobacterium tuberculosis and M. smegmatis combine the
decatenase activity of Topo IV with the negative supercoiling
activity of gyrase in a single topoisomerase (Aubry et al. 2004;
Jain and Nagaraja 2005).

Topo I, which is encoded by the topA gene, catalyses the
relaxation of negatively supercoiled DNA in bacteria (Dekker

et al. 2002) (Fig. 1). A related topoisomerase, Topo III (topB),
contributes weak DNA relaxing activity but acts chiefly as a
decatenase (Nurse et al. 2003; Perez-Cheeks et al. 2012).
Drugs are available that inhibit gyrase and Topo IV. Of these,
novobiocin is particularly useful because it interferes with
ATP binding in a dose-dependent manner (Hardy and
Cozzarelli 2003; Khodursky et al. 1995; Sugino et al. 1978).
Experiments investigating the in vivo effects of the loss of
Topo I and III have mainly relied on the use of strains with
mutations in their respective genes, topA (Margolin et al.
1985) and topB (Perez-Cheeks et al. 2012).

Work with model bacteria has revealed a homeostatic con-
trol mechanism for DNA supercoiling in which feedback onto
topoisomerase gene expression helps to keep the superhelical
density of the genomic DNAwithin limits that are compatible
with the survival of the organism (Menzel and Gellert 1983;
Snoep et al. 2002). A similar control mechanism has been
described in Mycobacterium spp. (Ahmed et al. 2016). At its
simplest, homeostasis is achieved by inhibiting the promoters
of the genes encoding DNA negative supercoiling activity by
negative DNA supercoiling, and the promoters of genes
encoding DNA relaxing activity by DNA relaxation. The
topA gene, encoding DNA topoisomerase I, is stimulated by
DNA negative supercoiling (Menzel and Gellert 1983). A
promoter architecture in which the −35 and −10 elements have
a sub-optimal spacing renders topA sensitive to supercoiling
sensitive transcription: this sub-optimal spacing diminishes
RNA polymerase binding efficiency but is offset by the
DNA twist associated with negative supercoiling of the pro-
moter DNA (Ahmed et al. 2016). In the case of DNA gyrase,
the gyr gene promoters experience relaxation stimulated tran-
scription (RST). In E. coli, RSTsensing is intrinsic to the gyrA
and gyrB promoter elements (Menzel and Gellert 1987;
Straney et al. 1994; Liebart et al. 1989), whereas in
Mycobacterium spp., it involves longer portions of the chro-
mosome adjacent to the gyrBA operon promoter (Unniraman
and Nagaraja 1999; Unniraman et al. 2002).

DNA supercoiling and transcription

DNA supercoiling has the potential to influence transcription
initiation, elongation and termination (Chong et al. 2014;
Kotlajich et al. 2015; Kravatskaya et al. 2013; Ma and Wang
2014a). Historically, much of the available information about
the link between DNA topology and gene expression in bac-
teria has come from work with the Gram-negative organism
Escherichia coli K-12 and its pathogenic relative Salmonella
enterica serovar Typhimurium.

A leucine auxotrophic strain of Salmonella Typhimurium
harbouring a promoter mutation called leu-500 in its leucine
biosynthetic operon led to the identification of supX, a leu-500
suppressor, as the gene encoding DNA topoisomerase I
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(Friedman and Margolin 1968; Graf and Burns 1973;
Margolin et al. 1985). DNA topoisomerase I is an enzyme that
relaxes negative supercoils in DNA by raising the linking
number of the molecule in steps of 1, making the linking
number of the DNA less negative (Wang 1971). The discov-
ery that loss of topoisomerase I expression resulted in a sup-
pression of the leu-500 promoter defect led to speculation that
this might be due to DNA in the cell being maintained gener-
ally in a more negatively supercoiled state, a state that pro-
moted transcription initiation of the leuABCD operon
(Richardson et al. 1984, 1988). This hypothesis is consistent
with the observation that the leu-500 mutation results in a
more G + C-rich Pribnow box at the leucine biosynthetic op-
eron. Put simply, the more underwound state of the DNA in
the supX mutant background might be expected to facilitate
the formation of an open complex at the G + C-rich leu-500
promoter (Chen et al. 1992). Furthermore, treatment of a supX
leu-500 strain with a gyrase-inhibiting antibiotic was reported
to eliminate the suppressive effect of supX, in keeping with a
role for elevated DNA supercoiling in leu-500 promoter acti-
vation (Pruss and Drlica 1985).

This simple model was shown to be incomplete following
studies with derivatives of the supX strain that had topoisom-
erase one suppressor (tos) mutations and DNA negative
supercoiling values close to those of the wild-type
Salmonella strain (Richardson et al. 1984, 1988) (Fig. 2).
These tos strains remained resolutely Leu+, showing that a

simple correlation between leu-500 promoter activity and
global levels of DNA supercoiling did not hold (Richardson
et al. 1988). Instead, a clear correlation could be seen between
leu-500 promoter activity and the absence of DNA topoisom-
erase I. How could this paradox be resolved?

The solution to the leu-500 paradox came from applying
the twin supercoiling domain model (Liu and Wang 1987) to
the problem. Here, the movement of RNA or DNA polymer-
ase along the DNA duplex introduces topological distortions
ahead of and behind itself (Fig. 1). The DNA ahead of the
moving polymerase becomes overwound (or positively
supercoiled), while the DNA in the wake of the polymerase
becomes underwound, or negatively supercoiled (Chong et al.
2014; Higgins 2014; Rahmouni and Wells 1992; Wu et al.
1988). Unless these zones of differentially supercoiled DNA
are relaxed, the polymerase can become jammed on its DNA
template (Ma et al. 2013). An escape route from this topolog-
ical dilemmamust now be found. The polymerase could rotate
around the DNA, allowing the stress created by its tracking
movement to be relieved, but this is thought to be unlikely in
the crowded and viscous conditions found in the cytoplasm
(Koster et al. 2010). The formation of R-loops where nascent
RNA forms base pairs with the DNA template strand can also
impede RNA polymerase’s freedom to rotate (Drolet 2006).
Supercoils can dissipate rapidly by lateral diffusion along the
DNA in vitro (van Loenhout et al. 2012), but in vivo, they can
quickly be replaced by the next fast-moving polymerase or

Fig. 1 Transcription-induced DNA supercoiling resolved by DNA
gyrase and DNA topoisomerase I. Genes A and B are transcribed
convergently by RNA polymerase (red). The extent of each gene and
its direction of transcription are shown by horizontal green arrows.
RNA polymerases cannot rotate around the DNA as they track along
the template and the template is also unable to rotate. This results in the
creation and accumulation of overwound (positively supercoiled) DNA

ahead of the polymerases and underwound (negatively supercoiled) DNA
behind. The positive supercoils are removed by DNA gyrase in a reaction
that is dependent on ATP hydrolysis. This dependency connects DNA
gyrase activity to the metabolic status of the bacterium. The negative
supercoils are removed by DNA topoisomerase I through an ATP-
independent mechanism; the ATP-dependent DNA topoisomerase IV
can also relax negative supercoils
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have their freedom to diffuse impeded by diffusion barriers in
the chromosome, including those due to other moving poly-
merases and their associated local supercoiling domains (Leng
and McMacken 2002) or by barriers erected by proteins capa-
ble of bridging different parts of a DNA molecule (Ding et al.
2014; Fulcrand et al. 2016). The local supercoiling created by
the movement of the polymerases can be eliminated by the
action of topoisomerases and this is probably the most com-
mon solution employed under physiological conditions, with
DNA gyrase relaxing the overwound DNA ahead of the mov-
ing polymerase and DNA topoisomerase I relaxing the nega-
tively supercoiled DNA behind (Koster et al. 2010) (Fig. 1).
The ability of transcription or DNA replication units to act as
engines of local DNA topological change introduces an im-
portant mechanism for communication along the chromosome
(or other replicon) (El Hanafi and Bossi 2000; Ma and Wang
2014b; Naughton et al. 2013; Tsao et al. 1989; Zhi and Leng
2013). It may also represent part of the organising logic of the
chromosome (Booker et al. 2010; Dorman 2013; Higgins
2014; Rovinskiy et al. 2012; Sobetzko 2016; Sobetzko et al.
2012).

Gene-to-gene communication involving local DNA
supercoiling is an under-researched topic and some of the
clearest examples have grown from investigations of possible
solutions to the leu-500 paradox (Fig. 2). An early solution to
the paradox posited a role for an (unidentified) upstream pro-
moter in the creation of a local domain of negative
supercoiling capable of driving a transition to an open tran-
scription complex at the leu-500 promoter (Lilley and Higgins
1991). This model received strong support from artificial pro-
moter–promoter communication systems established within
heavily engineered recombinant plasmids (Chen et al. 1992).
The solution to the leu-500 paradox came from an apprecia-
tion that it was not the global role of DNA supercoiling but the
local action of topoisomerase I acting on locally generated
negative supercoils at the leuO promoter that affects leu-500
promoter activity. Activation of the leu-500 promoter in its
native location on the chromosome involves collaboration be-
tween transcriptionally generated negative supercoiling acting
locally in cis via a promoter relay, together with transcription
factors acting in trans (Fig. 3). The divergently oriented pro-
moter of the ilvIH operon lies almost 2 kbp upstream of the
leu-500 promoter. Transcription from PilvIH activates the pro-
moter of the leuO gene that is located immediately upstream
of Pleu-500; the divergently oriented PleuO and Pleu-500 pro-
moters are separated by a segment of A + T-rich DNA that is
a binding and nucleation site for the H-NS nucleoid-associated
protein (Fig. 3). The H-NS protein silences the Pleu-500 pro-
moter (or the wild type Pleu promoter), something that the
trans-acting LysR-like LeuO DNA binding protein prevents.
LeuO does this by binding at the Pleu-500 end of the A + T-rich
DNA segment, insulating the Pleu-500 promoter from en-
croachment by the transcription-silencing H-NS protein

(Fig. 3). Unravelling the details of this complicated regulatory
relay provided an important advance in our understanding of
the role of DNA topology in setting the gene regulatory land-
scape in the genome (Fang and Wu 1998a; 1998b; Opel and
Hatfield 2001; Rhee et al. 1999; Wu et al. 1995).

Barrier proteins, DNA supercoiling and nucleoid
structure

The intense investigation of the relationship between leu-500
promoter activity and DNA supercoiling revealed a role for
the LeuO DNA binding protein as a structural element in the
vicinity of the leuABCD operon (Chen and Wu 2005; Chen
et al. 2003). The LeuO protein can form tetramers
(Guadarrama et al. 2014) and LeuO has the ability to bridge
together different parts of the same DNA molecule (Chen and
Wu 2005). Closing loops of DNA in this way has the potential
to create independently supercoiled domains and any DNA
binding protein that has DNA–protein–DNA bridge-forming
activity has the potential to create such domains. For example,
the unrelated repressor proteins LacI and lambda CI have been
shown to do this at, respectively, operator sites in the E. coli
lac operon and in bacteriophage lambda (Ding et al. 2014;
Fulcrand et al. 2016). The positioning of the bridges is deter-
mined by the locations of the binding sites for the DNA bridg-
ing proteins. LacI and lambda CI have relatively stringent
binding site sequence requirements, unlike LeuO, which rec-
ognises a much more degenerate DNA sequence (Dillon and
Dorman 2012; Shimada et al. 2011). Consequently, LeuO has
been found to bind to scores of sites around the bacterial
chromosome, giving it the potential to participate in the gen-
eral organisation of the nucleoid. LeuO also contributes to
nucleoid architecture through its ability to influence the
DNA-dependent lateral spreading of the H-NS nucleoid-asso-
ciated protein locally (Chen and Wu 2005) (Fig. 3) and glob-
ally (Dillon et al. 2012; Shimada et al. 2011).

The H-NS protein plays a major role in the global control of
transcription in Gram-negative bacteria and alterations to its
expression pattern have profound impacts on bacterial physi-
ology (Dorman 2013; Fitzgerald et al. 2015; McGovern et al.
1994). This protein has a promiscuous relationship with the
genome, binding to hundreds of sites that have little in com-
mon other than a high A + T base content and some intrinsic
DNA flexibility (Dillon et al. 2010; Lucchini et al. 2006;
Navarre et al. 2006; Oshima et al. 2006). It binds to nucleation
sites on the DNA and then spreads laterally; its bridging ca-
pacity lends to it a Velcro-like quality that can zip together
different segments of the chromosome (Bouffartigues et al.
2007; Dame et al. 2006; Maurer et al. 2009; Noom et al.
2007). DNA-dependent lateral polymerisation of H-NS can
result in intrusion into gene promoters, resulting in transcrip-
tion silencing, so limiting the advance of H-NS using
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appropriately placed barrier proteins provides a mechanism to
prevent silencing of selected targets (Caramel and Schnetz
1998) (Fig. 3). Data from atomic force microscopy experi-
ments indicate that the compaction associated with
plectonemic wrapping of supercoiled DNA encourages
DNA–H-NS–DNA bridging (Maurer et al. 2009). In princi-
ple, the protein could also bridge adjacent turns of toroidal
DNA too.

An environmentally responsive global regulatory
system

Variable DNA topology serves as the basis of a global regu-
latory system that allows the gene expression profile of the
bacterium to vary in response to those environmental influ-
ences that cause DNA topology to change (Dorman 1991,
2006). Shifts in the ratio of ATP to ADP can arise from a very
wide range of circumstances and, ultimately, this ratio serves
as a powerful barometer of the health of the bacterial cell
(Hsieh et al. 1991a, b; Meury and Kohiyama 1992).

Experimental data demonstrating a response at the level of
DNA supercoiling to variations in pH (Bang et al. 2002;
Karem and Foster 1993; Quinn et al. 2014), temperature
(Goldstein and Drlica 1984), osmotic pressure (Alice and
Sanchez-Rivas 1997; Bordes et al. 2003; Cheung et al.
2003; Higgins et al. 1988; Meury and Kohiyama 1992;
O’Byrne et al. 1992; Sheehan et al. 1992), oxygen supply
(Bebbington and Williams 2001; Cameron et al. 2011, 2013;
Cortassa and Aon 1993; Dixon et al. 1988; Dorman et al.
1988; Malkhosyan et al. 1991; Yamamoto and Droffner
1985), oxidative stress (Weinstein-Fischer et al. 2000), nutri-
tion (Balke and Gralla 1987), growth phase (Bordes et al.
2003; Conter et al. 1997), intracellular growth (Ó Cróinín
et al. 2006) and much more have been reported. A rapidly
growing cell has different gene expression requirements to
one that is in stationary phase and one that is undergoing a
growth phase transition has yet another set of needs.
Exploiting the topological state of the DNA in the chromo-
some as both a sensor and a gene-to-gene telegraph of phys-
iological status allows the individual cell to adjust its tran-
scription profile to ensure an optimal response to changing
circumstances. Variations in the quality and quantity of the
response between individual cells creates variety across a pop-
ulation of genetically identical bacterial cells that allows dif-
ferences in relative competitive fitness to emerge that may
prove useful in the survival of the population.

The relationship between DNA topology and gene expres-
sion is not unidirectional: transcription itself creates topolog-
ical change in the DNA template, so environmental factors
that influence transcription initiation, elongation or termina-
tion all have the potential to modulate the superhelicity of the
DNA in the genome (Bohrer and Roberts 2016; Kouzine et al.
2008; Kotlajich et al. 2015; Ma and Wang 2014a).

Protein binding as a function of DNA topology

The conventional view of DNA binding by proteins empha-
sises the importance of the base sequence of the binding site.
This is, indeed, important for binding by proteins that rely
chiefly on a direct readout mechanism in which a domain of
the protein, typically the helix–turn–helix motif of the DNA
binding motif, searches for a match to the consensus binding
site sequence for that protein. Proteins that rely on an indirect
readout mechanism of site recognition are more sensitive to
variations in DNA structure than simply the presence of a
linear sequence of bases (Chiu et al. 2015; Zhou et al. 2013).
H-NS appears to belong to this latter category, as shown by its
sensitivity to DNA curvature and the presence of nucleotide
sequence steps (e.g. TpA) that lend themselves to DNA flex-
ibility (Bouffartigues et al. 2007; Lang et al. 2007). The pro-
miscuous relationship of H-NS with DNA has been men-
tioned already. This is a feature that H-NS shares with many

Fig. 2 The leu-500 paradox. The Gibbs free energy of supercoiling
(ΔGSC) values (Y-axis), obtained using reporter plasmid supercoiling
measurements, are represented for five strains of Salmonella
Typhimurium by the five horizontal red lines (Richardson et al. 1984).
The wild-type strain is shown on the left, followed by the four strains
harbouring the leu-500 promoter mutation. The Leu phenotypes of the
strains are given above the horizontal red lines as either Leu+ or Leu−. The
presence (TopA+) or absence (TopA−) of active DNA topoisomerase I is
indicated below the red line for each strain. The Leu− TopA+ strain (leu-
500 strain 1) has a ΔGSC value that is identical to that of the wild type
Salmonella Typhimurium strain with its full complement of functioning
topoisomerases. The leu-500 strain 2 is Leu+ TopA− strain and has an
elevated ΔGSC value because the loss of topoisomerase I results in a
globally more negatively supercoiled genome. Strains with a Tos
phenotype have topoisomerase one suppressor (tos) mutations. These
mutations are typically defects in the negative supercoiling activity of
gyrase that return ΔGSC to values that are close to wild type (leu-500
strain 3) or to a lower-than-wild-type value (leu-500 strain 4). If increased
negative supercoiling suppresses the leu-500 mutation, then increasing
this globally by elimination of the topA gene should create a Leu+

phenotype, and this is, indeed, observed (leu-500 strain 2).
Paradoxically, no overall correlation exists between ΔGSC and Leu
phenotype in the four strains. Instead, a Leu+ phenotype correlates with
the absence of DNA topoisomerase I (TopA−)
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other proteins that bind to A + T-rich DNA, including proteins
that bind using a winged helix–turn–helix motif (Brennan
1993; Dolan et al. 2011; Kenney 2002; Martínez-Hackert
and Stock 1997). Here, the protein is interacting with both
the major groove (where the DNA base sequence is accessi-
ble) and the minor groove (where a specific DNA sequence is
not being sought). LeuO belongs to this category of proteins.
As a LysR-like transcription factor, LeuO typically binds to
regulatory sequences located between divergently transcribed
genes, where it seeks a match to a very loose consensus bind-
ing site sequence: T-N11-A (Alanazi et al. 2013; Schell 1993;
Sheehan and Dorman 1998) (Fig. 3). These very low stringen-
cy requirements for binding site matches make LeuO a useful
antagonist for the transcription silencer, H-NS, with its pref-
erence for binding to A + T-rich DNA (Dillon et al. 2012). A
predilection for A + T-rich DNA means that proteins like
LeuO and other winged helix–turn–helix proteins must dock
with DNA, where the minor groove is up to three times
narrower than in more G + C-rich sequences (Oguey et al.
2010; Rohs et al. 2009). Supercoiling such DNA sequences
to different levels is itself likely to impose restrictions on suc-
cessful DNA binding. This has been tested in the case of
OmpR, a response regulator protein that binds using a winged
helix–turn–helix motif (Kenney 2002). Here, the binding of
OmpR to the sameDNA sequence was progressively impeded
by the negative supercoiling of that sequence within a circular
DNA molecule in vitro or on a negatively supercoiled chro-
mosome in vivo (Cameron and Dorman 2012). Because they
rely on DNA structure rather than the presence of a specific
base sequence, indirect readout mechanisms of DNA binding
offer a powerful means to drive the evolution of gene regula-
tion (Xu et al. 2014). Proteins like OmpR, with low require-
ments for specific base sequences in their binding sites but
which are sensitive to the superhelicity of the binding site

DNA, are well placed to recruit new genes to their regulons
(Quinn et al. 2014), including genes that arrive in the bacterial
cell via horizontal gene transfer (Cordeiro et al. 2011).

DNA supercoiling, bacterial evolution
and pathogenesis

Horizontal gene transfer plays an important role in the rapid
evolution of bacterial species (Porwollik and McClelland
2003; Soucy et al. 2015; Touchon and Rocha 2016). Newly
acquired genes have to be integrated not only into their new
host physically, but also from a regulatory perspective
(Dorman 2007; Higashi et al. 2016). Comprehensive informa-
tion about the average superhelical density of DNA in differ-
ent bacterial species is not available and the information that is
in the literature has come from studies of just a few model
organisms. However, it is clear that supercoiling set points can
differ even between closely related examples, such as E. coli
and Salmonella Typhimurium (Cameron et al. 2011;
Champion and Higgins 2007; Quinn et al. 2014). Despite this,
groups of genes that respond to changes in DNA supercoiling
in one species may still do so in another; for example, the
supercoiling-dependent promoter coupling that affects
leuABCD expression in Salmonella Typhimurium is con-
served in E. coli (Chen et al. 2005). Differences in
supercoiling levels between species mean that an imported
gene may acquire a pattern of expression in its new host that
differs from its previous pattern, even if the gene is placed in
an equivalent location of the new host’s genome. In this way,
the gene may contribute in new ways to the life of the cell due
to adjustments to its expression pattern, setting the novel
gene–organism partnership on a new evolutionary trajectory.

Fig. 3 The ilvIH-leuO-leuABCD promoter relay. The segment of the
Salmonella Typhimurium chromosome between ilvIH and leuABCD is
shown. This genetic arrangement is conserved in E. coli. Activation of the
leu-500mutant promoter in a topA strain is achieved in cis by a promoter-
to-promoter DNA supercoiling relay involving promoters PilvIH, PleuO and
Pleu-500 (Wu et al. 1995). There is also a positive role for the LysR-like
transcription factor, LeuO, encoded by the leuO gene. LeuO prevents
encroachment by the H-NS nucleoid-associated transcription-silencing

protein from the region of A + T-rich DNA into the promoter Pleu-500.
Although the DNA sequence of the corresponding region in E. coli is
different, the average A + T content is the same (Haughn et al. 1986) and
the promoter relay is conserved in both species (Chen et al. 2005).
Another DNA binding protein, the leucine-responsive regulatory
protein, Lrp, contributes by stimulating transcription of PilvIH (Wang
et al. 1993)
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A gene may not have to leave its original host cell to expe-
rience new patterns of DNA topological influence. Simply
repositioning the gene on the single, circular chromosome of
the bacterium may achieve this effect (Brambilla and Sclavi
2015; Fitzgerald et al. 2015; Gerganova et al. 2015).
Bioinformatic analyses and experimental work have indicated
that gene location can affect expression for reasons other than
gene dosage (i.e. because a gene near the origin of chromo-
some replication doubles its copy number earlier in the cell
cycle than one near the replication terminus) and that part of
the underlying reason reflects differences in DNA
supercoiling at different chromosomal sites (Bryant et al.
2014; Sobetzko et al. 2012).

Horizontal gene transfer has played an important role in the
evolution of bacterial pathogens with many of their key viru-
lence genes being located in genetic elements that were ac-
quired in this way (Cotter and DiRita 2000; Groisman and
Casadesús 2005; Porwollik and McClelland 2003). In Gram-
negative pathogens, these laterally acquired genes are
characterised by a higher A + T base content than the core
genome, sensitivity to variations in DNA supercoiling in their
expression and silencing by the H-NS nucleoid-associated
protein (Dorman and Corcoran 2009).

Bacterial pathogenesis frequently involves the expression
of specialist genes encoding factors that attach the bacterium
to its host, that allow it to enter and survive within host cells
and to evade the host defences (Hay and Zhu 2015). These
genes are upregulated in response to physical and chemical
signals that are encountered in the host environment. Other
signals indicate that the bacterium has exited the host (Merrell
et al. 2002). Experiments with many pathogens involved in a
wide variety of infections have shown that these infection-
relevant signals modulate the supercoiling of bacterial DNA,
providing a background regulatory influence upon which the
dedicated gene regulatory proteins operate. Examples have
come from studies in Bordetella pertussis (Graeff-Wohlleben
et al. 1995), Campylobacter jejuni (Dedieu et al. 2002),
Chlamydia (Niehus et al. 2008), Dickeya dadantii (Hérault
et al. 2014), E. coli (Beltrametti et al. 1999; Sánchez-
Céspedes et al. 2015), Helicobacter pylori (Ye et al. 2007),
Salmonella spp. (Bang et al. 2002; Galán and Curtiss 1990;
Leclerc et al. 1998; Ó Cróinín et al. 2006; Webber et al. 2013),
Shigella flexneri (Dorman et al. 1990), Vibrio cholerae (Parsot
and Mekalanos 1992), Staphylococcus aureus (Fournier and
Klier 2004; Schröder et al. 2014; Sheehan et al. 1992) and
Yersinia enterocolitica (Rohde et al. 1994).

DNA relaxation is an important event in controlling the
expression of genes that adjust Salmonella physiology to its
host (Cameron and Dorman 2012; Ó Cróinín et al. 2006;
Quinn et al. 2014). This bacterium is a facultative intracellular
pathogen that can survive in the normally lethal environment
of the macrophage in mammalian hosts. It does this by ex-
pressing clusters of horizontally acquired genes coding for an

elaborate protein secretion machine and effector proteins that,
once exported, modify the vacuole to render it harmless to the
bacterium (Fass and Groisman 2009). This gene cluster is
located within the SPI2 pathogenicity island and the transcrip-
tion promoters in SPI2 become more active when the DNA
template relaxes (Cameron and Dorman 2012; Quinn et al.
2014). In part, this is because the relaxed DNA conformation
makes the promoters into better binding targets for the OmpR
transcription factor, with its winged helix–turn–helix DNA-
binding motif (Cameron and Dorman 2012). OmpR works
in tandem with the SPI2-encoded SsrB response regulator to
activate SPI2 promoters (Feng et al. 2004). Macrophage–vac-
uole-associated signals such as acid pH and low magnesium
concentrations also serve to trigger these molecular events
(Fass and Groisman 2009). Such additional information from
the environment is likely to be essential in mounting an ap-
propriate response at the level of specific gene expression
activation or inhibition: a global event such as DNA relaxation
or supercoiling is too general in its effects to represent a reli-
able regulatory circuit on its own.

This example from Salmonella pathogenesis and virulence
gene control illustrates both the utility and the limitations of
variable DNA topology as a regulatory principle in gene reg-
ulation. It has an impressive ‘reach’ because potentially every
gene in the cell can be influenced by global adjustments to
DNA superhelicity. It functions as a local actor, allowing to-
pological disturbance caused by the transcription of one gene
to influence its upstream and downstream neighbours.
However, its effects are too generalised to make it useful as
a regulator of transcription in response to specific signals from
the external or the internal environment. Typically, this spec-
ificity is provided by proteins that sense and report individual
changes to the chemical or physical environment. The role of
DNA topology lies in facilitating or impeding the work of
these specific protein actors, both individually and collective-
ly, as it helps to integrate the many stimuli that the bacterium
receives as it navigates its environment.

Concluding remarks

Genome-wide approaches to understanding gene expression
patterns have become commonplace in modern molecular mi-
crobiology, providing us with the means to explore microbial
cell biology at the interface between nucleoid structure and
gene regulation. To derive the maximum benefit from this
exploration, it will be important to appreciate the pervasive
influence of variable DNA topology on gene expression. In
this way, our research will not only advance the understanding
of existing microbes, but also guide endeavours in synthetic
biology that either seek to ‘rewire’ existing bacteria or pro-
duce synthetic ones. In addition, a view of gene regulation that
is informed by an understanding of the importance of DNA
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topology will assist us in appreciating the (often unintended)
consequences of exposing populations of bacterial cells to
antimicrobial agents that target topoisomerases at concentra-
tions that are too low to ensure lethality. Clinical practice may
be improved and environmental contamination avoided
through an understanding of the impact of drug treatments
on DNA topology and, hence, on gene expression patterns
in bacteria that are either in the patient or in the external
environment.
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