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Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by Fusarium fungi. ZEN has endocrine disruptor
effects and could impair the hormonal balance. Here, we aimed at investigating possible effects of ZEN on
metabolism-related pathways and its relation to epigenetic mechanisms in breast adenocarcinoma (MCF7) and breast
epithelial (MCF10F) cells. Using the MTT and neutral red uptake (NRU) cell viability tests, IC50 values of ZEN after
24 h were found to be 191 μmol/L and 92.6 μmol/L in MCF7 cells and 67.4 μmol/L and 79.5 μmol/L in MCF10F
cells. A significant increase on global levels of 5-methylcytosine (5-mC%) was observed for MCF7 cells, correlating
with the increased expression of DNA methyltransferases. No alterations were observed on levels of 5-mC% and
expression of DNA methyltransferases for MCF10F cells. Further, at least threefold upregulation compared to control
was observed for several genes related to nuclear receptors and metabolism in MCF7 cells, while some of these genes
were downregulated in MCF10F cells. The most notably altered genes were IGF1, HK2, PXR, and PPARγ. We
suggested that ZEN could alter levels of global DNA methylation and impair metabolism-related pathways.
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Abbreviations
5-mC 5-Methylcytosine
AhR Aryl hydrocarbon receptor
Caco-2 Human colorectal adenocarcinoma cell line
CHO-K1 Chinese hamster ovary cell line
DNMT1 DNA methyltransferase 1
ERα Estrogen receptor alpha
ERβ Estrogen receptor beta
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
GLUT2 Glucose transporter 2
HK2 Hexokinase 2
IC50 50% of inhibitory concentration
IGF1 Insulin-like growth factor 1
L-FABP Liver fatty acid-binding protein
MCF7 Human breast adenocarcinoma cell line
MCF10F Human breast epithelial cell line
MGMT O6-Methylguanine-DNA methyltransferase

MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5
diphenyltetrazolium bromide, a tetrazole]

NRU Neutral red uptake
PPARɣ Peroxisome proliferator-activated

receptor gamma
PXR Pregnane X receptor
SH-SY5Y Human neuroblastoma cell line
SREBP1c Sterol regulatory element-binding protein 1

Introduction

Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin
produced by Fusarium species that contaminates cereals and
other crops (Battorico 1998). ZEN binds to estrogen receptors
(ER) and causes alteration of hormone production and repro-
ductive toxic effects (Shier et al. 2001; Frizzell et al. 2011).
Exposure to ZEN results in inhibition of protein and DNA
synthesis, and triggers endoplasmic reticulum and mitochon-
drial stress, lipid peroxidation, oxidative damage, and apopto-
sis (Abid-Essefi et al. 2004; Ayed-Boussema et al. 2007;
Bouaziz et al. 2008; Banjerdpongchai et al. 2010; Cai et al.
2019; Cheng et al. 2019; Kowalska et al. 2019; Wang et al.
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2019). Moreover, ZEN has immunotoxic, hepatotoxic, and
nephrotoxic properties (Maaroufi et al. 1996; Bouaziz et al.
2008; Gao et al. 2013; Lee et al. 2013; Hueza et al. 2014; Jia
et al. 2014; Pistol et al. 2015; Islam et al. 2017; Gao et al.
2018; Zhang et al. 2018). There is limited evidence for the
carcinogenicity of ZEN in experimental animals and it is clas-
sified as Group 3 (IARC 1993).

DNAmethylation, one of the most studied epigenetic mod-
ifications, plays crucial roles in aging, cell proliferation, and
various diseases such as cancer and diabetes (Baylin 1997;
Richardson and Yung 1999; Robertson and Wolffe 2000;
Moggs et al. 2004; Dean et al. 2005; Ulrey et al. 2005;
Jones and Baylin 2007; Kulis and Esteller 2010; Anderson
et al. 2012; Bansal and Pinney 2017). DNA methylation con-
tributes to alterations in gene expression of key molecular
pathways in several ways, including global genomic DNA
hypomethylation, hypomethylation of individual genes, and
tumor suppressor gene silencing through hypermethylation
of CpG islands of genes (Baylin et al. 1986; Watson and
Goodman 2002). Especially, DNA methyltransferase 1
(DNMT1) manages maintenance of methyltransferase activity
that conserves the methylation state across DNA replication
(Pradhan et al. 1999; Das and Singal 2004). In this case, O6-
methylguanine-DNA methyltransferase (MGMT) repairs one
of the most mutagenic alkylations at the O6-position of gua-
nine nucleotide to cancer prevention by transfer of the methyl
group from guanine to a cysteine residue (Pegg et al. 1995). It
appears that DNMT1 and MGMT have crucial roles in cell
cycle process, cell proliferation, and DNA repair (Kleihues
et al. 1983; Pfohl-Leszkowicz and Dirheimer 1986; Jaenisch
and Bird 2003; Guo et al. 2004; Sabharwal and Middleton
2006; Pathania et al. 2015; Wang and Li 2017). Although
ZEN has genotoxic properties in some test systems (JECFA
2000), reveals DNA adduct formation in treated mice (Pfohl-
Leszkowicz et al. 1995a; Grosse et al. 1997), and causes DNA
damage, it has been suggested that mutagenic and carcinogen-
ic properties of ZEN were still controversial (Ouanes-Ben
Othmen et al. 2008; Abassi et al. 2016; Mandal et al. 2018).
However, there are few studies that have limited relevance to
epigenetic modifications including global or gene-specific
DNA methylation and histone modifications caused by ZEN
(Kouadio et al. 2007; Zhu et al. 2014a; Zhu et al. 2014b; Han
et al. 2015; Ren et al. 2015; Zhang et al. 2017).

Breast cancer is one of the most common diseases in
women, and obesity is one of the currently known risk
factors of breast cancer (Lorincz and Sukumar 2006;
Székely et al. 2010). Liu and Lin (2004) have also shown
that commercial form of ZEN was able to transform human
normal breast epithelial cell and increase cell proliferation
in a dose-dependent manner. In the view of these data, it
has been thought that ZEN exposure could be related to
mechanisms of breast cancer progression. We aimed to
investigate the global levels of DNA methylation and the

related enzymes (DNMT1 and MGMT) to observe the role
of epigenetic alterations in the ZEN toxicity. Moreover, we
showed effects of ZEN on express ion levels of
metabolism-related genes and nuclear receptor genes in
human breast adenocarcinoma (MCF7) and human breast
epithelial (MCF10F) cell lines.

Materials and methods

Chemicals

ZEN (99% purity) was obtained from Sigma-Aldrich (St
Louis, Missouri, USA). A stock solution of ZEN
(1000 μmol/L) was dissolved in dimethyl sulfoxide (DMSO;
Sigma-Aldrich) in a sterile glass volumetric flask and kept at
− 20 °C. Cell culture media and all other supplements were
purchased from Wisent Bioproducts (Saint-JeanBaptiste, QC,
Canada) and sterile plastic materials were purchased from
Nest Biotechnology (Jiangsu, China). DNA, RNA isolation
kits, and cDNA synthesis kit and syber green master mix were
obtained fromRoche Life Sciences (Penzberg, Upper Bavaria,
Germany). 5-Methylcytosine (5-mC) DNA ELISA kits were
purchased from Epigentek (Farmingdale, NY). Primers for
gene expressions were obtained from Sentromer DNA
Technologies (Istanbul, Turkey).

Cell culture and treatments

The human breast adenocarcinoma MCF7 (ATCC® HTB-
22™) and human breast epithelial MCF10F cell lines
(ATCC® CRL-10318™) were obtained from American
Type Culture Collection. MCF7 cells were maintained in
Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-
12 (DMEM F-12) medium containing 0.01 mg/mL human
recombinant insulin, 10% heat-inactivated fetal bovine se-
rum (FBS), and penicillin–streptomycin (100 U–100 μg/
mL) at 37 °C in a humidified atmosphere with 5% CO2.
MCF10F cells were cultured in DMEM F-12 Ham (Sigma,
D8900) medium containing 0.006 g/L CaCl2·2H2O
(Sigma-Aldrich, C8106) and 1.2 g/L NaHCO3 (Sigma,
S5761) supplemented with 5% horse serum, 20 ng/mL epi-
dermal growth factor, 100 ng/mL cholera toxin, 0.01 ng/
mL insulin, 500 ng/mL hydrocortisone (Sigma, H4001),
and penicillin–streptomycin (100 U–100 μg/mL) at 37 °C
in a humidified atmosphere with 5% CO2. Subculturing
was performed when the cells reached 70–80% confluence
(every 2–3 days) using trypsinization. Exposure to ZEN
was observed at the 8th to 16th round of subculture for
both cell lines.

For gene expression and DNA methylation analysis, 1 ×
106 were cultured in a 25-cm2 culture flask for 24 h in CO2

incubator prior to treatment. ZEN was treated in the
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concentrations of 1, 10, and 50 μmol/L inMCF7 cells and 0.1,
1, and 10μmol/L inMCF10F cells, and 1%DMSO (exposure
concentration in culture media) was used as solvent control in
both cells. Cells were trypsinized, collected, and counted by
Luna cell counter (Virginia, USA) with trypan blue staining.
For all concentrations, it was tested in triplicates and each test
was repeated twice.

Based on our cytotoxicity results and also previous studies
in different cell types (Venkataramana et al. 2014; Sang et al.
2016; Tatay et al. 2014; Xie et al. 2017; Zhou et al. 2017), in
the present study we selected 1, 10, and 50 μmol/L and 0.1, 1,
and 10 μmol/L exposure concentrations of ZEN for 24 h for
MCF7 and MCF10F cells, respectively. We could not apply
the highest dose for the MCF10F because of the high cell
death; therefore, we chose the 0.1 μmol/L concentration for
the lowest and third concentration for the exposure of ZEN in
MCF10F cells.

Cell viability

Effects of ZEN on cell viability were assessed by MTT
[3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bro-
mide, a tetrazole] and neutral red uptake (NRU) cytotoxicity
tests. In the principle of the MTT test, yellowMTT is reduced
to purple formazan in the mitochondria of living cells by the
enzyme succinate dehydrogenase and it measures cell viabil-
ity and proliferation (Mosmann 1983; Alley et al. 1988). The
NRU test is a cell viability test method based on reduction in
the uptake of neutral red dye into the lysosomes of cells
(Borenfreund and Puerner 1985; Repetto et al. 2008).

For cytotoxicity tests, cells (1 × 104 in 100 μL medi-
um) were seeded in 96-well plates and exposed to ZEN in
the range of 7.81–250 μmol/L and 3.12–100 μmol/L of
concentrations for MCF7 and MCF10F, respectively, and
1% DMSO (exposure concentration in culture media) was
used as solvent control for 24 h. The absorbance of
formed colored solution was measured at 590 nm for
MTT test and 540 nm for NRU test using a microplate
spectrophotometer system (Biotek-Epoch, Winooski,
USA). The cytotoxicity results were calculated as a rela-
tive percentage to the control cells and expressed as 50%
of inhibitory concentration (IC50) of the compound that
caused 50% inhibition of the enzyme activity in the cells.

Global DNA methylation analysis

Genomic DNAwas isolated from MCF7 and MCF10F cells
using the High Pure PCR Template Preparation kit (Roche
Applied Science, Mannheim, Germany) according to the
instructions provided by the manufacturer. 5-mC analysis
was performed using the MethylFlash™ Methylated DNA
Quantification kit (Epigentek, Farmingdale, NY) according
to the instructions provided by the manufacturer using

100 ng of input genomic DNA. DNA samples were treated
with binding solution and incubated at 37 °C. Plate was
washed with buffer. DNA samples were incubated with
anti-5-mC monoclonal antibody and detection antibody.
After addition of enhancer and developer solution, the ab-
sorbance was read at 450 nm using a microplate spectropho-
tometer system (Biotek-Epoch, Winooski, USA).

Gene expression analysis

Gene expressions of DNA methyltransferase genes in-
cluding DNA methyltransferase 1 (DNMT1), O-6-
methylguanine-DNA methyltransferase (MGMT), and
metabolism-related genes including glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), glucose transporter
2 (GLUT2), insulin-like growth factor 1 (IGF1), liver
fatty acid-binding protein (L-FABP), sterol regulatory
element-binding protein 1 (SREBP1c), hexokinase 2
(HK2), and nuclear receptor genes including pregnane
X receptor (PXR), aryl hydrocarbon receptor (AhR), per-
oxisome proliferator activated receptor gamma (PPARɣ),
estrogen receptor alpha (ERα), and estrogen receptor be-
ta (ERβ) were performed by real-time PCR analysis.
Total RNA was extracted from control and ZEN-treated
groups in MCF7 and MCF10F cell lines using a High
Pure RNA Isolation kit (Roche Life Science) according
to the instructions provided by the manufacturer. First-
strand cDNA was prepared from 500 ng of total RNA
with the mixture of anchored-oligo(dT) and random
hexamer primers by Transcriptor First Strand cDNA
Synthesis kit (Roche Life Science). Real-time PCR reac-
tions were performed using LightCycler® 480 Sybr
Green master mix (Roche, Mannheim, Germany) under
the following cycling conditions: 95 °C for 10 min,
followed by 45 cycles of 95 °C for 30 s, annealing tem-
perature for 30 s, 72 °C for 40 s, melting curve, and
cooling. The primer sequences and the annealing temper-
atures of the genes are provided in Table 1. Ct of real-
time PCR specific for nuclear receptor and metabolism-
related genes and the reference gene (β-actin) were de-
termined. The relative expression was evaluated by the
comparative Ct method.

Statistical analysis

Global methylation levels (5-mC%) and cytotoxicity results
were represented as mean ± standard deviation (SD).
Statistical analysis was performed by ANOVA followed by
Dunnett’s multiple comparison test using SPSS version 21.0
for Windows (IBMAnalytics, New York, USA). P values less
than 0.05 and 0.001 were selected as the levels of significance.
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Results

Effects of ZEN on cell viability in MCF7 and MCF10F
cells

To assess the effects of ZEN on cell viability, cells were
treated with 7.81–250 μmol/L and 3.12–100 μmol/L of
concentrations for MCF7 and MCF10F, respectively, for
24 h then analyzed by MTT and NRU tests. IC50 value
of ZEN was determined as 191 and 92.6 μmol/L in
MCF7 cells and 67.4 and 79.5 μmol/L in MCF10F cells
for 24 h by MTT and NRU tests, respectively. Figure 1a
and b shows that treatments of ZEN for 24 h decreased
the cell viability of MCF7 cells and MCF10F cells in
comparison to the vehicle control group for MTT and
NRU tests, respectively.

Effects of ZEN on global DNA methylation in MCF7
and MCF10F cells

Fifty micromoles per liter of ZEN exposure resulted in a
significant increase in 5-mC% status (8.14-fold,
p ˂ 0.001) compared to control group in MCF7 cells
for 24 h (Fig. 2a). However, we found no changes in
levels of 5-mC% in MCF10F cells after exposure to
ZEN for 24 h (Fig. 2b). Figure 3a and b shows an in-
crease on the expression levels of DNMT1 (> 4.28-fold)
and MGMT (> 4.72-fold) genes significantly after 24-h
exposure to ZEN in MCF7 cells. However, expression
levels of DNMT1 and MGMT showed no changes in
MCF10F cells (Fig. 3c, d).

Effects of ZEN on gene expression in MCF7
and MCF10F cells

In Fig. 4a, our data showed that exposure to ZEN significantly
increased expression levels ofGAPDH (> 5.19-fold), IGF1 (>
11.2-fold), L-FABP (> 6.19-fold), HK2 (> 19.46-fold), PXR
(> 6.4-fold), PPARɣ (> 5.05-fold), ERα (> 3.25-fold), and
ERβ (> 5.72-fold), while expression levels of GLUT2,
SREBP1c, and AhR did not show any changes in MCF7 cells.
However, expression levels ofGAPDH (< 5.88-fold), AhR (<
3.03-fold), and PPARɣ (< 5.88-fold) significantly decreased
while IGF1 (> 8.72-fold) and HK2 (> 2.26-fold) increased af-
ter ZEN exposure for 24 h in MCF10F cells (Fig. 4b). ZEN
did not change expression levels of L-FABP, SREBP1c, PXR,
and ERβ genes in MCF10F cells for 24 h. Additionally, ERα
and GLUT2 were not expressed in MCF10F cells, even in
control samples.

Discussion

ZEN is a non-steroidal estrogenic mycotoxin produced by
Fusarium species. It has been reported that ZEN was well
known as an estrogenic exposure source in the environment
and it could be accepted as one of the important endocrine
disruptors. Main source of exposure to ZEN consists of food
such as grain, breakfast cereals, bread, wine, beer, and dried
fruits; therefore, ZEN affects human and animal health
through the food chain (Kriszt et al. 2012; EFSA 2017). It
has been shown that ZEN could induce various health prob-
lems such as alteration of hormone levels, reproductive and

Table 1 Primers used real-time PCR analysis of metabolism-related genes and DNAmethyltransferases and the corresponding annealing temperatures

Gene name Forward (5′–3′) Reverse (5′–3′) Ta (°C) Reference

DNMT1 CCTCCAAAAACCCAGCCAAC TCCAGGACCCTGGGGATTTC 60 Ahmadnejad et al. 2017

MGMT TGCACAGCCTGGCTGAATG GGTGAACGACTCTTGCTGGAA 58 Lai et al. 2008

GAPDH GGCCTCCAAGGAGTAAGACC AGGGGTCTACATGGCAACTG 57 Hao et al. 2014

GLUT2 ACAGCCTATTCTAGTGGCAC TTGCTAAAGCAGCAGGACGT 57 Reimer et al. 2004

IGF1 CTCTTCAGTTCGTGTGTGGAGAC CAGCCTCCTTAGATCACAGCTC 58 Srinivasa et al. 2016

L-FABP TGTCGGAAATCGTGCAG GATTATGTCGCCGTTGAGTT 53 Wang et al. 2005

SREBP1c CGCGGAGCCATGGATTGC GGGCTGGGGTAGCCTAAC 59 Reimer et al. 2004

HK2 CAAAGTGACAGTGGGTGTGG GCCAGGTCCTTCACTGTCTC 60 Zhao et al. 2013

PXR CATGAGGGGGGTAGCAAAGC TGCAGGGGATCTCCCTCTTC 59 Ayed-Boussema et al. 2011

AhR TGGACAAGGAATTGAAGAAGC AAAGGAGAGTTTTCTGGAGGAA 54 Ayed-Boussema et al., 2011

PPARɣ CTGAATGTGAAGCCCATTGAA GTGGAAGAAGGGAAATGTTGG 54 Harada et al. 2005

ERα CGACGCCAGGGTGGCAGAGAAAGATT GGCCAAAGGTTGGCAGCTCTCATGTC 65 Jang et al. 2015

ERβ TAGTGGTCCATCGCCAGTTAT GGGAGCACACTTCACCAT 56 Mollerup et al. 2002

β-Actin AACTACCTTCAACTCCAT TGATCTTGATCTTCATTGTG 48 Rosa et al. 2009
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developmental disorders, modulation of cell cycle control,
inflammation, and cancer (Fink-Gremmels and Malekinejad
2007; Zinedine et al. 2007; Escrivá et al. 2015; Kowalska et al.
2016; Gao et al. 2018; Zhang et al. 2018; Wang et al. 2019).

In the present study, we aimed to investigate the effects of
ZEN on the expressions of the genes which are related to
metabolism pathways in breast cell lines; in addition, we ob-
served the effects of ZEN on global DNA methylation. The
MTT test converts yellow MTT tetrazolium salt to purple
formazan crystals by mitochondrial succinate dehydrogenase

in viable cells (Mosmann 1983) while the NRU test deter-
mines the incorporation of neutral red dye into lysosomes of
uninjured cells (Borenfreund and Puerner 1985). ZEN de-
creased cell viability in the concentrations more than
31.25 μmol/L and 25 μmol/L in MCF7 and MCF10F, respec-
tively. IC50 value of ZEN was determined as 191 and
92.6 μmol/L in MCF7 cells and 67.4 and 79.5 μmol/L in
MCF10F cells for 24 h by MTT and NRU tests, respectively.
Venkataramana et al. (2014) have observed effects of 1–
200 μmol/L concentrations of ZEN on cell viability in SH-
SY5Y human neuroblastoma cell line for 24 h. After 24, 48,
and 72 h of ZEN exposure (12.5–100 μmol/L) in ovarian
CHO-K1 cells, it has been shown that the IC50 value was >
100 μmol/L for 24 h (Tatay et al. 2014). In the other study,
ZEN (3–300 μmol/L) treated in HEK-293 human embryo
kidney cells for 24 h and the IC50 value has been determined
as 80 μmol/L by WST-8 assay (Sang et al. 2016).

Investigating epigenetic alterations such as DNA methyla-
tion and histone modifications has been useful biomarkers for
the toxicity assessment of endocrine-disrupting chemicals
(Zhang and Ho 2011; Greally and Jacobs 2013; Casati et al.
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2015; Maqbool et al. 2016). However, there have been limited
studies on epigenetic modifications of ZEN. Our results
showed that 50 μmol/L of ZEN exposure for 24 h increased
the levels of 5-mC% (8.14-fold) in MCF7 cells. Similar to our
results, Zhu et al. (2014a) showed that ZEN increased global
DNAmethylation level in the high-dose group (50 μmol/L) of

mouse oocytes for 12 h. Kouadio et al. (2007) studied the
effects of combinations of Fusarium mycotoxins (ZEN,
deoxynivalenol, fumonisin B1) on the global DNA methyla-
tion and found that ZEN increased the 5-mC% levels in Caco-
2 human intestinal cell line DNA at 40 μmol/L for 24 h. In
ZEN-treated porcine oocytes, levels of 5-mC% increased at
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30 μmol/L of ZEN for 30 h (Han et al. 2015). Although we
observed increases in the levels of 5-mC status in MCF7 cells,
interestingly, we did not find any significant changes after 24-
h exposure to ZEN inMCF10F cells. As correlated with glob-
al DNA methylation results, ZEN induced expression levels
ofDNMT1 andMGMTat 50 μmol/L inMCF7 cells; however,
expressions of these genes did not change in ZEN-treated
MCF10F cells. Similarly to our results in MCF7 cells, Han
et al. (2015) have found that ZEN increased global DNA
methylation level and mRNA levels of DNA methyltransfer-
ases (DNMT3a and DNMT3b) significantly increased com-
pared to control at 30 μmol/L of ZEN in the oocytes.
However, Zhu et al. (2014a) examined gene expressions of

DNA methyltransferases (DNMT1, DNMT3a, DNMT3b, and
DNMT3L) in the ZEN-treated oocytes for 8.5 and 12 h and the
DNMTs expression levels did not differ from the control
group. Therefore, exposure time and different cell culture
could affect alterations on global DNA methylation and gene
expression levels by ZEN. Additionally, several studies have
demonstrated that DNMT1 and MGMT levels were higher in
tumors than in their normal tissues (Pfohl-Leszkowicz et al.
1995b; Pieper 1997; Gerson 2004; Sabharwal and Middleton
2006; Sharma et al. 2009; Shi et al. 2012; Roll et al. 2013; Yu
et al. 2014). Wang and Li (2017) have observed that DNMT1
regulates the cell cycle, proliferation, and apoptosis process.
Increased methyltransferase activity and higher expressions of
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methyltransferases have also been shown in breast cancer cells
(Ottaviano et al. 1994; Roll et al. 2013).

It has been suggested that commercial form of ZEN,
zeranol (Ralgro), accelerated breast cancer cell growth at
low concentrations and induced human normal breast epithe-
lial cell transformation to neoplastic cell (Liu and Lin 2004;
Yuri et al. 2006). Xu et al. (2009, 2010, 2011) have found that
zeranol had mitogenic activity on breast cancer cells and there
was an interaction between leptin and zeranol. It has been
suggested that zeranol promoted proliferation in human breast
cancer cells and obese individuals could have a higher risk of
developing zeranol-induced breast cancer (Xu et al. 2009). In
summary, it is well known that interactions between breast
cancer and obesity have been studied for many years and
zeranol is used as growth promoter for cattle. Therefore, in
the present study, for further analysis we aimed to examine the
effects of ZEN on metabolism-related genes in human breast
epithelial cells.

Altered energy metabolism of cancer cells provides rapid
growing for tumor cells than normal cells using higher rate of
glucose metabolism (Hanahan and Weinberg 2011). Here, we
have observed the effects of ZEN on transformed energy me-
tabolism as a hallmark of cancer in breast cancer cells by
analysis of gene expression levels. Our results showed that
ZEN exposure altered mRNA levels of GAPDH, IGF1, L-
FABP, HK2, AhR, PXR, and PPARγ genes significantly for
24 h in both cell lines. Various studies have shown that
dysregulations in these genes could disrupt carbohydrate and
lipid metabolism and could be associated with both metabolic
dysfunctions and cancer progress (Gordon and Lowe 1985;
Lee et al. 2010; Ahn et al. 2014; Cave et al. 2016; Lee et al.
2017). We observed that IGF1 was significantly upregulated
in both MCF7 and MCF10F cells after 10 μmol/L of ZEN for
24 h. In the present study, our results have shown that all
exposure groups of ZEN significantly increased mRNA levels
of L-FABP and HK2 in MCF7 cells for 24 h, whereas only
10 μmol/L of ZEN increased HK2 expression in MCF10F
cells. Song et al. (2012) observed that differentially expressed
proteins in tumor tissues compared to normal tissue were re-
lated to glycolysis/gluconeogenesis among other pathways,
including GAPDH. Harami-Papp et al. (2016) found that
GAPDH expression was higher in the p53 mutant group be-
tween two breast cancer lines. Ter Braak et al. (2017) have
reported that IGF1 signaling axis plays a major role in tumor-
igenesis and IGF1 overexpression has a strong and significant
proliferative effect and mitogenic potential in mammary gland
tumors. Besides, fatty acid synthase has a crucial role in the
epithelial–mesenchymal transition of breast cancer cells, relat-
ed to cell migration, metastasis, and L-FABP in its downstream
proteins (Li et al. 2014). Furthermore, it has been shown that
L-FABP was upregulated and could play a key role in the
progress of invasiveness and metastasis in human breast can-
cer (Li et al. 2007). HK2 performs the first step in most

glucose metabolism pathways that is overexpressed in many
cancer cell types, and HK2 upregulation is related to the
chemoresistance phenotypes in breast cancer cells (Lyon
et al. 1988; Kaplan et al. 1990; Shinohara et al. 1994;
Mathupala et al. 2009). Gao et al. (2017) have also demon-
strated that HK2 plays a role in the process of inflammation-
driven migration in breast cancer cells.

Interplay between nuclear receptor function and breast can-
cer has been studied for several years, especially estrogen
receptors. After nuclear receptor activation, growth factor sig-
naling pathways could be coordinately activated. Interaction
between nuclear receptors and epithelial cell growth is clini-
cally associated with breast cancer (reviewed in Conzen
2008). Overexpressions of PPARɣ and ERα have proliferative
and antiapoptotic effects in breast cancer (Harvey et al. 1999;
Suzuki et al. 2006). Our results have also shown that ZEN
increased mRNA levels of PPARɣ and ERα in MCF7 cells.
Besides, it has been reported that PPARɣ and ERs play a role
on the regulation of HK2 expression directly (Onishi et al.
2010; Tennessen et al. 2011; Panasyuk et al. 2012).
Moreover, it was observed that after ZEN exposure, PPARɣ
and AhR was downregulated in MCF10F cells. Similar to our
MCF10F results, downregulation of PPARɣ and AhR in mice
has exhibited an increase in mammary adenocarcinomas, duc-
tal hyperplasia, and mammary growth in mammary gland and
primary culture of mammary epithelial cells in carcinogen-
mediated carcinogenesis (Nicol et al. 2004; Miret et al. 2017).

Consequentially, this is the first study to investigate the
effects of ZEN on metabolism-related genes and global
DNA methylation levels in MCF7 and MCF10F cells. Our
findings could contribute that ZEN might affect epigenetic
regulation and could induce progress of breast cancer.
Especially, we found significant dose-related changes of
IGF1, L-FABP, HK2, PXR, and PPARɣ genes in MCF7 cells.
Altered DNA methylation may have resulted in the abnormal
gene expression of the key regulator genes which involve
ZEN toxicity. Furthermore, we also highlight the role of
IGF1, HK2, PXR, and PPARγ genes in the mechanism of
ZEN toxicity.
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