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Abstract The opus of Don Winzor in the fields of physical
and analytical biochemistry is a major component of that cer-
tain antipodean approach to this broad area of research that
blossomed in the second half of the twentieth century. The
need to formulate problems in terms of thermodynamic
nonideality posed the challenge of describing a clear route
frommolecular interactions to the parameters that biochemists
routinely measure. Mapping out this route required delving
into the statistical mechanics of solutions of macromolecules,
and at every turn mathematically complex, rigorous, general
results that had previously been derived previously, often by
Terrell Hill, came to the fore. Central to this work were the
definition of the “thermodynamic activity”, the pivotal posi-
tion of the polynomial expansion of the osmotic pressure in
terms of molar concentration and the relationship of virial
coefficients to details of the forces between limited-size
groups of interacting molecules. All of this was richly
exploited in the task of taking account of excluded volume
and electrostatic interactions, especially in the use of sedimen-
tation equilibrium to determine values of constants for molec-
ular association reactions. Such an approach has proved rele-
vant to the study of molecular interactions generally, even
those between the main macromolecular solute and compo-
nents of the solvent, by using techniques such as exclusion
and affinity chromatography as well as light scattering.
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Historical prolegomena

When I arrived at the John Curtin School of Medical
Research at the Australian National University at the
end of 1977, armed with nothing more than a PhD
thesis about protein hydrodynamics and dynamic light
scattering (DLS), along with a few equations describing
a polymerizing system at thermodynamic and sedimen-
tation equilibrium, the name of Sandy Ogston was still
writ large over the portal of the Department of Physical
Biochemistry and the incumbent Head, Laurie Nichol,
was engraving his own tablets of stone with the laws
of excluded volume and thermodynamic nonideality. But
I soon discovered that another fellow called Don
Winzor regularly came down from the University of
Queensland at Brisbane to act as the immovable stone
on which Laurie sharpened his intellectual chisels. The
two sat together for hours going over pages of manu-
scripts and arguing about a multitude of thermodynamic
expressions and their meaning, always trying to tease
out some new experimental consequence of the eternally
intractable relation between strictly defined theoretical
quantities and their messy measurable counterparts.
When I showed some propensity for mathematical rea-
soning I was invited to enter the inner sanctum and was
admitted into the cabal of those initiated in the rites of
“thermodynamic intuition”. The three of us ended up
writing a joint paper about non-sigmoidal Scatchard
plots (Nichol et al. 1979), but the main task I took on
was to deve lop a more comple te accoun t o f
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thermodynamic nonideality in terms of more accurately
estimated activity coefficients of separate species in
interacting systems, a study that brought McMillan–
Mayer theory into focus and eventually gave what
seemed like quite a good description of lysozyme’s
self-association in mildly acidic solutions (Wills et al.
1980). After a couple of years I took off to a new job
in Berlin, but having acquired the new skill of making
linear and quadratic order corrections to the standard
ideal-solution equations I penned a note with Nichol
and Ogston about the effect of inert polymers on pro-
tein self-association (Nichol et al. 1981) and applied the
technique to DLS data (Wills and Georgalis 1981)—all
with a view to rationalizing the mostly impossible be-
havior of aggregation-prone ribosomal proteins.
However, the completion of this last task had to wait
another decade and a half, that is, until Don Winzor
was prepared to slice through the experimental messi-
ness of it all and convince us that the results really did
mean something (Wills et al. 1995). In the meantime,
the science of excluded volumes and their effect on
nucleic acid melting was meted out in the dark, smoky
atmosphere of a West Berlin Kneipe known as The
Flying Dutchman, reminiscent of a locale in a Le
Carré novel, conveniently located on the Richard-
Wagner-Strasse in the Charlottenburg district, just over
from the Deutsche Oper. The obliging barman Roland
spirited documents back and forth between authors and
journal editor, notifying us whenever a new package
with mysteriously arcane contents was ready for pick-
up (Woolley and Wills 1985). Such were the ups and
downs of life for a young biochemist in those days,
looking for meaning in activity coefficients without
thinking hard enough to realize that there was more
than one to be had …

And so it came to pass that when Laurie Nichol left
science to become a university administrator his parting
gift to me was to attach Don Winzor to my hip and
convince us that we should (and could) find a proper
solution to the problem of unifying the not-completely-
rigorous biochemical description of macromolecular in-
teractions in terms of excluded volume, electrostatic and
molecular association effects, unaware as we were that
the task had long been completed and that we had oc-
casionally used bits of the relevant Hill papers without
comprehending their full relevance. But first Don had
an old score to settle. We would show that one could
be protected from all of the complications of “preferen-
tial solvation” by staying under the aegis of excluded
volume (Winzor and Wills 1986). And by then I had
joined the molecular biological heretics who were inter-
ested in prions (Wills 1986) and strayed off on sabbat-
ical to Carleton Gajdusek’s lab at the National Institutes

of Health in Maryland. Those were days of glorious
intellectual freedom when a scientist paid to study neu-
rological disease could live a parallel life, not only in-
curring the wrath of the Pentagon and eventually the
FBI by using the Freedom of Information Act to play
amateur WikiLeaks, but also pursuing thermodynamic
rigor, strolling over to the next building to say hello
to Allen Minton only to be introduced to the legendary
Terrell Hill. We now had a wise and patient guide to
show us the way, someone who had blazed the trail a
quarter century earlier. It took him no time to explain
our naïvety in thinking that the expression for the ther-
modynamic activity of a single component could be
transferred willy-nilly across to multicomponent sys-
tems. No, one had to decide how the system was
constrained while the concentration of a component
was varied. Nowhere was this more simply evident than
in the definition of the osmotic pressure (Fig. 1). Armed
with this new perspective and the help of Wayne
Comper, who already knew how to do proper thermo-
dynamics using differential quantities, we could finally
reconcile measurements of virial coefficients made un-
der alternative “osmotic” or isobaric conditions (Wills
et al. 1993). We were then able to describe preferential
solvation and the effect of small molecules on macro-
molecules rigorously (Wills and Winzor 1993), and this
in turn took us back to the basic theory of sedimenta-
tion equilibrium and the problem of how the concentra-
tion dependence of the buoyancy term 1−vρð Þ was
fudged during integration of dlnc/dr2 to obtain the equa-
tion of the radial concentration dependence c(r) of a
non-ideal solute. After years of claim and counterclaim
we could finally resolve that as long as one stuck to the
molar concentration scale, the equation for a nonideal
solution could be obtained from the ideal equation sim-
ply by replacing c(r) with the osmotic activity z(r), at
least in the case of an incompressible solution, and then
the density appearing in the buoyancy factor is unequiv-
ocally that of the pure solvent, rendering the buoyancy
term independent of concentration. At this point we re-
ally were in a position to entrench the antipodean per-
spective that nonideality could not be dispensed with by
curve-fitting (Adams and Fujita 1963), but had to be
dealt with prior to any realistic assessment of the extent
of molecular association reactions. A strong collabora-
tion was underway.

Thermodynamic activity of a solute

The ideal equation for the chemical potential μA of a solute A

μA ¼ μo
A
þ RT lnXA ð1Þ
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is not particularly sensitive to the choice of the scale on which
the concentration X is nominally measured, simply because
the most commonly used scales (amount of solute per amount
of solution, or alternatively, per amount of solvent) converge
within a linear correction as X→ 0 and the use of Eq. (1) to
describe the thermodynamic behavior of a solute depends on
the extent of the dilute regime in which corrections that are
linear in X can be neglected. For example, as long as the
specific volumes of both solute vA and solvent vs are effective-
ly constant under the relevant experimental conditions, the
molar concentration C (or its mass per unit volume equivalent
cA =CAMA) are related to the molal concentration mA through
the equation

CA ¼ mAρs
.

1þMAvAρsmAð Þ ð2Þ

where ρs = 1/vs is the density of the solvent and MA is the
molar mass of the solute. Equation (1) can be modified to
reflect the nonideal effects of molecular interactions simply
by replacing the nominal concentration variable with a ther-
modynamic “activity”, which is usually considered to be the
product of the concentration and an “activity coefficient”, the
latter being a fudge factor that corrects the concentration to
give the correct value of the chemical potential. However, to
obtain a quantitatively useful expression involving a thermo-
dynamic activity it is necessary to decide how the solution is
to be constrained as the solute concentration is varied, a choice

that corresponds to determining the standard state to which μo

refers (see Fig. 1). It turns out that the two most useful choices
for the standard state of the solute are the infinite dilution limit
under isothermal conditions at some specified value of either
the chemical potential of solvent μs or the pressure P. In the
first case the natural concentration scale onwhich to define the
“osmotic activity” zA = γACA is the molar scale (moles of sol-
ute per unit volume of solution)

μA T ;μs;CAð Þ ¼ μo
A T ;μsð Þ þ RT lnzA ð3Þ

and in the second case the natural concentration scale on
which to define the “isobaric activity” aA = yAmA is the molal
scale (moles of solute per unit mass of solvent)

μA T ;P;mAð Þ ¼ μo
A T ;Pð Þ þ RT lnaA ð4Þ

The rationale for these choices is that in each case
Eq. (1) is preserved as the ideal expression for μA, at
least for an incompressible solution (vA and vs constant),
applicable to the constraint (const. μs or P) under which
the concentration is varied.

The statistical mechanics of solutions of macromolecules
under osmotic and isobaric conditions was given a thorough
treatment by Hill in the late 1950s (Hill 1956a, 1958, 1959).
He provided a very general analysis, showing how the

Fig. 1 Letter from teacher (Terrell Hill) to student (the author) outlining the derivation of the osmotic pressure equation expressed alternatively in terms
of molar and molal quantities
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coefficients, B2, B3, etc., appearing in the virial expansion for
the osmotic pressure, that is, changes in P due to changes in
CA at constant μs,

Π
.

RTð Þ
h i

T ;μs

¼ CA 1þ B2CA þ B3C2
A þ…

� � ð5Þ

can be related to the coefficients C2, C3, etc. in the equivalent
expansion that accounts for changes in μs due to changes in
mA at constant P,

− μs−μ
o
s

� �.
ρsRTð Þ

h i
T ;P

¼ mA 1þ C2mA þ C3m2
A þ…

� � ð6Þ

The great advantage of the osmotic pressure expansion
[Eq. (5)] is that any virial coefficient Bn can, in principle, be
calculated directly by considering the energy of interaction
between just nmolecules of solute. However, either expansion
can be used to define the activity coefficient appropriate to
conditions under which the corresponding activity is defined:

lnγA ¼ 2B2CA þ 3
.
2

� �
B3C2

A þ… ð7Þ

and

lnγA ¼ 2C2mA þ 3
.
2

� �
C3m2

A þ… ð8Þ

whence a molecular interpretation can eventually be made of
variations in the thermodynamic activity of a macromolecular
solvent.

These results, and their application to a wide variety
of problems, were by no means the exclusive domain of
Hill. Indeed, he stood on the shoulders of the likes of
Scatchard (1946), Brinkman and Hermans (1949), Bird
et al. (1950), Stockmayer (1950) and Kirkwood and
Buff (1951), to name but a few. However, the most
systematic and comprehensive development of
McMillan–Mayer theory in relation to protein solutions
was carried out by Hill (1954, 1955a, b, 1956a, b,
1957, 1958, 1959), with the main results of relevance
to biochemists being incorporated into his specialized
book (Hill 1968) and further elaborated in a later pub-
lication (Hill and Chen 1973).

Sedimentation equilibrium

With this clarification of what was meant by the term “ther-
modynamic activity” it was possible to take a new approach to
the derivation of the expression for the concentration distribu-
tion of a solute in a system at sedimentation equilibrium,

giving a clear comparison with the standard result for an ideal
solution:

CA rð Þ ¼ CA r0
� �

ψ rð Þ ð9aÞ

where

ψ rð Þ ¼ exp ϕ r2−r20
� �� � ð9bÞ

and

ϕ ¼ MA 1−vAρsð Þω2
.

2RTð Þ ð9cÞ

The two usual ways of obtaining Eq. (9), namely, the sed-
imentation–diffusion flux balance method and the thermody-
namic equilibrium method, both involve an integration step in
which the solution density ρ(r) is treated as a constant, inde-
pendent of r, when it is not. For incompressible solutions,

ρ rð Þ ¼ ρs þ 1−vAρsð ÞMACA ð10Þ

The mathematical sleight of hand involved is of little con-
sequence in the analysis of data that can be considered to
represent the behavior of an ideal solution and it accounts
for versions of Eq. (9) in which ρ is said variously to be the
solvent or the solution density. However, in deriving an ex-
pression for the exact magnitude of the first order nonideality
correction to the sedimentation equilibrium concentration pro-
file, the dependence of ρ on CA must be taken into account
correctly. The exact result for incompressible solutions can be
written simply by replacing CA in Eq. (9) with the osmotic
activity zA:

zA rð Þ ¼ zA r0
� �

ψ rð Þ ð11Þ

We found a very general pathway to this result (Wills et al.
1996) and devised a direct method for the analysis of sedi-
mentation equilibrium data based on a transformation to ψ(r)
from Eq. (9b) as the independent variable. We also presented a
derivation for the simplest case of single solute (Wills et al.
2000a), as well as extending the ψ(r) analysis to mixtures of
interacting solutes (Wills et al. 2000b).

To understand the relevance of the osmotic activity in sed-
imentation equilibrium it is important to realize that the stan-
dard chemical potential μA

o(T, μs) in Eq. (3) is a function of
radial distance r. Consider a solution of the same composition
and at the same temperature and pressure as that existing at r0.
Remove all of the solute under conditions of constant chem-
ical potential of solvent μs(r), to give pure solvent at a pressure
of Po(r0) = P(r0) – Π( r0). According to Eq. (3) this osmotic
change has brought the solute to its standard state of infinite
dilution, where its chemical potential is μA

o(T, μs) as at r0 in the
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centrifuge cell. Carry out the same procedure for a solution
corresponding to the conditions at r. Now, the hypothetical
changeΔμA

o(T, μs) in the chemical potential of solute between
these two states of the solvent is RTϕ(r2 − r0

2), with the density
in Eq. (9c) unequivocably ρs because the change of state cor-
responds to the ideal situation in which a single solute mole-
cule in an infinite volume of solvent is transformed from the
solvent conditions of Po and μs at r0 to those at r. Equation
(11) follows immediately from the calculation of μA(r) –
μA(r0) for the conditions of the actual sedimentation equilib-
rium under consideration.

Molecular interactions

For molecules that interact through a spherically symmetric
potential u(x) when separated by a distance x, the molar-scale
second virial coefficient (L is Avogadro’s number) is given by
McMillan and Mayer (1945) as

B2 ¼ −2πL
Z∞

0

f xð Þx2dx ð12Þ

where the Mayer f-function is defined as

f xð Þ ¼ 1−exp −u xð Þ
.
kT

h i
ð13Þ

and for the hard-sphere interaction between molecules of ra-
dius RA

u xð Þ ¼ ∞ x < 2RA

0 x ≥ 2RA

�
ð14Þ

the van der Waals excluded volume per pair of molecules

B2 ¼ 16πLR3
A

.
3 ð15Þ

is obtained (Wills and Winzor 2005).
The contribution of excluded volume to thermodynamic

nonideality had long been understood, and Ogston and Winzor
(1975) had extended Eq. (15) to the case of ellipsoids and used
Debye–Hückel theory to take account of charge–charge interac-
tions. However, in the background were much earlier discus-
sions in which Hill (1954, 1956b) had already provided a simple
way of calculating the third virial coefficient B3 as well as a
more realistic estimate of charge–charge effects that could easily
be adapted to macromolecular solutes. The form of the electro-
static potential adopted for molecules with a net surface charge
of ZA multiplied by the electronic charge e, was

u xð Þ ¼ Z2
Ae

2exp −κ x−2RAð Þ½ �
εx 1þ κRAð Þ2 x≥2RA ð16Þ

where κ is the Debye–Hückel inverse screening length
of the supporting electrolyte-bearing medium and ε is
its dielectric constant. This was demonstrated to give a
good representation of the dependence of B2 on ionic
strength (Wills et al. 2000a) and provided confidence in
what had become a common practice of using the rele-
vant formulae to “calculate out” the effects of excluded
volume and charge, thereby bringing into visibility mo-
lecular associations due to short-range attractive forces
between proteins. Comparison of different ways of tak-
ing into account higher order effects of charge–charge
interactions, through either extensions of Eq. (16) (Hill
1954, 1956b) or scaled particle theory, emphasized the
need for independent information about the size and
charge of proteins in attempting to investigate associa-
tion reactions (Scott et al. 2010).

Once we had rediscovered the Hill–Chen opus (Hill
and Chen 1973) and its theoretical underpinnings,
Laurie Nichol’s “unification” problem was solved.
Molecular associations could indeed be treated as just
another form of nonideality, exactly in the manner en-
visaged by the van der Waals equation of state (Wills
and Winzor 2005). In the case of a single solute we
were not required to have separate thermodynamic equa-
tions for different oligomeric “components” as had been
done previously (Wills et al. 1980); all we had to do
was incorporate the dimerization constant K2 into the
relevant virial coefficients

B2 ¼ B*
11−K2; B3 ¼ B*

111−2K2 4B*
11−B

*
12

� �þ 4K2
2; etc:

ð17Þ
and concomitantly more complex relationships for
higher order coefficients. The star superscript in
Eq. (17) denotes a virial coefficient that is calculated
solely on the basis of the relatively long-range repulsive
forces (excluded volume and electrostatic) between mol-
ecules according to the likes of Eqs. (15) and (16); and
the string of subscripts on these quantities indicate a list
of monomers (1), dimers (2), and others comprising a
total of n monomer units.

With this basic insight we were able to extend the
direct analysis of sedimentation equilibrium data using
the ψ-function of Eq. (11) as far as the case of multiple
experiments involving two separate components (oval-
bumin and cytochrome c) under conditions in which
they undergo an association reaction to form a hetero-
dimer (Wills et al. 2000b). We also gave some consid-
eration to B3 and higher order effects (Wills and Winzor
2001, 2011; Wills et al. 2012). The ψ-function analysis
predated other procedures for the direct calculation of
association constants through statistical analysis of sed-
imentation equilibrium data, emphasizing the non-
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thermodynamic nature of the separation of the short-
range molecular forces involved in molecular associa-
tion reactions from others (Winzor and Wills 2007)
and thereby invalidating statistical curve fitting as a
way of eliminating effects due to other interactions as
a way of access to equilibrium constants. The direct use
of Eq. (17) to extract protein dimerization constants
from osmotic pressure data was also demonstrated
(Wills and Winzor 2009).

Other extensions

The standard analysis (Casassa and Eisenberg 1964) of the
thermodynamic effects exerted by the electrolyte routinely
regarded as part of the solvent in which a protein is dissolved
was legendary among biochemists for its rigor and complex-
ity. However, our analysis of “preferential solvation” (Winzor
andWills 1986; Wills andWinzor 1993) and its application to
sedimentation analysis (Jacobsen et al. 1996) had led us to an
approach using molar-scale variables and osmotic consider-
ations (Wills and Winzor 2002) that was much simpler than
the corresponding approach based on the use of molal quan-
tities. Provided the components M of the diffusible osmotic
solvent could be regarded as a simple volume-filling ideal
mixture, their only significant effect was to alter the effective
density of the medium in which the macromolecules were
immersed, giving rise to an altered solvent density

ρd ¼ ρs þ 1−vMρsð ÞMMCM ð18Þ

and an effective protein specific volume vA
*, defined in terms

of an altered sedimentation buoyancy factor, which depended
on the second virial coefficient BAM for the interaction be-
tween molecules of A and M

MA 1−v*Aρd
� � ¼ MA 1þ vAρsð Þ− 1−vMρsð ÞBAMMMCM þ…

ð19Þ

This approach, which was found to be in good agreement
with experimental results, is vindicated by the interpretation of
Eq. (4.37) of Hill (1968). In the case of sedimentation equi-
librium the derivation of Eq. (11) is still valid for a multicom-
ponent solvent, provided one applies the osmotic condition of
constant chemical potential to all such components. When
they are all sufficiently small not to undergo significant sedi-
mentation, then the buoyancy factor is a constant throughout
the cell. The presence of larger, inert polymers added to mimic
the crowded molecular environment inside a cell could be
handled in a similar, very simple way, provided they made
the overwhelmingly dominant contribution to the nonideality
of the protein (Wills et al. 1995; Winzor and Wills 2006).

Thermodynamic results are general, so insights in the
context of thinking about what happens in a centrifuge
cell can be transferred to an array of other experimental
situations. The partitioning of a solute in a frontal chro-
matography experiment is clearly reminiscent of osmosis
and lends direct access to the effects of nonideality.
This had been exploited in the analysis of “preferential
solvation” (Winzor and Wills 1986) and the use of inert
polymers in the estimation of the size of proteins (Wills
et al. 1995; Winzor and Wills 1995, 2006), but it was
also applied in a careful analysis of hemoglobin self-
association at high concentrations (Winzor and Wills
2003) and extended to the new technique of self-
interaction chromatography (Winzor et al. 2007), once
again proving how consideration of excluded volume
could provide a parsimonious explanation of diverse
phenomena, including the influence of an inert polymer
on the kinetics of enzymic catalysis, an effect that had
previously been ascribed to “osmotic stress” (Winzor
and Wills 1995). Failure to take proper account of the
definition of the thermodynamic activity, osmotic or iso-
baric [Eqs. (3) and (4)], and the concentration scale
against which virial coefficients are measured, molar
or molal [Eq. (2)], remains an impediment to the opti-
mal interpretation of thermodynamic measurements on
protein solutions (Wills and Winzor 2011). The interpre-
tation of data from light scattering experiments (Winzor
et al. 2007) remains incomplete.

Conclusion

The contribution of DonWinzor to more than half a century of
physical and analytical biochemistry, starting from consider-
ations of excluded volume and continuing to his demand that
statistical mechanical expositions lead to experimentally rele-
vant conclusions and interpretations, has been indispensable
to the development of rigor and quantification in areas of
science where formalism had traditionally been looked at with
skepticism. The methodologies and interpretations of experi-
mental data that were developed by him and his many collab-
orators continue to be applied to a wide range of problems of
biological and medical significance, especially in the field of
protein–protein interactions. A multitude of structure–func-
tion studies, recently ranging from the molecular basis of mu-
rine olefaction (Portman et al. 2014), through the hetero-
dimeric character of a plant immune receptor (Williams et al.
2014), to a lethal mutation in the laminin alpha-1 gene (Patel
et al. 2015), has demonstrated the importance of the thermo-
dynamic approach to significant molecular biological prob-
lems. It can only be anticipated that the influence of Don’s
work and its application will still be felt many decades into the
future.
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