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Historical perspective on heart function: the Frank–Starling Law
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Abstract More than a century of research on the Frank–
Starling Law has significantly advanced our knowledge about
the working heart. The Frank–Starling Law mandates that the
heart is able to match cardiac ejection to the dynamic changes
occurring in ventricular filling and thereby regulates ventric-
ular contraction and ejection. Significant efforts have been
attempted to identify a common fundamental basis for the
Frank–Starling heart and, although a unifying idea has still
to come forth, there is mounting evidence of a direct relation-
ship between length changes in individual constituents
(cardiomyocytes) and their sensitivity to Ca2+ ions. As the
Frank–Starling Law is a vital event for the healthy heart, it is
of utmost importance to understand its mechanical basis in
order to optimize and organize therapeutic strategies to rescue
the failing human heart. The present review is a historic per-
spective on cardiac muscle function. We Brevive^ a century of
scientific research on the heart’s fundamental protein constit-
uents (contractile proteins), to their assemblies in the muscle
(the sarcomeres), culminating in a thorough overview of the
several synergistically events that compose the Frank–Starling
mechanism. It is the authors’ personal beliefs that much can be
gained by understanding the Frank–Starling relationship at the
cellular and whole organ level, so that we can finally, in this
century, tackle the pathophysiologic mechanisms underlying
heart failure.

Keywords Frank–Starling . Heart . Cardiomyocytes .

Myofilaments . History

The heart

The heart, and its vessels, comprise the cardiovascular system
responsible for the motion of blood throughout the body
(Harvey 1889). William Harvey’s (1628 publication)
BExercitatio anatomica de motu cordis et sanguinis in
animalibus^ (On the motion of the heart and blood in animals)
showed for the first time: (1) Bthat the blood moved in a
ceaseless stream, as it were in a circle^, and (2) Bthat the heart
is the great propelling power^ (Harvey 1889). Although the
anatomy of the heart was well known to physicians at the time
of Harvey, namely the existence of four cavities divided by an
Bimpermeable^ septum and valves that prevented backflow of
material, it was however generally accepted that the heart was
Ba generator of vital spirits, and of heat^ and that the propel-
ling of blood was an Bact of inspiration, and its flow to any
part of the body determined by special excitation^ (Fig. 1)
(Harvey 1889). William Harvey was the first to correctly de-
fine diastolic (relaxation) and systolic (contraction) phases of
the heart BWhence the motion which is generally regarded as
the diastole of the heart, is in truth its systole. And in like
manner the intrinsic motion of the heart is not the diastole
but the systole.^ (Harvey 1889) It took 300 years before
Wiggers (1921a, b) consolidated the meanings of systole and
diastole that survive with minor modifications to day
(Brutsaert and Sys 1989). Patterson and Starling stated that
B[t]he working capacity of a pump is measured by its output.^
(Patterson and Starling 1914) In the heart, cardiac output (CO)
is the interdependence of blood volume ejected by the ventri-
cles per contraction/heart beat—stroke volume (SV)—and the
heart beat frequency—heart rate (HR)—occurring in 1 min
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(CO=SV×HR). Harvey’s description of the motion of blood
greatly advanced the thinking of nineteenth century physiolo-
gists (Blasius 1872; Marey 1881; Dreser 1887; Frank 1895)
and remains remarkably accurate to day.

The Frank–Starling law of the heart

The ability of the heart to adjust the force of its contraction in
response to changes in ventricular filling (end-diastolic
volume, EDV) forms one of the main pillars of muscle phys-
iology. Ventricular filling sets the relationship between sarco-
mere length and tension development, and determines the
degree of muscle shortening, which thereby regulates
ventricular contraction and ejection. The observation that
cardiac muscle contraction is the interdependent relationship
between tension development, heat production and the extent
of muscle shortening, as a function of the initial length of a
muscle fiber, was first described for skeletal muscle by Blix
(1891) and von Kries (1880, 1892). These were later applied
to the heart and advanced by the German physiologist Frank
(1895, 1895, 1959), who proposed that the developed pressure
was directly proportional to the initial diastolic tension.
However, Otto Frank’s experiments were inconclusive to
whether an increase in the force of contraction was related to
the initial diastolic tension or length of muscle fibers
(Patterson et al. 1914). Ernest Starling and colleagues
(Patterson and Starling 1914; Patterson et al. 1914;
Knowlton and Starling 1912) later showed that Bit is length
rather than tension which determines the energy of
contraction^. Accordingly, the BLaw of the Heart^ or the
BFrank–Starling relationship^, reflect the ability of the heart

to adjust the force of its contraction, in response to volume
changes in venous return. Thus the Frank–Starling relation-
ship explains beat-by-beat adjustment of cardiac output by
both sides of the heart and pathological conditions that direct-
ly affect the Frank–Starling response (e.g. diastolic dysfunc-
tion), represent life-threatening situations.

Frank–Starling Law of the heart, and its place
in history

Several concepts scrutinized this law, including the originality
of Frank’s and Starling’s ideas, for instance, Gremels (1936)
wrote that BStarling rediscovered [it] ten years later [than
Frank]^. Guz (1974) in 1973 suggested: BIf we were to give
credit in full, we would have to call it the ‘Hales (Stephen
1740)–Haller (1754)–Mϋller (1844)–Ludwig (1856)–Roy
(1879; Roy and Adami 1892)–Howell and Donaldson
(1884)–Howell and Donaldson (1884)–Frank (1895)–
Starling (1918) relationship^. But earlier, Chapman and
Mitchell (1965) had argued that: BStarling’s work represents
a convergence of various German and British intellectual
forces […]. It was his genius that brought these various forces
together in meaningful synthesis and it was largely his gener-
alizations that provoked, and still provoke, highly constructive
exchanges^. The authors, believe that Ernest Starling stated it
as a BLaw ,̂ and this view was expressed by Stephen Hawking
who stressed the importance of Nature’s Law’s to the success
of mankind: BToday most scientists would say a [L]aw of
nature is a rule that is based upon an observed regularity and
provides predictions that go beyond the immediate situations
upon which it is based.^ A Law requires the prediction of

Fig. 1 A schematic overview of the cardiovascular system overtime. a
Veins (blue) and arteries (white) are separate. Veins transport blood, in
opposition to arteries that transport air. b Arteries (red) transport blood
from right side of the heart, after it passes through invisible pores in the

septum. c Establishment of the pulmonary circulation that transports
blood through the lungs to the left side of the heart, and the liver was
the source of veins the propelling power of blood. d Harvey’s view of the
cardiovascular system. (Adapted from (2011) with permission)
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phenomena or events that goes beyond the mere observation
and can be measured and validated by others. The impact of
the Frank–Starling relationship gained wide acceptance after
Starling presented his concepts in 1915 (Starling 1918, 1920).

Cardiac reserve mechanisms

The normal heart is able to maintain or increase its output by
several mechanisms that are mutually related: (1) recruitment of
the Frank–Starling reserve; (2) increasing heart rate, which en-
hances the force of contraction via increases in the force–fre-
quency relationship or Bowditch effect; (3) increases in the peak
force generated during a contraction—positive inotropic re-
sponse or enhanced contractility (e.g., hormones); and (4) ele-
vations of afterload and the Anrep effect. Following an afterload
elevation (e.g., vascular resistance), there is a rapid increase of
end-diastolic volume that increases contraction (Frank–
Starling). This initial rapid response is followed by a progressive
and time-dependent (1–2 min) enhancement of contractility,
which is independent of length alterations and allows the ven-
tricle to recover towards its normal volume (von Anrep 1912).

Cardiac inotropic reserve

Other factors, such as hormones affect the pump function of the
heart. (Starling 1920; von Anrep 1912; Meek and Eyster 1915)
In 1891, Erik Johansson observed in dogs that stimulation of
the splanchnic nerves raises arterial blood pressure (Johansson
1891). Later Lehndorff (1908) investigated a two-part rise of
blood pressure, confirming that the initial rise was due to va-
soconstriction of the splanchnic area, and the second due to
increased heart rate. Four years later, Elliott (1912) demonstrat-
ed that the second rise was caused by secretion of adrenalin.
Then, von Anrep (1912) established the link between acceler-
ated heart rate and the secretion of adrenalin found by Elliott
(1912). These findings were extended by Starling (1920) who
noted that secretion of adrenalin dramatically increases Bthe
energy available at each contraction.^, i.e. the modern positive
inotropic effect introduced in 1904 by Engelmann (1904).

The Anrep effect or slow force response

In 1912, Glen von Anrep (1912), working in Ernest Starling’s
laboratory, observed that, if arterial resistance was abruptly
elevated, the end-diastolic volume first increased, but then
after adrenaline administration contractility increased
allowing ventricular volume to return to baseline (von Anrep
1912). Two years later, Patterson et al. (1914) observed the
same phenomena but attributed it to Bimproved nourishment
of the muscle^, suggesting that myocardial metabolism occurs

with increased coronary flow when arterial resistance is in-
creased. Then, Rosenblueth et al. (1959) and Sarnoff et al.
(1960; Sarnoff and Mitchell 1961) named this effect
Bhomeometric autoregulation^ (Sarnoff et al. 1960) to distin-
guish it from the length changes in the Frank–Starling rela-
tionship, i.e. Bheterometric autoregulation^. Parmley and
Chuck (1973) used isolated papillary muscle to show that
stretching induces the Frank–Starling effect followed by a
slow increase in inotropic state if the muscle length remained
constant. This slow force response was attributed to the slow
increases of [Ca2+] due to stretch-induced activation of sarco-
lemmal channels, specifically the transient receptor potential
canonical 6 (TRPC6) (Seo et al. 2014).

Striated muscle structural unit, the sarcomere

Seventeenth century microscopists, Robert Hooke and
Antonie van Leeuwenhoek paved the way for the characteri-
zation and description of skeletal and cardiac muscle cells
(Bowman 1840; Dobie 1849). Striated muscle fibers are com-
posed of small assemblies, called Bmyofibrils^ which contain
the contractile components (Fig. 2, upper). They contain a
succession of transverse striations that form the fundamental
structural unit - the sarcomere (Fig. 2, lower) (Krause 1869;
Schafer 1890). Each sarcomere is delineated by a pair BZ-
lines^ (from the German word BZwischenscheibe^ meaning
Bintermediate disc^ (Krause 1869)). Sarcomeres are charac-
terized by alternate zones of light I (isotropic) bands and dark
A (anisotropic) bands (Engelmann 1873; Hanson and Huxley
1953). Each I-band is bisected by a Z-line and consists of thin
filaments, while the central A-band contains both thin and
thick filaments (Huxley 1953a). The H-band (from the
German BHeller^ meaning Bbrighter^) in the middle of the
A-band, solely composed of thick filament structures
(Hanson and Huxley 1953; Huxley 1953a). Finally, a dark
M-line is the middle of the H-band (so called from the
German BMitte lscheibe^ meaning Bcentral disc^)
(Heidenhain 1913), is critical for the organization of the thick
filaments in the sarcomere (Agarkova and Perriard 2005).

Contractile components of muscle

During each heart beat, cardiomyocytes undergo changes in
length and load to allow the filling or ejection of blood. The
sarcomeres shorten by converting chemical energy into me-
chanical force to perform work. They contain proteins that
govern muscle contraction and relaxation, and structural pro-
teins. Myofilament contraction requires the interaction of the
thin (actin-containing) and thick (myosin-containing) fila-
ments (Huxley 1957a). Force production and/or muscle short-
ening are the collective sum of the tension-generating cross-

Biophys Rev (2015) 7:4 –421 47 423



bridges. Regulation of this interaction depends on Ca2+ and
ATP as well as the regulatory troponin–tropomyosin complex
bound to the actin thin filaments (McKillop and Geeves 1993;
Lehman et al. 2000). The cytoskeleton forms the scaffold that
regulates cell shape, provides mechanical integrity and resis-
tance, and stabilizes the sarcomeric proteins. Importantly, this
framework mediates biomechanical and biochemical cell sig-
naling that alters gene expression, post-translational modula-
tion and protein synthesis (Kostin et al. 2000; Frank et al.
2006).

The sliding filament hypothesis

BThe official date of the ‘birth’ of the sliding filament theory
of muscular contraction is May 22, 1954^ (Rall 2014) when

Nature published two consecutive papers with the general title
‘Structural changes in muscle during contraction’. The first by
Huxley and Niedergerke (1954) and the second by Huxley
and Hanson (1954). These papers provided the molecular
andmechanical foundations for muscle contraction. Both used
high-resolution microscopy to study the structural arrange-
ment of sarcomeres during contraction. They observed that,
during contraction, the A-band length remained constant,
while the I-band changed length (Huxley and Niedergerke
1954; Huxley and Hanson 1954). These observations signaled
the ‘birth’ of the Bsliding filament hypothesis^. In 1957,
Huxley (1957a) proposed that the two sets of filaments inter-
act and overlap forming several individual structures which H.
E. Huxley defined as Bcross-bridges^ (Huxley 1957b). The
resulting force is the collective sum of all Bactivated^ cross-
bridges that pull actin filaments towards the center of the

Fig. 2 Anatomy of cardiac muscle. The upper figure illustrates a group
of myofibrils connected to the sarcolemma via the costamere network.
The lower image shows an individual sarcomere. Note the formation of

distinct bands. The components are not drawn to scale. (Adapted from
Sequeira et al. (2013a))
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sarcomere. Thick filaments are organized in hexagonal arrays,
and each thick filament is surrounded by six actin filaments
(Huxley 1953b; Stenger and Spiro 1961; Matsubara and
Millman 1974a; Page 1974; Robinson and Winegrad 1979).
Myosin molecules are packed Btail-to-tail^ at the center of the
sarcomere in anti-parallel alignment and optimize contact with
the actin monomers (Fig. 3a) (Huxley 1961, 1963). Filament
movement is directed towards the center of the sarcomere and
is entirely determined by the actin filaments on each side of
the Z-disc. Relative sliding of the two sets of filaments occurs
when actins are Bpulled^ by myosins (Huxley 1961). The
cross-bridges were originally described as Boar-like^
(Huxley 1969), but when their structure was revealed at atom-
ic resolution, the cross-bridges are now known to maintain a
fixed angle with respect to the thin filaments, and the rotation
is due to the converter domain closer to the base of the cross-
bridge (Geeves and Holmes 1999).

Muscle ultrastructure: elementary composition

Myosin, the major component of thick filaments

Originally known as Bglobulin^, myosin was defined in 1895
by von Fürth (1895). It was the first sarcomeric protein to be
studied. Major advances in its chemistry and localization were
performed by Annemarie Weber who showed that the bire-
fringent properties of the A-bands were the direct result of the
birefringence of Bmyosin threads^ (Weber 1934, 1935). In
1939, Engelhardt and Liubimova (1939) reported that myosin
is the main enzyme responsible for the hydrolysis of ATP.
Structurally and each myosin has a long Brod-like^ structure
composed of one heavy chain and two light chains (Fig. 4)
(Mueller 1965; Slayter and Lowey 1967; Richard Zobel and

Carlson 1963; Rice 1961; Weeds and Pope 1971). Each heavy
chain has a smaller component, the light meromyosin (LMM)
and a larger component, the heavy meromyosin (HMM)
(Szent-Györgyi 1953; Woods et al. 1963). They can be
cleaved by papain and/or trypsin, and analyzed by gel electro-
phoresis (Fig. 4) (Gergely 1953; Mihalyi and Szent-Gyorgyi
1953; Mueller and Perry 1961; Kominz et al. 1965). The
LMM forms the structure of the thick filament, while the
HMM acts as a Bhinge^, allowing S1 to move towards actin
(Pepe 1966). This hinge property, propelled by the hydrolysis
of ATP, governs actin-binding. The HMM is additionally di-
vided into two sub-fragment extractions: sub-fragment 1 (S1)
(Mueller 1965; Mueller and Perry 1961; Kominz et al. 1965)
and sub-fragment 2 (S2) (Lowey et al. 1967). S1 accounts for
55–60 % of HMM (Mueller 1965) and comprises two globu-
lar heads containing an actin-binding component and catalytic
ATPase activity. S2 separates the rigid LMM from S1 (Slayter
and Lowey 1967).

Actin, the major component of thin filaments

The main constituent of the thin filament is actin (Huxley and
Hanson 1954; Perry and Corsi 1958; Ebashi et al. 1969). The
actomyosin complex was originally budded Bmyosin B^ in
1941 by Szent-Györgyi (1942) to distinguish it from the my-
osin (called myosin A) based on their different solubility and
viscosity properties. Actin was thought to represent a second
form of myosin when extracted from muscle, but Straub
(1942) later found that it does not contain myosin B, but in-
stead contains an association of proteins called Bactin^ which
combines with myosin (actin+myosin). Myosin B was later
called actomyosin, representing the polymerized form of actin
and myosin (Straub 1942). Actin exists in two forms: a con-
tinuous monomeric strand of globular Binactive^ actin (G-

Fig. 3 a Diagram of myosin
arrangement in the thick filament.
b Represents actin molecules
polarity pointing away from the
Z-line. (adapted from Huxley
(1971) with permission)
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actin) spontaneously polymerizes to form Bactive^ filaments
(F-actin) (Huxley and Hanson 1954; Straub 1942, 1943).

Actomyosin/cross-bridges and ATP

An essential property of biological systems is their ability to
convert chemical energy into mechanical energy. It was orig-
inally believed, and almost unchallenged, that the primary
energy-producing reaction ofmuscle was lactic acid formation
via the usage of glycogen. In 1927, Fiske and Subbarow
(1927) showed that an Bunstable form of phosphorus (which
we shall for the present designate as ‘labile phosphorus’)^, i.e.
Bphosphocreatine^ (PCr), decreased during contraction and
was restored upon recovery. Evidence for the latter came in
the early 1930s from Einar Lundsgaard in a series of papers
(Lundsgaard 1930a, 1930b, 1930c) whose concepts over-
threw the lactic acid theory of contraction. He showed that
muscles poisoned with iodoacetate resulted in muscle spasm
and stiffness (rigor) without lactic acid formation. Lundsgaard
concluded that PCr was likely the direct source of contraction
based on the observation that PCr content fell to zero in the
poisoned muscles (Lundsgaard 1930a). Together, these data
triggered interest in the study of PCr. Nevertheless, experi-
ments performed in the same decade indicated that no enzyme
could use PCr as a direct fuel source in muscle (Lohmann
1934). In 1934 (Lohmann 1934) and 1935 (Lohmann 1935),
Lohmann demonstrated that Bcreatine kinase^ (CK) can
breakdown PCr, resulting in the conversion of ADP to ATP:

PCr þ ADP→Cr þ ATP

He concluded that ATP breakdown preceded PCr break-
down during contraction, thus providing strong evidence that
ATP cleavage is the energy-producing reaction of muscle
(Lohmann 1934). Today, we know that ATP hydrolysis
(chemical) powers the interaction and sliding of myosin on
actin in, i.e., work (mechanical). CK belongs to a group of

energy-buffering systems that maintain in vivo levels of ATP.
CK catalyzes the transfer of phosphate from PCr to ADP
regenerating ATP while preventing the accumulation of cyto-
solic ADP (Allen and Orchard 1987).

One of the most accepted theories explaining the sliding
process is the cross-bridge theory, which suggests that the
energy released from ATP hydrolysis is the driving force for
myosin extension towards actin (Huxley 1957a; Huxley and
Niedergerke 1954; Huxley and Hanson 1954). Here, each
bridge performs a number of cycles of attachment to and
detachment from actin, which is accompanied by changes in
myosin orientation and its initial conformation, changing the
affinity of myosin for actin (McKillop and Geeves 1993;
Geeves and Conibear 1995; dos Remedios et al. 1972). It
has been shown that full ATPase activity of the S1 is greatly
stimulated by Mg2+–MgATPase activity (Szent-Györgyi
1942; Kielley and Meyerhof 1948, 1950). When ATP is pres-
ent, myosin and actin do not interact (step 2, Fig. 5) (Szent-
Györgyi 1946). Because myosin-S1 can hydrolyze ATP into
ADP and Pi (step 3′, Fig. 5) (Engelhardt 1942; Lymn and
Taylor 1971) this process (Wagner and Weeds 1977) is
strongly enhanced by binding to actin (step 4, Fig. 5)
(Geeves and Holmes 1999). Moreover, formation of weak-
binding cross-bridges occurs. A change of actomyosin con-
formations occurs (steps 5 and 6, Fig. 5) with the release of Pi
from the S1 head (step 7, Fig. 5) accompanied by strong-
binding cross-bridges (White and Taylor 1976; Chalovich
and Eisenberg 1982; Pate and Cooke 1989). Force generation
and work accompany muscle shortening. ADP is then re-
leased (step 8, Fig. 5) and a new ATP molecule binds to the
actomyosin complex to begin a new cross-bridge cycle (step
1, Fig. 5). If ATP is lower than 0.1 mM (Cooke and Bialek
1979; Goldman et al. 1984), cross-bridges become perma-
nently attached (Matsubara and Millman 1974a) (step 8,
Fig. 5) and the muscle becomes rigid (Brigor mortis^)
(Szent-Györgyi 1946; Huxley and Brown 1967). For a de-
tailed summary of events, see (Gordon et al. 2000).

Fig. 4 A schematic of myosin
(adapted from Huxley (1971)).
Here S1 represents the myosin
head, S1 and S2 comprise the
cross-bridge, and LMM forms the
bulk of the thick filament
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Tropomyosin, a thin filament-associated protein

Tropomyosin (Tm) spans each seven actin monomers. It was
discovered by Kenneth Bailey in 1946 (Bailey 1946) who
proposed that due to its Banalytical and structural similarities
[…] [tropomyosin] is a species of myosin differing mainly in
the length of the polypeptide chain^ and so Bin proposing the
present name, we have deemed it desirable to retain the word
‘myosin’ and to add a prefix which suggests this specific
relationship.^ Today, tropomyosin is far from being a species
of myosin. It has two parallel α-helical chains, overlapping
head-to-tail along the thin filament.

Setsuro Ebashi was the first to recognize the role of tropo-
myosin in muscle (Ebashi 1960, 1963). He demonstrated that
a new protein with similarities to the tropomyosin described
by Kenneth Bailey was required for the ability of the actomy-
osin complex to be sensitive to Ca2+ (Ebashi 1963). This pro-
tein (Bnative^ tropomyosin) was the combination of tropomy-
osin with a new globular protein, Ebashi, later called
Btroponin^ (Ebashi and Ebashi 1964). Troponin exhibited
Bcementing^ (stabilizing) effects on the interaction between
actin and tropomyosin (Ebashi and Kodama 1965;
Drabikowski and Nonomura 1968; Pirani et al. 2005), and
was essential to regulate tropomyosin’s position on actin, in
a Ca2+-dependent manner (Lehman et al. 2000; Huxley
1973a; Haselgrove 1973; Parry and Squire 1973; Vibert
et al. 1997).

Troponin complex, thin filament-associated component

Troponin (Tn) was initially termed by Ebashi and colleagues
(Ebashi and Kodama 1965, 1966) in 1965 as a Btropomyosin-
like protein^ due to its similarities to the tropomyosin reported
by Bailey (Bailey 1948) Bthe presence of the [troponin] com-
ponent makes actomyosin tend to relax, or dissociate, if the
concentration of free calcium ions are lowered^. Troponin
bound Ca2+ and regulated tropomyosin movement on actin
(Parry and Squire 1973). Nevertheless, instead of a single
protein exerting multiple roles in muscle contraction, a
Bflavor^ of different troponin subunits was discovered with
distinctive structures and functions (Hartshorne and Mueller
1968; Drabikowski et al. 1971a, 1971b; Ebashi et al. 1971;
Greaser and Gergely 1971; Hartshorne and Pyun 1971; Sarkar
et al. 1971; Schaub et al. 1972; Wilkinson et al. 1972). The
troponin complex was separated into 2–4 gel fractions when
precipitated under particular conditions, such as the presence
or absence of Ca2+, actin, myosin, actomyosin and

tropomyosin (Hartshorne and Mueller 1968; Drabikowski
et al. 1971a, 1971b; Ebashi et al. 1971; Greaser and Gergely
1971; Hartshorne and Pyun 1971; Sarkar et al. 1971; Schaub
et al. 1972; Wilkinson et al. 1972). The identification and
clarification of each fraction became a challenge with distinct
methodologies producing differing results, including separa-
tion of fractions on gels, differing molecular weights and no-
menclatures used (troponin A, troponin B, inhibitory factor,
Ca2+-sensitizing factor, TN-I, TN-T, TN-C, fraction I, II, III
and IV) (Greaser and Gergely 1973). Table 1 (adapted from
Perry et al. (1973)) illustrates this dilemma. Several properties
of the troponin subunits included components that: (1) were
capable of binding Ca2+ (troponin C, troponin A, Ca2+-sensi-
tizing factor, troponin fraction III and troponin 4); (2) inhibited
actomyosin interactions (troponin I, troponin B, inhibitory
factor, troponin fraction II and troponin 2); and (3) interacted
with tropomyosin (troponin T, 37,000 component, troponin
fraction T and troponin 3). The fourth fraction was suspected
to be a contaminant and is omitted from Table 1 (Drabikowski
et al. 1971b; Wilkinson et al. 1972; Schaub 1971).

Based on these data, H. E. Huxley in 1972 (Huxley 1973a)
proposed a common nomenclature: BI would therefore like to
propose that the following scheme be generally adopted: that
the Ca-binding component of troponin (mol wt ~18,000) be
called Tp C; that the inhibitory component (mol wt ~23,000)
be called Tp I; and that the tropomyosin-binding component
(mol wt ~37,000) be called Tp T .̂

Today, these are known as TnC, TnI and TnT, and, together
with seven actin monomers and one tropomyosin dimer, con-
stitute the thin filament Bfunctional unit^ (A7TmTn, Figs. 6
and 7).

The third filament: titin

The existence of another filament was initially reported by H.
E. Huxley and Jean Hanson (1954) in 1954, when through
actin–myosin extractions, the authors showed that the sarco-
mere remained intact. They (Huxley and Hanson 1954) pro-
posed that an elastic component (BS-filaments^) provided
continuity between an actin filament and the opposite actin
filament in a sarcomere, and would attached to myosin:
BThe backbone of the muscle fibril is made up of actin fila-
ments which extend from the Z-line up to one side of the H-
zone, where they are attached to an elastic component (not the
series elastic component) which for convenience we will call
the S-filaments^. However, it was difficult at the time to con-
firm the existence of such an elastic and integrative

Fig. 5 Cross-bridge cycle. (Adapted from Gordon et al. (2000) with permission)

Biophys Rev (2015) 7:4 –421 47 427



component. Years later, the existence of a giant elastic protein
called Bconnectin^ was reported, consistent with the earlier
proposed S-filaments (Maruyama et al. 1977).

Today, it is better known as Btitin^ (Wang et al. 1979) based
on its large proportions (molecular weight ranging from 3 to 3.
8MDa (Maruyama et al. 1984; Labeit and Kolmerer 1995)).
Titin is the third-most abundant filament protein by weight.
(Labeit et al. 1997) Partially responsible for the generation of
resting tension, titin is also the mechano sensor of the sarco-
mere (Linke and Kruger 2010).

The N-terminal region of titin

This part of titin resides in the Z-disc and interacts with actin
(Trombitás et al. 1997) and possibly with α-actinin (Ohtsuka
et al. 1997; Sorimachi et al. 1997) via 45 amino acid repeat
regions (Z-repeats) that provide a mechanism of Z-disc assem-
bly resulting from alternative splicing (Gautel et al. 1996). The
I-band region of titin is the extensible region and consists of
three elastic components that act as a spring element (Fig. 8):
(1) tandem immunoglobulin (Ig)-like domains with proximal
(near Z-disc) and distal (near I-A regions) segments; (2) the
PEVK sequence-region rich in proline (P), glutamic acid (E),
valine (V) and lysine (K); and (3) the N2B and N2BA ele-
ments (both isoforms contain N2B segments, but only the
N2BA has the N2A element) (Labeit and Kolmerer 1995).

C-terminal region of titin

The C-terminal A-band region of titin is inextensible. It inter-
acts with thick filament and associated proteins including my-
osin and cardiac myosin-binding protein C (cMyBP-C)
(Zoghbi et al. 2008; Freiburg and Gautel 1996; Maruyama

et al. 1985). In the M-band, titins from opposing half-
sarcomeres intersect and interconnect with M-band proteins,
thereby forming a continuous filament from the M-band to-
wards the Z-disc (Helmes and Granzier 2011; Linke 2008).
Titin may be arranged in the thick filament as a dimer
(Tskhovrebova et al. 2010) and presumably a bundle of Bsix
titin molecules connect each end of the thick filament to the Z-
disk^ (Houmeida et al. 2008). Titin is present in both skeletal
and cardiac muscle, but differs in its size (Hill and Weber
1986). Cardiac isoforms are smaller, ranging from 3 MDa
(N2B) to over 3.2 MDa (N2BA) (Freiburg et al. 2000), as
opposed to the even larger skeletal isoforms (N2A) that can
reach as much as 3.8 MDa (Labeit and Kolmerer 1995; Linke
and Kruger 2010).

Titin and its Belastic^ tension of muscle

Under resting conditions, striated muscle resists muscle
lengthening by producing passive tension in response to
stretch. In the heart, titin accounts for approximately 80 %
of total passive tension between physiological operating sar-
comere lengths (1.8–2.2 μm). When over-stretched
(>2.2 μm), where the contribution of collagen is greater, the
titin stretch-based passive tension remains high, indicative of
the central role of titin to respond to stretch (Granzier and
Irving 1995; Chung and Granzier 2011). Passive (resting) ten-
sion results from the extensible I-band spring segment that
elongates as sarcomere length increases. The tandem Ig-like
segments are the first to extend, followed by the PEVK seg-
ment and lastly, the elongation of the N2B segment (Helmes
and Granzier 2011; Linke 2008). The flexibility and stretch-
based passive tension of the titin spring elements can be reg-
ulated by two major mechanisms: a fast Bacute^ modulation
by post-translational modifications and a Bchronic^ isoform
shift due to alternative splicing of the I-band.

cMyBP-C, thick filament-associated component

The thick filament titin is not solely bound to myosin, since
there is another protein in the C-zone of the A-band (Zoghbi
et al. 2008; Labeit et al. 1992; Craig and Offer 1976). Called
BC-protein^ (Offer et al. 1973; Offer 1973) or BcMyBPC^

Table 1 Components of troponin (adapted from Perry et al. (1973))

Calcium-binding protein Inhibitory protein 37,000 component References

Troponin A Troponin B Hartshorne and Mueller 1968

Calcium sensitizing factor Inhibitory factor 37,000 component Schaub and Perry 1969; Wilkinson et al. 1971, 1972

Troponin 4 Troponin 2 Troponin 3 Greaser and Gergely 1971

Troponin III Troponin II Troponin T Ebashi et al. 1971

Component III Component II Component I Murray and Kay 1971

Troponin C Troponin I Troponin T Potter and Gergely 1974

Fig. 6 An early model of the thin filament structure. (Ebashi et al.
(1969))
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(Vaughan et al. 1993), this protein appears to hold a central
role in cross-bridge binding (Herron et al. 2006; Stelzer et al.
2006a) and cycling kinetics (Stelzer et al. 2006a, 2006b).
cMyBP-C mainly consists of immunoglobulin-like C2 do-
mains (eight domains) and three/four fibronectin type-III do-
mains. In addition, cMyBP-C has a proline-alanine rich region
between domains C0 and C1 and a M-domain between do-
mains C1 and C2 (Fig. 9). Both linker domains have important
functional roles (see below). MyBP-C was identified in 1973
by Offer et al. (1973) from skeletal muscle. While MyBP-C’s
interaction with myosin (Offer et al. 1973) and actin (Pfuhl
and Gautel 2012; Moos et al. 1978; Yamamoto and Moos
1983) were reported soon after its discovery, the exact role

of MyBP-C in muscle contraction remained poorly under-
stood. Discovering the individual interaction partners of the
N’ and C’ domains was key to understanding the function of
MyBP-C in regulating contraction.

C-terminal region of MyBP-C

The C-terminal domains are important for the binding of
MyBP-C to thick filaments (Gilbert et al. 1996) that occur
via its interaction with the LMM region of myosin heavy
chain (MHC) (Miyamoto et al. 1999; Starr and Offer 1978).
Although the C10 domain was identified as the myosin LMM
binding domain, domains C7-C9 are also needed for proper

Fig. 7 Modern schematic model of the thin filament functional unit. Five
actin monomers (gray) spanned by one tropomyosin dimer (red) and one
troponin complex: cTnC (pink), cTnI (blue) and cTnT (orange). N and C
depict N- and C-terminal protein ends, respectively. Dark-blue tropomy-
osin depicts near-neighbor tropomyosin dimer interaction (Greenfield
et al. 2006; Murakami et al. 2008). Myosin-S1 is depicted in solid green
(light-green myosin-S1 to better understand its transition states). The
orientation of thin filament proteins is: the N-terminal region of cTnT

points towards the pointed end (M-band), while the core domain of the
troponin complex is oriented to the barbed end (Z-disk) (Paul et al. 2009).
Interacting sites and structural regions of actin-tropomyosin-troponin pro-
teins are matched in accordance with available literature (Sequeira et al.
2013b). Cardiac TnI residues 1-34 are arbitrarily positioned. Our figure
follows the proposed mechanism for Ca2+-regulation of contraction pro-
posed by Murakami et al. (2005) (Adapted from Sequeira et al. (2013b))

Fig. 8 A schematic overview of titin depicted in half-sarcomere. Note the extension of the elastic components of titin when the sarcomere is stretched.
(Adapted from Linke and Kruger (2010))
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incorporation into the thick filament (Gilbert et al. 1996). This
might be mediated by the interaction of the C’ domains of
cMyBP-C with titin, which involves domains C8-C10
(Freiburg and Gautel 1996).

N-terminal region of MyBP-C

While the C-terminus of cMyBP-C is important for its loca-
tion and anchoring to thick filaments, the N-terminus is the
region through which cMyBP-C exerts its regulatory role on
contraction. The best understood function of cMyBP-C’s is its
effect on cross-bridge cycling kinetics (Fig. 10). This effect is
mediated by the interaction of the cMyBP-C N-terminus with
the MHC Bneck^ region (Gruen and Gautel 1999). This S2
region is the hinge region of MHC and connects the LMM to
the myosin head (S1 domain). By binding to this region,
cMyBP-C can slow cross-bridge cycling kinetics (Fig. 10).

The cMyBP-C/S2 interaction is phosphorylation-dependent
and the phosphorylation sites in the M-linker domain are im-
portant for modulating this interaction (Gruen et al. 1999).
When the cMyBP-C M-domain sites are not phosphorylated,
cMyBP-C binds to S2. Upon phosphorylation of cMyBP-C,
this interaction is lost. (Gruen et al. 1999) Therefore, the
cMyBP-C M-domain, together with the adjacent C1 and C2
domains, are thought to be the sites of interaction with myosin
cross-bridges (Gruen and Gautel 1999; Bhuiyan et al. 2012).
More controversial has been cMyBP-C’s interaction with ac-
tin. Although cMyBP-C was reported to interact with actin
in vitro soon after its discovery (Moos et al. 1978;
Yamamoto and Moos 1983), the in situ visualization of
cMyBP-C‘s direct interaction with actin in intact muscle was
lacking. In recent years, accumulating evidence provided by
in situ 3D reconstruction approaches (X-ray neutron scattering
(Whitten et al. 2008), negative EM staining (Mun et al. 2011;

Fig. 9 A schematic domain
structure of cMyBP-C. Cardiac
MyBP-C consists of eight Ig-like
and three fibronectin domains la-
beled C0 (N-terminus) through
C10 (C-terminus). Two additional
domains are present in the N-
terminal part of the protein, the
Proline-Alanine rich region (PA)
and the M-domain (M). Four
phosphorylation sites (Ser275,
Ser284, Ser304 and Ser311) have
been described in the M-domain.
A recent study (Kuster et al. 2013)
revealed a novel phosphorylation
site on serine 133 in the PA re-
gion. (Adapted from Sequeira
et al. (2013c))

Fig. 10 Schematic structure of cMyBP-C. cMyBP-C consists of eight Ig
and three fibronectin domains labeled C0 (N-terminal) to C10 (C-termi-
nal), with two additional linker domains the PA (Proline-Alanine; light
blue stripes) region between C0 and C1, and the M-domain (M; yellow

and orange stripes), between C1 and C2. The C5–C10 domains extend
along the thick filament, while the C0-C4 extend to the thin filament.
A7TmTn depict a functional unit composed of 7 actin monomers, 1
tropomyosin (Tm) dimer and 1 troponin (Tn) complex
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Orlova et al. 2011) and electron tomography (Luther et al.
2011)) demonstrated that cMyBP-C interacts with actin. The
N-terminus of cMyBP-C projects towards the thin filament
making direct contact with actin. Phosphorylation of sites in
the M-domain weakens its interaction with actin (Shaffer et al.
2009). Additionally, recent evidence suggests that the N-
terminal extension of cMyBP-C binds the low Ca2+-state
(blocked state, B-state; further discussed) position of tropo-
myosin on actin, indicating that cMyBP-C can interfere with
tropomyosin–actin interactions and regulate thin filament
transitions (Mun et al. 2011). The functional implications of
the putative actin–cMyBP-C interaction are not yet fully un-
derstood. Another sarcomeric protein that was recently iden-
tified to interact with cMyBP-C’s N-terminus (more specifi-
cally the C0 domain) is the regulatory light chain (Ratti et al.
2011). Again, the functional consequences of this interaction
are not yet understood.

Central role for Ca2+ in muscle contraction

It is well established that cardiac muscle contraction, defined
as Bexcitation–contraction coupling^ byAlexander Sandow in
1952 (Sandow 1952), is initiated by electrical activation of
cardiomyocytes and results in increase in intracellular
[Ca2+]. The first indications for the importance of Ca2+ in
the activation of cardiac muscle were demonstrated in the
1880s by Ringer (1882, 1882, 1883), who observed that the
ventricle of frog hearts beat faster when he used solutions
prepared from tap water supplied by the New River Water
Company in England, but not when distilled water was used.
The difference was due to Ca2+ in the tap water. Ringer could
maintain cardiac contractions if CaCl2 and KCl were added
during saline perfusion (0.75 % NaCl) at concentrations of
about 0.5 and 1.3 mM, respectively. The great next step for
Ca2+ research was reported by Locke and Rosenheim in 1907
(Locke and Rosenheim 1907) using Ringer’s solution (0.75 %
NaCl, 0.5 mM CaCl2, 1.3 mM KCl), who showed that omis-
sion of Ca2+ and K+ from the Ringer’s solution maintained
metabolic activity of the heart, but blocked muscle contrac-
tion: BCalcium is necessary for the conversion of the heart’s
chemical energy into the mechanical energy of its beat, while
potassium is more necessary for the merely chemical process-
es of cardiac activity .̂ Similar observations were made in
1913 by George R. Mines, who reported that a Ca2+-free so-
lution generates normal action potentials, but no mechanical
response (Mines 1913). Further progress was made in 1940 by
Heilbrunn (Heilbrunn 1940), who showed that damaged mus-
cle fibers could generate contractions in solutions containing
high [CaCl2] (>20 mM), and in 1942 Bailey (Bailey 1942)
observed that mM concentrations of Ca2+ activated the
ATPase activity of myosin.

The essential role of Ca2+ in muscle contraction and relax-
ation remained obscure in the 1960s as noted by Ebashi and

Endo (1968): BIt is ironic that recognition of the essential role
of Ca ion in contraction has resulted mainly from the investi-
gation into the mechanism of relaxation^. In the 1950s, it was
well established that ATP was required for contraction in con-
cert with Ca2+. However, muscle physiologists did not under-
stand how muscle relaxation proceeded. Marsh (1951, 1951,
1952) proposed that a Brelaxing factor^ of small molecular
size existed, responsible for the relaxation of muscle. It was
believed myokinase was responsible for the Brelaxing/Marsh
factor^ (Bendall 1953, 1954). In 1954 and 1955, Bozler
(1954) and Watanabe (1955) reported that in the presence of
ATP, a synthetic compound called BEDTA^ mimicked the
action of this Brelaxing factor^, since EDTA byCa2+-chelation
was able to make the muscle relax. Furthermore, Weber rec-
ognized in 1959 (Weber 1959) that actomyosin preparations
only hydrolyzed ATP if>μM of Ca2+ was present. Final con-
firmation for the role of Ca2+ in muscle activation came from
Ebashi in a series of papers in the 1960s (Ebashi 1960, 1961a,
1961b, 1963; Ebashi and Ebashi 1962; Ebashi and Lipmann
1962) demonstrating that indeed μM Ca2+ was required for
the superprecipitation of the actomyosin complex, and that the
Brelaxing factor^ was in fact a vesicular factor capable of
removing and storing Ca2+, derived from an organelle with
an extensive tubular network, i.e. the sarcoplasmic reticulum
(SR). Ford and Podolsky (1970) suggested that Ca2+ release
from the SR could be induced by external Ca2+, which was
confirmed by Endo et al. (1970) (Ca2+ promotes Ca2+-release
from the SR). Despite the strong evidence for the role of Ca2+

in contraction–relaxation at the time, several weaknesses were
presented by Weber and Winicur (1961), who observed that
some preparations of synthetic actomyosin (a mixture of my-
osin and actin separately prepared) were less sensitive to Ca2+:
BSome actomyosin preparations superprecipitate very little or
not at all and hydrolyse adenosine triphosphate at one quarter
or one-half of the maximal rate obtained on addition of CaCl2
to give a concentration of 0.1 mM^. As shown previously,
Ebashi reported that this was due to a third muscle component,
tropomyosin (Ebashi 1963).

Roles of Ca2+ and ATP in muscle contraction

Cardiac muscle contraction is initiated upon electrical activa-
tion of cardiomyocytes and the resulting increase in intracel-
lular [Ca2+] and regeneration of ATP. In the 1970s, the idea
raised that cross-bridge cycling occurs in two stages. In the
absence of Ca2+, tropomyosin physically blocks the myosin-
bindings sites on actin (the steric blockingmodel) and then the
concept that, with raised intracellular [Ca2+], myosin binds to
actin and induces force development (Haselgrove and Huxley
1973; Huxley 1973b). McKillop and Geeves (1993) in 1993
advanced the later ideas and proposed a three-state model of
the thin filament, in which myosin-binding to actin in the
presence of Ca2+ does not occur in a single step, but instead
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in two steps that reflect changes in the affinity of myosin for
actin. In concert, Ca2+ and ATP characterize three distinctive
states of a muscle fiber: (1) relaxed, (2) activated and (3) rigor.
In addition, a three-state model of thin filament regulation
comprises three distinct biochemical states of muscle:
Bblocked-state^, Bclosed-state^ and Bopen-state^. Electron
microscopy reconstructions (Lehman et al. 2000) of thin fila-
ment proteins confirmed the solution studies from McKillop
and Geeves (1993), and proposed new generic terms to Bavoid
nomenclature with unintended connotations^ (Lehman et al.
2000): the blocked-state corresponds to the Bblocked (B-
state)^; the closed-state to BCa2+-induced (C-state)^, and the
open-state to Bmyosin-induced (M-state)^ (Fig. 11) (Lehman
et al. 2000).

Relaxed state, B-state

In the relaxed state where Ca2+ levels are low and ATP is
present, the muscle does not develop active force and
muscle stiffness is low, corresponding to the physiological
relaxation (diastole) and determines the amount of passive
resting tension. At the molecular level, the decline of Ca2+

levels is associated with uncoupling of Ca2+ from TnC,
and relaxation proceeds (Huxley 1957a; Huxley and
Niedergerke 1954; Ebashi 1968). In the B-state, tropomy-
osin sterically blocks myosin-binding sites on the outer
domain of actin, thereby promoting inhibition of myosin
S1 binding to actin (Fig. 11a). We know that specific
regions of TnI bind to the outer domain of actin and
thereby Bdrag^ tropomyosin with it, pulling it away from
the inner groove of actin, blocking actomyosin interac-
tions in the outer region (Murakami et al. 2005;
Eisenberg and Kielley 1970).

Activated state

In an activated state, where Ca2+ levels are high and ATP
is hydrolyzed, the muscle generates active force, shortens
and becomes very stiff. It corresponds to the physiological
contraction phase, systole. As cytosolic free Ca2+ in-
creases, it binds to regulatory sites on TnC, resulting in
the structural arrangement of the TnC subunit (Herzberg
et al. 1986). Because TnC is structurally attached to TnI
(Takeda et al. 2003; Poole et al. 2006), it moves TnI away
from actin, shifting tropomyosin back towards the inner
domain of actin. The uncovering of the outer domain is
propagated from 1 actin to, at least, 14 neighboring actins
(2 functional units), leading to cooperative activation of
the thin filament (Hill et al. 1980; Nagashima and
Asakura 1982; Geeves and Lehrer 1994). Activation takes
place in two distinct biochemical steps:

C-state

A movement of ~25° of tropomyosin around actin, corre-
sponding to the C-state, exposes most of the myosin-binding
sites (Fig. 11b) (Pirani et al. 2005; Vibert et al. 1997).
Nonetheless, the myofilament is not yet activated because
non-tension-generating cross-bridges bind weakly to actin
(myosin-ADP-Pi). Notably, not only does tropomyosin
change its orientation but slight movements of actin
subdomains have also been reported (Squire et al. 1993,
1994). McKillop and Geeves (1993) reported that this specific
transition represents the state of weak binding of the S1 (acto-
S1-ATP or acto-S1-ADP-Pi) to actin (Greene and Eisenberg
1980; Stein and Schwarz 1979). Weak-binding cross-bridges
are defined by low affinity to actin, very fast myosin attach-
ment to and detachment from actin (faster attachment/
detachment kinetics), and inability to activate thin filament
regulatory units (A7TmTn).

M-state

The third and last state, the M-state, involves the release of Pi
from the cross-bridge and strong-binding cross-bridge forma-
tion (myosin-ADP) that induces an extra ~10° movement of
tropomyosin on the actin filament, resulting in myofilament
contraction and force development (Fig. 11c) (Lehman et al.
2000; Vibert et al. 1997). The shape complementary of tropo-
myosin to actin (Gestalt binding (Holmes and Lehman 2008))
might prevent tropomyosin from extensively rolling away
from actin (Behrmann et al. 2012). Strong-binding cross-brid-
ges are defined by higher affinity to actin, myosin binds very
strongly to actin and detaches very slowly (slower attachment/
detachment kinetics), and the ability to activate thin filament
regulatory units.

Overall, the troponin complex inhibits a kinetic transition
by trapping the position of tropomyosin (Chalovich and
Eisenberg 1982). An increase in the free acto-S1-ADP con-
centration, enhanced by cooperative thin filament activation
(Greene and Eisenberg 1980; Bremel and Weber 1972;
Regnier et al. 2002), in a Ca2+-dependent manner, is the trig-
ger for S1-strong-binding and consequent cycling and con-
traction (McKillop and Geeves 1993; Geeves and Lehrer
1994). A new cycle of relaxation ensues, if the Ca2+ levels
decline and ATP is readily accessible.

Rigor state

In particular cases, the rigor state can be induced
(<0.1 mM ATP) (Cooke and Bialek 1979), and, although
it is as stiff as the activated state (Goldman and Simmons
1977), the muscle does not shorten (Szent-Györgyi 1946;
Huxley and Brown 1967).
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Muscle mechanics: length-dependent changes

Changes in length and load allow the heart to change its ven-
tricular filling and regulate ventricular contraction and ejec-
tion. Ventricular filling sets the initial sarcomere length–ten-
sion and determines the amount of cardiomyocyte shortening,
ultimately regulating ventricular contraction and ejection (de
Tombe et al. 2010). The Frank–Starling relationship thus al-
lows the heart to work on a beat-to-beat basis, capable of
adjusting the output of both its sides to any alteration affecting
venous return, or preload. The sarcomere length–tension rela-
tionship in skeletal and cardiac muscle differs, though active
tension shows similar dependence on length. The changes in
skeletal muscle are discussed below and enable the under-
standing the Frank–Starling relationship.

Skeletal muscle length dependency

Blix (1891) and von Kries (1880, 1880, 1892) proposed that
the energy of a contracting muscle is a function of its length
and that muscle shortening depends on its load. Evans and Hill
(1914) in the 1910s showed that developed tension grew by
increasing fiber length. In addition, a parallel increase of heat
production was observed. The complete length–tension rela-
tionship for isolated skeletal muscle fibers was provided for
the first time by Ramsey and Street (1940) in 1940 (previous
experiments rarely exceeded 30 % resting length changes),
who demonstrated the biphasic shape alteration of tension
development upon length. Almost three decades were needed
to combine the results obtained from Ramsey and Street
(1940) to the growing advances obtained from the analysis
of the ultrastructure of skeletal muscle fibers, the sliding fila-
ment theory. In a historic paper published in 1966, Gordon
et al. (1966) confirmed the biphasic shape of tension upon
length alterations and suggested that such changes resulted
directly from the overlap of individual cross-bridges. They
demonstrated that active tension in skeletal frog muscles
consisted of a maximal tension plateau region between sarco-
mere lengths of 2.0 and 2.25 μm; a region wherein myofila-
ment overlap of thick and thin filaments was optimal and
constant (Fig. 12). Stretching the muscle above 2.25 μm pro-
gressively reduced active tension (known as the descending
limb of the active tension–length curve) and reached a zero
level at 3.65 μm sarcomere length, where myofilament over-
lap ceased (Gordon et al. 1966). Upon shortening the muscle
below 2.0 μm (known as the ascending limb of the active
tension–length curve), active tension decreased, which was
proposed to be the result of thin filaments colliding at the
center of the sarcomere (double overlap) in addition to colli-
sion of the thick filaments at the Z-disc. However, a poor
correlation between the ascending limb and the number of
active cross-bridges was subsequently suggested, so that as
the muscle is shortened below slack length the number of

cross-bridges remains constant while tension drops (Jewell
and Wilkie 1960; Hill 1964; Edman and Kiessling 1971;
Rack and Westbury 1969). These observations provided the
first indications that factors other than the degree of myofila-
ment overlap of thin and thick filaments existed, and
accounted for deactivation upon shortening. In agreement,
Taylor and Rüdel (Taylor and Rüdel 1970; Rϋdel and Taylor
1971) demonstrated that the addition of low caffeine concen-
trations (which causes the release of Ca2+ from the SR) to the
bathing solution increased the developed tension at short sar-
comere lengths. A similar study was performed by Close
(1972) in frog skeletal muscles, showing that inducing twitch
or tetanic activation generated different length–tension curves.
Close proposed that length-independent changes in activation
could also play a role to increase tension (Close 1972): BIt may
be concluded from this that the principal variations in the
length dependence of the twitch are the result of differences
in some extrinsic process involved in activation and not dif-
ferences in the intrinsic strength of the contractile material.^

Frank–Starling relationship

In 1895, using the frog heart, Frank (1895) measured
isovolumic pressures developed at varying lengths.
Extending the findings of Blix and von Kries, Frank (1895,
1895, 1959) observed that the developed pressure was directly
proportional to the initial (diastolic) tension. Nonetheless,
Frank’s experiments to determine whether an increase in the
force of contraction was either related to the initial tension or
length of the muscle fibers were inconclusive (Patterson et al.
1914). Starling and coworkers (Patterson and Starling 1914;
Patterson et al. 1914; Starling 1918) measured cardiac short-
ening as a function of cardiac output and its intrinsic relation-
ship to initial EDV, and demonstrated that the initial fiber
length, rather than tension, is the main determinant for
contraction.

The performance of skeletal muscle length–tension rela-
tionships were investigated with cardiac muscle by Abbott
and Mommaerts (Abbott and Mommaerts 1959) in the
1960s and later re-examined in more detail by the groups of
Sonnenblick (1968), Sonnenblick et al. (1963, 1964)
and Grimm (Grimm andWhitehorn 1966, 1968). Both groups
demonstrated that active tension exhibited a similar depen-
dence on length to skeletal muscle, namely both change with
sarcomere length. However, the shape of cardiac length-
tension curves is distinctly different. Skeletal muscle is almost
fully active at 75 % of its optimal length (Lmax; muscle length
at which tension is maximal) compared with cardiac muscle
where active tension is zero at the same % of Lmax (Fig. 12)
(Sonnenblick and Skelton 1974; Allen et al. 1974). Stretching
cardiac muscle an extra 15 % (~90 % Lmax) increases devel-
oped tension from 0 up to 70 % (Fig. 12) (Sonnenblick and
Skelton 1974; Allen et al. 1974). Based on this observation, it
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was suggested that active tension in cardiac muscle is length-
dependent. Several other inconsistencies between skeletal and
cardiac muscle were reported, including the fact that maximal
tension in the heart muscle only presents a peak at maximal

lengthening in contrast to the plateau in skeletal muscle, and
that the decline in active tension (both ascending and descend-
ing limb) is much steeper for cardiac. A simple approach
based on myofilament overlap could not account for the
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observed differences between skeletal and cardiac muscle
(Sonnenblick and Skelton 1974; Sonnenblick et al. 1963).
With the growing evidence from skeletal muscle for the role
of Ca2+ in the Bmanipulation^ of length–tension curves, it was
apparent that factors other than the degree of myofilament
overlap could explain the striking differences in length–ten-
sion curves and the enigmatic length dependence of heart
muscle. We noted that later findings from (Edman 2010)
showed that the length–tension curve in skeletal muscle ex-
hibits a much smoother shape than proposed by Gordon et al.
(1966). Specifically, the length–tension relationship does not
have a pronounced plateau region at 2.0–2.2 μm sarcomere
length, while the descending limb was also non-linear.
Instead, there was a slight sigmoid shape (Edman 2010),
where the extrapolated zero tension level was reached at
3.49 μm rather than 3.65 μm sarcomere length.

Length-dependent activation: Ca2+ as a modulator

It was previously demonstrated in membrane-permeabilized
skeletal muscle that the shape of the length–tension curve
could be varied by adding μM Ca2+ (Hellam and Podolsky
1969; Endo 1972, 1973). To this extent, Fabiato and Fabiato
(1975) initially suggested that shortening the cardiac muscle

partially inhibits the Ca2+-triggered Ca2+-release from the SR
by monitoring free Ca2+ with the Ca2+-sensitive photoprotein
aequorin. The authors, however, later dismissed their claims
and provided proof that the contractile machinery itself is
Ca2+-sensitive to alterations in muscle length at sarcomere
lengths greater than 2.35 μm (descending limb) (Fabiato and
Fabiato 1978). Later evidence demonstrated that indeed in-
creasing sarcomere length (over the entire sarcomere length
range) increases myofilament sensitivity to Ca2+, thus
Bcementing^ the myofilament length-dependent activation
hypothesis (Hibberd and Jewell 1982; Kentish et al. 1986).

Current conceptions of the mechanisms underlying
length-dependent activation

Over a century of research on the Frank–Starling effect has
elucidated our understanding of the fundamental mechanical

Fig. 12 A comparison of length-tension relationships for skeletal and
cardiac muscle. Skeletal muscle As proposed by Gordon et al. (1966)
using the frog heart, a maximal plateau region over the range of 2.0 and
2.25 μm sarcomere length is expected due to optimal and constant
myofilament overlap. When the muscle is stretched above 2.25 μm
(descending limb) active tension declines to almost zero at a sarcomere
length of 3.65 μm. At shorter sarcomere lengths (below 2.0 μm)
(ascending limb) the thin filaments collide in the middle of the
sarcomere, and thick filaments collide at the Z-disc and tension ceases.
Cardiac muscle The myofilament overlap theory that was the basis for
skeletal muscle length-tension relationships cannot account for the
cardiac length-tension relationship. Apart from the smaller sarcomere
lengths at which the mammalian heart operates (estimated physiological
levels range from 1.8 to 2.2 μm), cardiac muscle was demonstrated to
present length-dependent changes in activation. Please note that skeletal
muscle almost fully activates at 75 % Lmax (length at which force is
maximal), which contrasts with cardiac muscle where at the same % of
Lmax, active tension is zero. Lengthening cardiac muscle an extra 15 % in
length (~90 % Lmax) raises the developed tension from 0 up to 70 %,
hence active tension in cardiac muscle is length-dependent. Diagrams
adapted from Gordon et al. (1966), Sonnenblick and Skelton (1974),
and Allen et al. (1974)

Fig. 11 A schematic model of thin filament transitions. Seven actin
monomers (gray) spanned by one tropomyosin dimer (red) and one
troponin complex: cardiac troponin C (pink), cardiac troponin I (blue)
and cardiac troponin T (orange). N and C indicate the N- and C-
terminal ends of protein. This diagram is based on the structure of actin
subdomains (Kabsch et al. 1990; Murakami et al. 2010), the position of
tropomyosin on F-actin (Lehman et al. 2000; Pirani et al. 2005; Vibert
et al. 1997) and the core domain of human troponin (Takeda et al. 2003;
Vinogradova et al. 2005). The tropomyosin overlap region (head-to-tail)
depicts interaction with near-neighbor tropomyosin dimer (dark-blue)
(Greenfield et al. 2006; Murakami et al. 2008). The orientation of thin
filament proteins is as follows: the N-terminal region of cardiac troponin
T points towards the pointed end (M-band), while the core domain of the
troponin complex is oriented to the barbed end (Z-disk) (Paul et al. 2009).
Interacting sites and structural location of actin-tropomyosin-troponin
proteins were matched the best as possible in accordance with the
available literature (Murakami et al. 2008; Takeda et al. 2003;
Pearlstone and Smillie 1982, 1983; Biesiadecki et al. 2007, 2010;
Morris and Lehrer 1984; Manning et al. 2011; Tardiff 2011). a B-state
(blocked); when ATP is present and cytoplasmic [Ca2+] is low and is not
bound to cTnC, tropomyosin is sterically blocking the myosin-binding
sites on actin. b C-state (Ca2+-induced); cytoplasmic [Ca2+] rises such
that Ca2+ binds to cTnC, inducing conformational changes of the
troponin complex, resulting in a ~25° movement of tropomyosin on the
thin filament, thereby exposing most of the myosin-binding sites on actin.
Note the movement of tropomyosin away from subdomains 1 and 2 of
actin. In the C-state, the myofilament is not yet activated as non-tension-
generating cross-bridges bind weakly to actin. c M-state (myosin-
induced); the strong-binding of tension-generating cross-bridges
induces a ~10° movement of tropomyosin on actin, resulting in
myofilament activation and contraction. Note the transition of
tropomyosin into subdomains 3 and 4 of actin. (Adapted from Sequeira
et al. (2013b) with permission)

R
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basis of muscle contraction. The Frank–Starling relationship
dictates that an increase in fiber length enhances the maximal
force generating capacity and Ca2+-sensitivity of myofila-
ments, leading to increased force development (de Tombe
et al. 2010; Allen and Kentish 1985). Although a unifying
concept that explains how myofilaments Bsense^ length alter-
ations is still to be proven, stretch-induced effects rather than
changes in filament spacing dominate the literature. Also,
changes in Ca2+ activation upon muscle lengthening have to
be accounted for. Overall, myofilament length-dependent ac-
tivation is the composite of several synergistic mechanisms.
Length-dependent activation is associated with: (1) increased
Ca2+ affinity of cTnC; (2) alterations in interfilament lattice
spacing; (3) titin-induced stretch and formation of strong-
binding cross-bridges; (4) cTn complex changes; and (5) co-
operative mechanisms.

cTnC-dependent alterations

Ca2+ affinity to cTnC

Two hypotheses were proposed to explain length-dependent
activation of the contractile apparatus by Ca2+. The first is the
length-dependent regulation of Ca2+ release by the SR sug-
gested by Fabiato and Fabiato (1975), but this has not been
confirmed by others. The second hypothesis, that length-
dependent modulation of Ca2+ affinity by cTnC is emerging
as a solid candidate (Allen and Kurihara 1982; Housmans
et al. 1983; Allen and Kentish 1988; Hofmann and Fuchs
1987a, 1988). Allen and Kurihara (1982) microinjected
aequorin into isolated papillary and trabeculae muscles, and
observed a rise in intracellular [Ca2+] following a quick step
release during contraction, which they attributed to dissocia-
tion of Ca2+ from the contractile proteins. Housmans et al.
(1983) observed similar phenomena. This view was further
supported in membrane-permeabilized muscle preparations
by Allen and Kentish (1988) who concluded that Ca2+ was
released by the contractile apparatus. Additional evidence by
Hofmann and Fuchs (1987a, 1987a, 1988) showed that
length-dependent changes affect the Ca2+ affinity of cTnC
where a decrease in sarcomere length reduced the Ca2+-bind-
ing affinity of cTnC.

cTnC is not a length-sensing molecule

It remains to be seen how cTnC Bsenses^ sarcomere length
alterations. Initially, cTnC was considered to act as a Blength
sensor^ itself. Babu et al. (1988) reported that length depen-
dence of Ca2+ sensitivity was substantially diminished when
cTnC was exchanged by slow skeletal troponin C (ssTnC) in
membrane-permeabilized cardiac muscle. They (Babu et al.
1988) attributed the isoform difference of cTnC as the basis
for cardiac length-dependent activation compared to skeletal

muscle. However, this proposal was dismissed because other
groups showed that length-dependent activation is indepen-
dent of cTnC isoform differences (Moss et al. 1991;
McDonald et al. 1995; Wang and Fuchs 1994).

Interfilament lattice spacing versus myocyte lengthening

It has been suggested that the increased Ca2+ sensitivity upon
myocyte lengthening results from lattice spacing reduction,
which increases the proximity of myosin towards actin.
Alterations in interfilament lattice spacing, such as increases
in the lattice spacing as a result of shortening, leads to sarco-
mere thickening and intracellular volume redistribution
(Elliott et al. 1963, 1967; Brandt et al. 1967). In turn, the
developed active tension decreases via decreased approxima-
tion of myosin and actin filaments, and thus less strong bind-
ing cross-bridges are formed (Rome 1972; Matsubara and
Millman 1974b). Although myocyte lengthening and subse-
quent lattice reduction are intimately linked, accumulating
evidence suggests that lattice reduction itself does not play
per se a major role in length-dependent cardiac muscle
activation.

In 1977, Godt and Maughan (1977) were able to vary the
maximum tension of Ca2+-activated fibers using high-
molecular-weight polymers, such as dextran. Because of its
inability to diffuse into the lattice spacing, dextran could com-
press the sarcomere and decrease the interfilament distance
(Godt and Maughan 1977). Next, it was found that variations
in fiber width (as a function of lattice spacing) could be regu-
lated by concentration of dextran (Magid and Reedy 1980).
The groups of Moss et al. (1983) and Stienen et al. (1985)
indicated that lattice spacing, rather than length, was respon-
sible for the changes in Ca2+-sensitivity in membrane-
permeabilized skeletal muscles. These results were confirmed
in skeletal (Godt and Maughan 1981; Wang and Fuchs 1995;
Martyn and Gordon 1988) and cardiac (Wang and Fuchs
1995; McDonald and Moss 1995) muscle preparations which
demonstrated that osmotic compression (as a function of mus-
cle width) enhances Ca2+ sensitivity. These findings were in
agreement with the proposition of Hofmann and Fuchs
(1987a, 1987a, 1987b) who demonstrated that Ca2+-binding
to cTnC directly regulates cross-bridges interactions (rather
than sarcomere length). Fuchs andWang (1996) observed that
both Ca2+ sensitivity and Ca2+ affinity to cTnC were directly
correlated with the lattice spacing but not with sarcomere
length in cardiac muscle. This hypothesis, however, remains
largely disputed, and evidence from the last decade suggests
another view. In the previous studies, alterations in lattice
spacing as a function of dextran addition were not directly
measured, but were indirectly based on alterations in muscle
width. To visualize the interfilament lattice spacing as a func-
tion of dextran application, the group of de Tombe (Irving
et al. 2000; Konhilas et al. 2002a, 2003) used synchrotron
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X-ray diffraction in membrane-permeabilized and intact car-
diac tissue. The authors observed that Ca2+-sensitivity was not
in a linear relationship with interfilament spacing as a result of
osmotic compression. Rather, compression of the lattice spac-
ing with 4 % dextran to match the decreased lattice spacing as
observed when the sarcomere length is increased to the opti-
mal length (≈2.2 μm) did not affect myofilament Ca2+-sensi-
tivity (Konhilas et al. 2002a, 2003). These studies are a major
obstacle against the suggestion that interfilament lattice spac-
ing is the major mechanism in the regulation of length-
dependent activation.

Titin

Evidence from the last decade revealed that the giant elastic
protein, titin, may be involved in the modulation of active
tension and serve as a length-dependent sensor. Titin could
exert such length-dependent behavior by two possible
mechanisms:

Titin-induced reduction of lattice spacing

A titin-based passive tension potentiation of cross-bridge for-
mation could reduce the filament lattice spacing upon stretch
(Cazorla et al. 2001; Fukuda et al. 2003; Fukuda and Sasaki
2001). Along these lines, a correlation between enhanced
length-dependent activation and higher levels of passive ten-
sion has been reported (Cazorla et al. 1999, 2001; Fukuda
et al. 2003). A recent study reporting a reduced myofilament
force development and impaired length-dependent activation
(Mateja et al. 2012) in a rat with a homozygous autosomal
mutation expressing a giant titin isoform (N2BA-G, ~3.9
MDa) (Greaser et al. 2008) appears to support this idea.

Stretch potentiates titin-induced strong-binding cross-bridge
recruitment

Another view, however, suggests that titin-induced stretch ef-
fects a reduction in lattice spacing. Titin is obliquely to the
sarcomere axis and, since it is attached to both myosin and
cMyBP-C (Zoghbi et al. 2008; Freiburg and Gautel 1996;
Maruyama et al. 1985), it may impose a passive strain on
the thick filament proteins, thereby reducing lattice spacing
and changing the geometry of the cross-bridges (Fukuda and
Sasaki 2001; Fukuda et al. 2000). Recruitment of strong-
binding cross-bridges via a titin-induced stretch is vital to
length-dependent and stretch-activation mechanisms. It has
been reported in frog skeletal muscle that sarcomere length-
ening increases myosin periodicity (Wakabayashi et al. 1994),
such that the transition of the population of rested (order; on
the axis plane of the thick filament) cross-bridges to weak
binding cross-bridges increases (disorder, Fig. 13) (Xu et al.
1997; Malinchik et al. 1997). A similar finding was recently

observed in cardiac muscle where the orientation of myosin
heads becomes more perpendicular to the thick filament axis
when sarcomere length is increased (Farman et al. 2011).
Altogether, these studies suggest that stretch-induced activa-
tion by titin-induced radial strain of the thick filament is likely
to increase the number of cross-bridges at the thick filament,
which would allow more myosins to attach to actin, in strong-
binding states (Fig. 13).

Cardiac troponin and thin filament transitions: regulator
of length-dependent activation

Stabilization of the B-state formation: length-dependent
sensitive step

There is evidence to suggest that length-dependent activation
is regulated via an Bon–off^ switch of the thin filament (Smith
and Fuchs 1999). The relevance of the transition from the B-
state to the C-state for proper length-dependent activation has
been shown by Smith and Fuchs (1999), who were the first to
provide evidence for a length-sensitive step in the transitions
of thin filament activation. A reduction in ionic strength
(<0.05 M), known to shift the B-state equilibrium towards a
stable C-state (where the disordered population of cross-
bridges is increased (Head et al. 1995; Xu et al. 1987); i.e. it
mimics the effects of stretch), coincided with impaired length-
dependent activation (Smith and Fuchs 1999). Terui et al.
(2008) recently demonstrated that length-dependent activation
is associated with titin-induced strain on the thick filament,
which is highly dependent on the troponin complex. The au-
thors observed that reconstitution of cardiac thin filaments
with fast sTn reduced length-dependent activation to a level
similar to that of skeletal muscle. In turn, reconstitution with
cTn restored length-dependent activation and decreased Ca2+

sensitivity. The authors associated the latter findings as an
increased transition of the B-state towards the C-state (Terui
et al. 2008).

Recent findings from stretch-activation studies in insect
flight muscle support the view that troponin–tropomyosin thin
filament transitions are central to the length-dependent re-
sponse. Flight muscles require stretch-activation mechanisms
in addition to Ca2+ to activate the muscle (Pringle 1949,
1978). Because transition of the B-state requires Ca2+ to move
tropomyosin to the C-state, insect flight muscles are switched
Bon" due to Ca2+-induced binding to TnC; however, Ca2+

alone is not sufficient to uncover the myosin-binding sites,
stretch is required. Since muscle stretching appears to increase
myosin periodicity with orientation of myosin heads on the
thick filament (Wakabayashi et al. 1994; Farman et al. 2011),
one can speculate that insect flight muscle requires the forma-
tion of strong-binding cross-bridges, presumably by stretch, in
order tomove tropomyosin and uncover myosin-binding sites.
In support, Perz-Edwards et al. (2011) recently demonstrated
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that stretch-activation of insect flight muscle requires the steric
blocking-unblocking model (thin filament transitions) for the

regulation of the actomyosin complex, and that stretching the
muscle causes tropomyosin movement and uncovers myosin-

Fig. 13 A schematic model of half-sarcomere at varying sarcomere
lengths. Lattice spacing dimensions at each varying length were taken
from Konhilas et al. (2002b). As the muscle is stretched from a relatively
short sarcomere length (a) to higher sarcomere lengths (b, c), lattice
spacing becomes smaller with increased transition of order cross-
bridges (a; projection of cross-bridges in X-ray diffraction studies) into
disorder (active) states (b, c). The I-band region of titin is the extensible
region and consists of three elastic components that act as a spring
element: (1) tandem immunoglobulin (Ig)-like domain regions, with
proximal (near Z-disc) and distal (near I-A regions) segments; (2) the
PEVK sequence-region rich in proline (P), glutamic acid (E), valine (V)

and lysine (K); and (3) the N2B and N2BA elements (both isoforms
contain N2B segments, but only the N2BA isoform contains an
additional N2A element) (Labeit and Kolmerer 1995). Titin-induced
stretch imposes a passive strain on the thick filament proteins, reduces
lattice spacing and changes the arrangement of cross-bridges. Distinct
myosin colors are depicted to better illustrate the transition of ordered to
disordered projections. α-actinin and desmin illustrate the Z-disc border.
According to detailed calculations from Gordon et al. (2000), ~1 cross-
bridge binds each A7TmTn. Note: cardiac myosin-binding protein C
(cMyBP-C) was omitted to simplify the drawing and the width and
sarcomere length dimensions are not to scale
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binding sites on actin. The similarities between insect flight
and vertebrate muscle thus suggest that passive strain imposed
to the thick filament increases the Bactivation^ of cross-
bridges which presumably via binding to troponin (Btroponin
bridges^ (Perz-Edwards et al. 2011)) and/or tropomyosin
(Behrmann et al. 2012) regulate length-dependent activation.
We have recently provided evidence that a reduced length-
dependent increase in Ca2+-sensitivity is common in cardio-
myopathies with sarcomeric mutations (Sequeira et al.
2013b). This indicates that the latter can potentially impair
the equilibrium affinity and thin filament transitions, and sup-
port the important role of thin filament alterations for myofil-
ament length-dependent activation.

Post-translational modulation by protein kinase A (PKA)
in length-dependent activation

The suggestion that PKA-mediated myofilament protein
phosphorylation has a modulatory role in length-dependent
activation comes from studies on ferret papillary muscles
(Komukai and Kurihara 1997), in which isoprenaline, a stim-
ulator of the β-adrenergic receptor pathway, enhanced the
length-dependent change in the force-Ca2+ relationship.
Reconstitution of cardiac thin filaments with ssTnI showed
higher myofilament Ca2+ sensitivity, but significantly reduced
length-dependent activation (Konhilas et al. 2003; Arteaga
et al. 2000), indicating a role for cTnI phosphorylation in
length-dependent activation. In support, recent data from our
group (Wijnker et al. 2014) and others (Hanft et al. 2013;
Hanft and McDonald 2010) clearly demonstrate that PKA-
induced phosphorylation of cTnI-Ser23/Ser24 is essential for
length-dependent activation. One can speculate that, because
PKA-induced phosphorylation decreases cTnC–cTnI interac-
tions, this leads to greater cTnI–tropomyosin interactions and,
hence, the B-state is favored; this is associated with fewer
myosin-binding sites available on actin. We recently provided
evidence that indeed the B-state is strengthened upon PKA-
induced phosphorylation which is partly the resulting contri-
bution of cTnI but also of cMyBP-C (Sequeira et al. 2015).
Finally, a study by Cazorla et al. (2006) using transgenic mice
lacking cMyBP-C demonstrated high Ca2+ sensitivity and re-
duced length-dependent activation compared to wild-type
mice, and that this could not be restored by exogenous PKA
treatment. This study suggests that cMyBP-C is also required
for proper length-dependent sarcomere activation.

Cooperativity

What is cooperativity?

The sigmoidal relationship between [Ca2+] and force and/or
ATPase activity is one of the earlier demonstrations that the
binding of Ca2+ appeared to activate muscle contraction.

Filo et al. in 1965 (Filo et al. 1965) were the first to
correlate tension as a function of the free [Ca2+] using
glycerinated skeletal and smooth muscle preparations. This
observation was confirmed by Hellam and Podolsky (1969)
in membrane-permeabilized muscle preparations. They were
the first to describe the relationship between free [Ca2+]
(defined by its inverse logarithm: pCa, i.e., –log10 of the
[Ca2+]) and force as a sigmoidal curve. Six years later,
Donaldson and Kerrick (1975) introduced the widely
known term, BpCa50^. When studying the effects of Mg2+

on muscle Ca2+ contraction in membrane-permeabilized fi-
bers, the authors observed no difference in maximal tension
generated whether or not Mg2+ was present. However, to
their surprise, if a submaximal tension comparison was
made (at 50 % of the maximum tension), Mg2+ was shown
to reduce force generation. In addition, Donaldson and
Kerrick (1975) also assumed the existence of a cooperative
system: BThe tension in the curves […] rises from 10 to
90 % of maximum in less than 2 pCa […] units which is
indicative of interacting sites. Because of the evidence for
interacting sites these data were analyzed using the Hill
equation (Hill 1913) which accounts for cooperative forces
in the binding of a ligand to a macromolecule^. The coef-
ficient of Hill (or nH) is thus an indication of the relative
number of interacting sites and represents a measure of the
cooperativity of Ca2+ activation of the contractile machin-
ery. A hypothetical system with an nH value of 1 describes
a one-to-one relationship, where 1 mole of Ca2+ activates 1
functional unit (A7TmTn). The nH for cardiac muscle con-
traction exceeds 1 both in humans (van der Velden et al.
2000, 2006) and in animals (Konhilas et al. 2003; Boontje
et al. 2011; van der Velden et al. 2004), indicative of a
highly cooperative system (Fig. 14).

Fig. 14 Cooperativity in cardiac muscle. In this plot of Ca2+ versus
relative force the solid line depicts a unique cooperative relationship
between [Ca2+] and force. The dashed line depicts a hypothetical
system where cooperative activation is non-existent (x-axis here is non-
logarithmic)
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Cooperativity of length-dependent activation

The thin filament functional unit comprises seven actin mono-
mers spanned by one tropomyosin dimer and one cTn com-
plex (A7TmTn) (Huxley 1973a). Ca2+-binding to cTnC pro-
motes cTnI detachment from actin and potentiates tropomyo-
sin movement to expose myosin-binding sites on the surface
of F-actin. This tropomyosin movement allows Ca2+ cooper-
ative activation of the thin filament with additional recruit-
ment of strong-binding myosin and actin monomers.
Structural data suggest that individual strongly-bound cross-
bridges bind to the regulatory unit (A7TmTn spanning
~38.5 nm) and regulate tropomyosin movement up to ~3 units
(covering ~115 nm) along the thin filament, in the presence of
Ca2+ (Vibert et al. 1997). This was also validated in biochem-
ical studies (Geeves and Lehrer 1994; Maytum et al. 1998).
Mounting evidence defines the role of tropomyosin in thin
filament Ca2+ activation as three biochemical transitions.
Tropomyosin increases Bcommunication^ between neighbor-
ing regulatory units, a property that is governed by the head-
to-tail interaction (i.e., overlap region) (Hill et al. 1980;
Nagashima and Asakura 1982; Geeves and Lehrer 1994;
Pan et al. 1989; Heeley et al. 1989). Removal of this overlap
reduces cooperative binding of myosin (Pan et al. 1989;
Heeley et al. 1989; Johnson and Smillie 1977).

Two recent studies support the idea that Ca2+ cooperative
effects are independent of myosin-binding and are strongly
associated with the thin filaments (Sun et al. 2009; Farman
et al. 2010). Sun et al. (2009) reconstituted cardiac thin fila-
ments with fluorescent-labeled TnC and analyzed changes in
the orientation of the structure of troponin. They observed that
blebbistatin (which prevents strong-binding formation) had no
effect on the Hill coefficient (Sun et al. 2009). Farman et al.
(2010) reached similar conclusions, because, in their experi-
ments, blebbistatin decreased Ca2+ sensitivity and force, but
did not affect the Hill coefficient. Importantly, the authors
reconstituted rat cardiac thin filaments with a cTnC mutant
incapable of binding Ca2+ and observed that both Ca2+ sensi-
tivity and nHwere decreased (Farman et al. 2010). In addition,
they observed that the effects of the cTnCmutant were greater
at short (2.0 μm) than at longer (2.2 μm) sarcomere lengths.
The authors attributed this result to the ability of tropomyosin
to recruit more regulatory units (A7TmTn) upon stretching;
tropomyosin stiffness increases at longer sarcomere length
and affects up to three to four A7TmTn units, whereas at
shorter sarcomere length, tropomyosin is less stiff and would
only affect one or two A7TmTn units.

Taken together, these data imply that cooperative activation
via thin filaments is partly responsible for the length-
dependent behavior. This is consistent with the observation
of impaired Ca2+ cooperative activation in muscle carrying
cardiomyopathy-causing mutations in genes encoding cTnT
(Manning et al. 2011, 2012). Because tropomyosin overlap

regions are required for proper formation of a ternary complex
with the N-terminal tail of cTnT (Palm et al. 2003) (which in
turn is essential to maintain the thin filament in the B-state
(Tobacman et al. 2002; Gollapudi et al. 2012)), this suggests
that troponin mutations disrupt the structure of the troponin–
tropomyosin complex (Sequeira et al. 2015). Also, impaired
tropomyosin–tropomyosin interactions could decrease near-
neighbor interactions and decrease length-dependent
activation.

Discussion

Over a century of research on the Frank–Starling Law has
greatly advanced our knowledge of the fundamental basis of
muscle. It mandates that, at the single cardiomyocyte level,
there is a direct relationship between sarcomere length and
myofilament sensitivity to Ca2+ ions, such that more force is
generated at a given concentration of Ca2+ as sarcomere length
is increased. Although a unifying idea to explain how the
myofilament Bsenses^ length alterations remains in dispute,
evidence supports the stretch-induced effects are central key
to length-dependent force changes. Also, changes in Ca2+ ac-
tivation upon muscle lengthening must be considered. This
review has provided substantial evidence that myofilament
length-dependent activation is a composite of several syner-
gistically mechanokinetic processes. Length-dependent acti-
vation is the sum of increased Ca2+-affinity of cTnC, alter-
ations in interfilament lattice spacing, titin-induced stretch,
and the formation of strong-binding cross-bridges, cTn com-
plex changes, and Ca2+ cooperative mechanisms.
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