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Oriented samples: a tool for determining the membrane topology
and the mechanism of action of cationic antimicrobial peptides
by solid-state NMR
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Abstract Overuse and misuse of antibiotics have led bac-
teria to acquire several mechanisms of resistance. In re-
sponse to this, researchers have identified natural antimi-
crobial peptides as promising candidates to fight against
multiresistant bacteria. However, their mode of action is
still unclear, and a better understanding of the mode of
action of these peptides is of primary importance to de-
velop new peptides displaying high antibacterial activity
and low hemolytic activity. One of the main features that
defines the mechanism of action is the membrane topolo-
gy of the peptide. Among the spectroscopic techniques,
solid-state NMR is the technique of choice for determin-
ing the location of the peptide within the membrane. It
can be achieved by performing experiments with oriented
samples. In the literature, the two most common types of
oriented samples are bicelles and phospholipids mechani-
cally oriented between glass plates. The mode of pertur-
bation of the membrane-active peptide can be studied by
phosphorus-31 and deuterium NMR. On the other hand,
several experiments such as nitrogen-15 and fluorine
solid-state NMR, that require labeled peptides, can give
valuable information on the membrane topology of the
peptide. The combination of the latter techniques allows
the determination of a precise topology, thus a better
knowledge of the molecular determinants involved in the
membrane interactions of antimicrobial peptides.
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Abbreviations
Δχ Magnetic susceptibility
AMP Antimicrobial peptides
CSA Chemical shift anisotropy
DHPC Dihexanoylphosphatidylcholine
DMPC Dimyristoylphosphatidylcholine
DPI Dual polarization interferometry
NMR Nuclear magnetic resonance
OCD Oriented circular dichroism
PISEMA Polarization inversion spin exchange at the magic

angle
SLF Separated-local-field
SPR Surface plasmon resonance

Introduction

The increase of infections involving multi-resistant bacteria is
currently a major threat, especially in hospital environments.
Indeed, since the early 1980s, the number of infections caused
by methicillin-resistant Staphylococcus aureus, vancomycin-
resistant Enterococcus and fluoroquinolone-resistant
Pseudomonas aeruginosa has steadily increased (Levy and
Marshall 2004; Taubes 2008). In order to reverse this trend,
researchers are trying to develop new molecules with an anti-
bacterial activity resulting from novel mechanisms of action.
Among the promising alternatives are cationic antimicrobial
peptides which are a key component in the innate immune
system from lower to higher organisms (Hancock and
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Chapple 1999). In general, these peptides share common char-
acteristics which are a short length (12–45 amino acids), a net
positive charge (+2 to +9) and a marked amphiphilic character
(Hancock and Lehrer 1998). An interesting feature about these
peptides is that they do not alter the functioning of a specific
target such as conventional antibiotics. Instead, they target the
bacterial cellular membrane where they induce diverse
perturbations.

The use of these peptides as antibacterial agents presents
several advantages over current antibiotics. Indeed, they have
a large spectrum of activity (Gram-positive and Gram-
negative bacteria), they kill bacteria rapidly and they are less
prone to drug resistance. In addition to their antibacterial ac-
tivity, some of the peptides are also potent against fungi, par-
asites, and cancer cells (Jenssen et al. 2006). On the other
hand, the lack of selectivity represents a disadvantage as they
are often toxic towards eukaryotic cells (hemolytic activity).

In the literature, several mechanisms of action have been
proposed and widely cited (Fig. 1) (Brogden 2005; Chan et al.
2006; Nguyen et al. 2011; Shai 1999). For all the mechanisms,
the initial step is the electrostatic binding of the peptides on the
membrane surface. Depending on the specific molecular de-
terminants of the peptide, it can act by either a detergent-like
mechanism, better known as the micellization mechanism, or
a pore-forming mechanism. For the latter, the peptides induce
the formation of pores or defects that will eventually lead to
cell death. By looking at the different mechanisms of action,
the membrane topology is one of the main features that char-
acterize each mechanism. For example, the peptide has a
transmembrane topology in the barrel-stave and toroidal pore
mechanisms, whereas the peptide lies on the membrane sur-
face in the case of the sinking-raft mechanism.

To develop new synthetic antimicrobial peptides that are
efficient in targeting and killing bacteria and viable from a
pharmacological point of view, the knowledge of the mecha-
nisms of action is of primary importance. In order to achieve
this, several spectroscopic techniques can be used. Overall,
solid-state NMR is the most suited technique because of its
atomic resolution and the possibility to study membrane-

active peptides in interaction with hydrated bilayers (Hong
et al. 2012). In addition, this technique provides information
on both the lipids and the peptides depending on which nu-
cleus is investigated. In comparison with solution-state NMR,
solid-state NMR suffers from a lack of resolution due to an-
isotropic interactions such as chemical shift, dipolar coupling
and quadrupolar coupling. The main strategies employed to
increase the resolution are to perform experiments with ori-
ented samples or to cancel the anisotropic interactions by
spinning the sample rapidly at the magic angle (Drechsler
and Separovic 2003). The first strategy has been extensively
used to study the membrane topology of both membrane pro-
teins and cationic antimicrobial peptides. This technique relies
on aligning all the phospholipids in the same direction relative
to the magnetic field, thus the membrane-interacting peptides
will also be aligned relative to the magnetic field.

The most common methods to prepare oriented samples are
glass plates and bicelles (Fig. 2). Glass plate samples are pre-
pared by mechanically aligning phospholipids between thin
glass plates (Hallock et al. 2002; Yamaguchi et al. 2002).
Bicelles are obtained by mixing long- and short-chain phospho-
lipids. The phospholipids will auto-assemble to form disk-
shaped particles in which the long-chain phospholipids are lo-
calized in the planar region and the short-chain phospholipids are
preferentially localized in the rim (Ram and Prestegard 1988).
However, their morphology is still being debated in the literature
and the reader is referred to these papers for a more exhaustive
review (Durr et al. 2013; Harroun et al. 2005; Triba et al. 2005).
When the bicelles are placed in an external magnetic field, they
spontaneously orient with their normal perpendicular relative to
the magnetic field. This is due to the negative diamagnetic sus-
ceptibility (Δχ) of the phospholipids that forces them to align
their principal axis perpendicular to the magnetic field (Marcotte
et al. 2006). It is important to mention that the formation and
orientation of bicelles in the magnetic field is only possible if the
sample is prepared according to specific conditions of long-
chain/short-chain phospholipids molar ratio (q) and hydration
level (Raffard et al. 2000). Furthermore, the temperature of anal-
ysis is also important for the formation and alignment of bicelles.

eropladioroTevats-lerraB

Sinking raft

Pore formationCarpet-like

MicellesFig. 1 Examples of mechanisms
of action proposed for natural
antimicrobial peptides. Peptides
can either destroy the bacterial
cell membrane bymicellization or
induce pore formation. Adapted
from Chan et al. 2006 and
reproduced with permission
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Orientation of the bicelles relative to the external magnetic field
can be flipped from perpendicular to parallel by adding compo-
nents that will confer a positive anisotropic magnetic suscepti-
bility (Δχ) to the phospholipids such as the amphiphilic aromatic
1-naphtol or salts of lanthanides (Prosser et al. 1998; Sanders
et al. 1993). More recently, bicelles have been designed to orient
with their normal parallel to the magnetic field without adding
external components. To achieve this, the long-chain phospho-
lipids have been replaced by chemically modified phospholipids
having a biphenyl group in one of the two acyl chains (Diller
et al. 2009; Loudet et al. 2007, 2010; Park et al. 2008; Tan et al.
2002). There are some advantages to using bicelles over glass
plates (De Angelis and Opella 2007). Indeed, the sample prepa-
ration is easier, the hydration level is higher and they are not
prone to dehydration during the acquisition time. However, glass
plate samples allow more flexibility in the lipid composition,
quantity of peptides and temperature of analysis.

Phosphorus-31

Phosphorus is a convenient nucleus to study due its 100 % nat-
ural abundance and its spin of ½ (Seelig 1978; Seelig and Seelig
1980). Because each phospholipid contains a phosphorus nucle-
us in their polar headgroup, 31P solid-state NMR is a useful
technique for monitoring the effects induced by the interaction
with cationic antimicrobial peptides. However, experiments per-
formed on unoriented samples such as multilamellar vesicles
give information on the dynamics of the polar headgroups and
the shape of the vesicles. In order to characterize the perturba-
tions or defects induced by the peptides, experiments must be
performed on glass plate samples. In comparison with
multilamellar vesicle samples, these samples are less hydrated
and there is the presence of electrostatic interactions between
the glass plates and the first layers of phospholipids.
Consequently, both the bilayer fluidity and lipid dynam-
ics are decreased and this helps to stabilize transient
membrane deformations or defects induced by mem-
brane active peptides (Bertelsen et al. 2012; Kim et al.
2009; Wi and Kim 2008). The spectral lineshapes can

be indicative of the mode of perturbation and can help
to determine the mechanism of action of the peptide.

For example, our group has studied some cationic analogues
designed from a base 14-mer peptides and the results have
shown that both the analogues having either a α-helical confor-
mation or forming intermolecularβ-sheet structures significantly
perturb the alignment of the phospholipids mechanically orient-
ed between glass plates (Fillion et al. 2014). For the β-
aggregated peptides, the results were unexpected because these
analogues are unable to induce the release of calcein confined
within dimyristoylphosphatidylcholine (DMPC) liposomes
(Lorin et al. 2011). In order to better characterize the defects
induced by the peptides, Kim et al. have developed a spectral
simulation approach that can be applied to two types of mem-
brane deformations, namely toroidal pores and membrane thin-
ning (Wi and Kim 2008). We have performed spectral simula-
tions by using their approach, and these helped to identify the
type of membrane deformations induced by the peptides. In the
case of the α-helical peptides, the experimental spectra were
adequately simulated with defects that consist of a pore radius
of 10 Å whereas, for the aggregated peptides, the experimental
spectra were simulated with an ellipsoid deformation (Picard
et al. 1999). These results are in agreement with previous studies
indicating that only the α-helical peptides have a pore-forming
ability in interaction with DMPC vesicles (Lorin et al. 2011).
This type of experiment has been conducted by the group of
Vosegaard to characterize the type of deformations induced by
novicidin and alamethicin (Bertelsen et al. 2012), by the group of
Hong to study tachyplesin and its linear derivatives (Doherty
et al. 2006), by the group of Ramamoorthy to study MSI-78
andMSI-694which derive frommagainin 2 andmelittin, respec-
tively (Ramamoorthy et al. 2006), and by the group of Separovic
to study antimicrobial peptides, isolated from different frog spe-
cies, in interaction with bicelles (Marcotte et al. 2003).

Nitrogen-15

15N solid-state NMR has been extensively used to determine
the membrane topology of both membrane proteins and
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Fig. 2 a Disk-shaped bicelles aligned with their normal perpendicular
relative to the external magnetic field. The long-chain phospholipids
(DMPC) are localized in the flat region whereas the short-chain
phospholipids (DHPC) are localized in the rim region. b Phospholipids

mechanically oriented between glass plates. There are thousands
of bilayers of lipids between two glass plates and there is a water layer
between the bilayers
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membrane-active peptides. However, labeling of the peptides
is required because of the low natural abundance of this nu-
cleus. In the case of peptides adopting a α-helical conforma-
tion, 15N chemical shift values obtained with oriented samples
can be correlated with peptide topology because of the orien-
tational dependence of the chemical shift interaction, as
shown in Fig. 3. Indeed, for a peptide that sits on the mem-
brane surface, the 15N chemical shift value is approximately
70 ppm whereas, for a peptide having a transmembrane topol-
ogy, the 15N chemical shift value is approximately 200 ppm
(Bechinger and Sizun 2003). The rationale is that the 15N
chemical shift tensor element σ33 makes an angle of 17° rel-
ative to the N–H bond and that the N–H bonds are approxi-
mately parallel relative to the principal axis of the helix
(Bechinger et al. 2004; Strandberg and Ulrich 2004). In order
to determine a more precise topology, it is possible to perform
experiments with a separated-local-field (SLF) method such
as 2D 15N/1H PISEMA (Ramamoorthy et al. 2004), as shown
in Fig. 4. Depending on the membrane topology of the α-
helical peptide, the spectral pattern, which is called the PISA
wheel, is unique and well known for each orientation (Franzin
and Marassi 2005). In contrast with the conventional 1D ex-
periment, this experiment can give helpful insights on the
membrane topology of peptides or proteins having a β-sheet
conformation. Analogously to nitrogen-15, solid-state NMR
experiments can be performed with peptides having a 13C-
labeled carbonyl group in order to determine the membrane
topology of α-helical peptides because of the orientational
dependence of the 13C chemical shift (Smith et al. 1994).

This technique has been applied for the base 14-mer pep-
tide in interaction with DMPC oriented between glass plates
and the chemical shift measured suggests that the peptide sits
on the membrane surface (Ouellet et al. 2007). 15N 1D exper-
iment has been used to determine the qualitative orientation of
cationic antimicrobial peptides in membrane such as
pleurocidin (Mason et al. 2006), dermadistinctin (Verly et al.
2009), maximin-4 (Heinzmann et al. 2011). When a peptide

has several amino acids that are 15N labeled, it is possible to
perform SLF experiments. This has been done by De Angelis
et al. (2011) for the cationic antimicrobial peptides piscidin 1
(De Angelis et al. 2011). This peptide displays antimicrobial
and hemolytic activity and it is a candidate of great interest
because of its tolerance to high salt concentrations. Membrane
topology of this peptide has been determined in samples of
phospholipids mechanically oriented between glass plates and
bicelles. They have shown that the membrane interaction and
the topology of this peptide are different whether the model
membranes mimic the membrane of eukaryotic (zwitterionic)
or bacterial cells (anionic). Indeed, analysis of the results ob-
tained by 15N NMR with piscidin 1 in interaction with zwit-
terionic bicelles demonstrates that the peptide is tilted at 57°
relative to the bilayer normal and/or is in equilibrium between
bound and unbound states. On the other hand, analysis of the
results obtained with piscidin 1 in interaction with anionic
bicelles reveals that the peptide is located on the membrane
surface. In addition, the membrane topology of piscidin 1
determined in bicelles is similar to the one previously deter-
mined with glass plates, thus demonstrating the viability of
bicelles to study membrane active peptides. Other examples
include a peptide segment of cathelicidin LL-37 (Thennarasu
et al. 2010), arenicin (Salnikov et al. 2011) and ampulosporin
A (Salnikov et al. 2009).

Nitrogen-14 is a high abundant nucleus with a spin of 1.
Therefore, 14N solid-state NMR experiments do not require
specific labeling and the spectra are dominated by the aniso-
tropic quadrupolar interaction. For phospholipids having a
choline polar head group, the 14N quadrupolar splitting is
correlated with the electrostatic potential on the membrane
surface. Consequently, performing 14N solid-state NMR
experiments with aligned samples allows to investigate both
electrostatic interactions between phosphatidylcholine (PC)
phospholipids and cationic peptides and the oligomerization
process of peptides, thus shedding light on the mechanism of
action (Ramamoorthy et al. 2008).

BA

Fig. 3 a 15N chemical shift tensor elements σ11, σ22 andσ33 for an amino
acid. b 15N chemical shift value for a α-helical peptide that adopts a
transmembrane topology and 15N chemical shift value for a α-helical

peptide that sits on the membrane surface. Adapted from Bechinger and
Sizun 2003 and reproduced with permission
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Fluorine-19

As for the phosphorus-31 nucleus, fluorine-19 has a 100 %
natural abundance and a spin of ½ but its gyromagnetic ratio is
close to that of the proton (Chen et al. 2013). In addition,
fluorine-19 is well suited for in-cell NMR due to the absence
of background signal in biological samples (Koch et al. 2012).
The high sensitivity of this nucleus allows studying antimi-
crobial peptides over a large range of concentrations, and this
is an important point since the membrane topology can be
dependent on peptide concentration. Because fluorine atoms
are absent in natural amino acids, the latter must be chemically
modified to contain fluorine atoms. In general, the strategy
relies on replacing a CH3 group by a CF3 group or simply
adding a CF3 group. In the literature, there are several exam-
ples of fluorinated amino acids that can be incorporated into
the primary sequence during the peptide synthesis (Durr et al.
2008; Grage et al. 2008; Mikhailiuk et al. 2006; Tkachenko
et al. 2013). In the precise case of macroscopically oriented
samples, the spectral lineshape will depend on the substitution
pattern of the labeled amino acid (Koch et al. 2012). For a
peptide having an amino acid with only one fluorine atom, the
interaction observed is the chemical shift anisotropy (CSA).
Because the CSA is non-axially symmetric with a mono-
fluorine substituent, it is impossible to describe the CSA by
a unique angle. Instead, it is more convenient to incorporate
19F-labeled amino acids containing a CF3 group. On the spec-
trum, the CF3 group gives rise to a triplet, thus allowing the
determination of both the axially symmetric dipolar coupling
and the axially symmetric CSA. Measuring these interactions
give angular constraints that are useful for determining the

membrane topology of membrane-active peptides. This tech-
nique has been employed to study the membrane topology of
several antimicrobial peptides such as PGLa (Afonin et al.
2008; Ieronimo et al. 2010), gramicidin S (Grage et al.
2006), MSI-103 (Strandberg et al. 2008; Toke et al. 2004)
and BP100 (Wadhwani et al. 2014). More recently, Ulrich’s
group have used fluorine-19 solid-state NMR spectroscopy to
study the re-alignment behavior of PGLa, an antimicrobial
peptide from the magainin family and gramicidin S, an anti-
microbial peptide isolated from Bacillus brevis (Afonin et al.
2014). More specifically, they have shown that the re-
alignement was dependent on the phospholipid/peptide molar
ratio and the temperature for both peptides. Moreover, the re-
alignement of these peptides was influenced by other factors
such as the length of the acyl chains, the presence of charged
lipids and the presence of cholesterol, thus demonstrating the
importance of the nature of the phospholipids in the mem-
brane interaction.

Deuterium

Deuterium NMR is a well-established method to probe the
changes occurring in the hydrophobic core of the bilayer.
Due to the low natural abundance of deuterium, hydrogen
atoms of the acyl chains must be replaced by deuteron atoms.
For this nucleus, the dominant interaction is the quadrupolar
interaction which results from the coupling between the nu-
cleus quadropolar moment and electric field gradients. In the
specific case of a spin-1 nucleus, there are two spin transitions
possible that give rise to a doublet of resonances on the

Fig. 4 a Resonance patterns in 2D PISEMA experiments for a α-helical
peptide tilted at different angles relative to the bilayer normal. b
Resonance patterns in 2D PISEMA experiments for a peptide adopting

a β-sheet conformation tilted at different angles relative to the bilayer
normal. Adapted from Franzin and Marassi 2005 and reproduced with
permission
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spectrum. The separation between these peaks is termed the
quadropolar splitting (ΔνQ), and its value gives information
on the order of the acyl chains. In general, an increase in the
value of the quadrupolar splitting is associated with order in
the acyl chains. Phospholipids in hydrated bilayers are animat-
ed with axially symmetric motions and, therefore, the quadru-
polar splitting is given by:

ΔγQ ¼ 3

2

e2qQ

h
SCD

3cos2θ−1
2

where e2qQ/h is the quadrupolar coupling constant (~170 kHz
for aliphatic C-D) (Davis 1983), θ is the angle between the
bilayer normal and the magnetic field, and SCD is the order
parameter of a deuterium bond vector. The latter is the product
of several contributions such as trans-gauche isomerizations
and anisotropic reorientation of the whole phospholipid mol-
ecules. In addition, there is evidence that the bilayer thickness
can be correlated with the order parameter SCD (Salnikov et al.
2009). Performing deuterium experiments with oriented sam-
ples leads to a better spectral resolution, allowing the possibil-
ity to obtain information on each segment of the acyl chain.
However, it is possible to obtain a similar resolution with
multilamellar vesicle samples by applying the dePaking tech-
nique (Bloom et al. 1981; Lafleur et al. 1989; Sternin et al.
1983).

As an example, the Separovic group has studied the mem-
brane interactions of aurein 1.2, citropin 1.1 and maculatin 1.1
(Balla et al. 2004). These antimicrobial peptides, isolated from
Australian tree frogs, adopt a α-helical amphipathic confor-
mation. They have performed deuterium NMR experiments
on oriented samples and noticed that the shorter peptides,
aurein 1.2 and citropin 1.1, trigger a decrease of the quadru-
polar splitting whereas the longer peptide, maculatin 1.1, does
not significantly perturb the quadrupolar splitting. These re-
sults give insights into the membrane topology. More specif-
ically, the shorter peptides may be located on the membrane
surface whereas the longer peptide may adopt a transmem-
brane topology. Deuterium NMR experiments performed on
oriented samples have also been useful in determining the
membrane interaction of synthetic 14- and 21-mer peptides
(Ouellet et al. 2006), protegrin-1 (Buffy et al. 2004), magainin
2 (Kim et al. 2009) and aurein 3.3 (Kim et al. 2009). More
recently, pulse sequences based on SLF experiments such as
2D HIMSELF/HERSELF have been developed. More specif-
ically, these pulse sequences may be used to correlate the 13C
chemical shift and the 13C-1H dipolar coupling for each 13C
site of the phospholipids. They require no isotopic labeling
(13C natural abundance), and they provide information on
both the phospholipid structure and the perturbations induced
by antimicrobial peptides (Dvinskikh et al. 2007).

Deuterium NMR can also be used to obtain information on
the peptide. In order to do this, a deuterated alanine residue is
incorporated in the sequence during the peptide synthesis.
Both the conformation and the membrane topology of the
peptide can be studied because the methyl group is linkedwith
the peptide backbone and the Cα–Cβ bond is oriented at a
precise angle relative to the principal axis of the helix
(Bechinger and Salnikov 2012). The methyl group gives rise
to a doublet of resonance because the three deuterium atoms
are chemically equivalent due to free rotation around the Cα–
Cβ bond (Batchelder et al. 1983). This type of experiment has
notably been conducted on MSI-103, a synthetic peptide de-
signed from PGLa and displaying a high antibacterial activity
(Strandberg et al. 2012). Orientation of this peptide has been
determined in different membrane compositions by varying
the length of acyl chain, degree of saturation, nature of lipid
headgroup and phospholid/peptide molar ratio. The results
indicate that the membrane topology of MSI-103 is dependent
on the spontaneous curvature of the lipids. Indeed, in mem-
brane mimicking systems made of unsaturated lipids, the pep-
tide lies on the membrane surface at all phospholipid/peptide
molar ratios. In contrast, the peptide in interaction with mim-
icking systems made of saturated lipids adopts a tilted state at
higher phospholipid/peptide molar ratios. This technique has
also been used to study the synergistic transmembrane inser-
tion of two antimicrobial peptides from the magainin family,
PGLa and maganin 2 (Strandberg et al. 2009), and to study the
membrane topology of mastoparan X in interaction with
bicelles (Whiles et al. 2001).

In addition, the determination of a precise membrane to-
pology can be achieved by combining this technique with 15N
NMR. Analysis of the results can reveal the combination of
the pairs of tilt and rotational pitch angles that are possible.
This has been done on the cationic antimicrobial peptide
phylloseptin-2 (PS-2) (Bechinger et al. 2011). More specifi-
cally, 15N and 2H NMR experiments were performed on ori-
ented samples and the combination of the results revealed that
there were 5 possible combinations which are individually
associated with a specific topology. In order to determine the
right topology, other measurements have been performed to
restrict even more the rotational pitch angle values and the
results indicate that the peptide is preferentially located on
the membrane surface. Other valuable examples include the
study of the peptaibol alamethicin (Bertelsen et al. 2009), the
antibiotic heterodimeric peptide distinctin (Resende et al.
2009) and some derivatives of the transmembrane model pep-
tide WALP23 (Vostrikov et al. 2011). Along with oriented
solid-state NMR, other techniques that require oriented or
supported lipid bilayers may be used to study the membrane
interaction of antimicrobial peptides such as surface plasmon
resonance (SPR), dual polarization interferometry (DPI) and
oriented circular dichroism (OCD) (Besenicar et al. 2006; Hall
et al. 2014; Lee et al. 2010). In particular, OCD has been
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shown to be useful for determining the membrane topology of
α-helical peptides (Burck et al. 2008; Sani et al. 2012).

Concluding remarks

The membrane topology is of primary importance to better
understand the mechanism of action of peptides displaying
antimicrobial activity. Both the membrane topology and the
perturbations induced by membrane-active peptides can be
studied using solid-state NMR. The versatility of the tech-
nique has been demonstrated for many systems such as
bicelles and glass plates, and comes with the possibility to
exploit diverse experiments involving different nuclei (Hong
and Su 2011). The 31P and 2H nuclei are useful for determin-
ing the local perturbations induced by the peptides in interac-
tion with phospholipids. The location of the peptide in the
membrane can be assessed by performing several solid-state
NMR experiments. The 15N chemical shift measured with
labeled peptides is a good indicator of the orientation of the
peptide relative to the bilayer normal. In addition, it is possible
to estimate the peptide tilt angle with the PISEMA pulse se-
quence. More recently, determination of peptide membrane
topology has been done by measuring both the axially sym-
metric dipolar coupling and the axially symmetric CSA of the
highly sensitive 19F nucleus. Furthermore, combination of
several experiments can give valuable information on the ori-
entation and depth of insertion of the peptides, thus allowing
the determination of a more precise topology.
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