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Abstract
The aim of the present study was to evaluate the occurrence of 23 mycotoxins in beer purchased in Mexico and to assess two
exposure scenarios in the Mexican population through beer consumption. Multi-mycotoxin analysis of a total of 61 different
beers (132 samples) was carried out using UHPLC-MS/MS equipment. Probability density functions were used to describe
mycotoxins contamination. The daily intake of mycotoxins was estimated using a semi-probabilistic approach, applying the
Monte Carlo method. Deoxynivalenol (DON) and its metabolites (deoxynivalenol-3-glucoside (DON3G) and 3-acetyl-
deoxynivalenol (3ADON)) were the mycotoxins found in higher proportions in contaminated samples. None of the other
mycotoxins overpassed the limit of quantification (LOQ) of the method. The combined intake of DON and its analogues ranged
from 5.24 to 86.59 ng kg−1 bw day−1, which represent from 1.20 to 19.83% of the DON TDI. The results suggest that depending
on the individual consumption of beer and depending on the type of beer, the intake of DON via beer could represent a significant
percentage of the tolerable daily intake (TDI).
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Introduction

Beer is the most consumed alcoholic beverage worldwide,
with an annual per capita consumption greater than 100 L in
some European countries (Euromonitor International 2014;
Kirin 2016). Mexico, with a production of 10.5 billion litres,
is the country with the highest export of beer worldwide. In
2016, Mexico beer exports reached $2.814 billion, followed
by Netherlands (1.905 billion), Belgium (1.438 billion) and
Germany (1.307 billion) (INEGI 2017). About 80% of
Mexican beer is exported to the USA, the rest being

distributed to more than 184 countries (Kantar Worldpanel
Mexico 2015; INEGI 2017).

Cereals used in brewing are mainly barley, wheat and corn
(Shetty and Jespersen 2006). These cereals can be subjected to
contamination by different mycotoxins. Barley and wheat are
mainly contaminated by ochratoxin A (OTA), trichothecenes
(deoxynivalenol (DON), nivalenol (NIV), T-2 and HT-2
toxins and zearalenone (ZEN)). Corn is usually infested by
fungi-producing fumonisins (FBs) and aflatoxins (AFs). All
these mycotoxins have been associated with human and ani-
mal diseases (Zain 2011). Alternaria mycotoxins in cereals
have been largely ignored both in Europe and overseas
(Müller and Korn 2013). Alternaria species produces several
mycotoxins, such as alternariol (AOH) and alternariol
monomethyl ether (AME). Strong evidence suggests that they
are genotoxic (Pfeiffer et al. 2007) and mutagenic (Schrader
et al. 2001; Brugger et al. 2006).

The International Agency for Research on Cancer (IARC)
classified AFs as a human carcinogen (class 1) and OTA and
fumonisin B1 (FB1) as possible human carcinogens (class 2B),
and DON, ZEN, NIV and T-2/HT-2 toxins were not classifi-
able as to their carcinogenicity to humans (class 3) (IARC
1993, 2002; FAO/WHO 2006; EFSA 2010b, 2014). The lack
of regulation for Alternaria toxins worldwide is partially due
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to the limited toxicity data available for them. As a conse-
quence, the European Food Safety Authority (EFSA) used
the Threshold of Toxicological Concern (TTC) approach to
evaluate the relative level of concern of Alternaria toxins for
human health. The results demonstrated that dietary exposure
to AOH and AME exceeded the TCC value of 2.5 ng/kg body
weight per day, indicating the need for additional toxicity data
(Arcella et al. 2016; Tralamazza et al. 2018).

The accumulation of mycotoxins in cereals, or derived
foods and feeds, has been sporadically documented in
Mexico, reaching concentrations higher than 1000 μg kg−1

for ZEN in wheat (Gonzalez-Osnaya and Farres 2011),
200 μg kg−1 for AFs in maize and maize products
(Martínez-Flores et al. 2003; Castillo-Urueta et al. 2011),
5.8 μg kg−1 for OTA (Reyes-Velázquez et al. 2008) and
5600 μg kg−1 for FB1 (Robledo et al. 2001) in maize silage.
In Mexico, there is no comprehensive food mycotoxins mon-
itoring program carried out by the governmental agencies
(Guzmán-de-Peña and Peña-Cabriales 2005).

AFs are the only mycotoxins legislated in Mexico, as de-
scribed by the official Mexican norms number NOM-187-
SSA1-2002 NOM-247-SSA1-2008 and NOM-243-
SSA1-2010. The maximum allowed limit of AFs in cereals
for human and animal consumption is 20 μg/kg. In the USA,
AFs (20 μg/kg), DON (1000 μg/kg), FBs (2000–4000 μg/kg)
and patulin (50 μg/kg) have been regulated (USDA 2015).
European regulations on mycotoxin set maximum levels in
foodstuff for 14 compounds (European Commission 2006b;
European Commission 2013). Regulation 1881/2006 estab-
lishes a limit for fumonisin content in maize-based foods (ap-
plicable to beer) intended for human consumption to
1000 μg/kg. However, specific regulations for mycotoxins
in beer do not exist in any of these countries.

Mycotoxin contamination can occur during cereal growth
in the field, during post-harvest storage or during malting
(Bertuzzi et al. 2011). Considering mycotoxins thermal stabil-
ity (AFs, ZEN, and DON) and solubility in water (DON and
FBs), they can be partially transferred from cereals to malt and
then to beer (Rodríguez-Carrasco et al. 2015). Several authors
have studied the occurrence of mycotoxins in industrial and
craft beers sold in Argentina (Molto et al. 2000), Brazil
(Piacentini et al. 2017), Spain (Torres et al. 1998;
Rodríguez-Carrasco et al. 2015; Pascari et al. 2018b),
Poland (Kuzdraliński et al. 2013), Belgium (Tangni et al.
2002) and other European countries (Papadopoulou-
Bouraoui et al. 2004; Bertuzzi et al. 2011). There are no stud-
ies on the occurrence of mycotoxins in beer consumed in
Mexico or in the USA; however, some of the surveys men-
tioned above included Mexican beers in their study detecting:
OTA, AOH, DON and ZEN.

To estimate dietary exposure, it is necessary to combine
data on food consumption and contamination levels in order
to allow conclusions to be drawn about the amount of a

substance being consumed by the population (FAO/WHO
2006). Monte Carlo simulation is a statistical method com-
monly used in probabilistic approach assessment. Monte
Carlo simulation relies on a sequence of random numbers to
carry out a simulation. This allows a probability distribution to
be obtained and studied, instead of a single value to represent
this risk (Landau and Binder 2015).

Among the studies of exposure to mycotoxin through beer
intake that have been made so far, none has been conducted
exclusively in Mexico. Therefore, the objective of this work
was to assess two exposure scenarios to mycotoxins through-
out beer consumption, focusing on data for the Mexican pop-
ulation (daily beer consumption, average body weight).

Materials and methods

Chemicals and reagents

The standards of mycotoxins, aflatoxin B1 (AFB1), aflatoxin
B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2),
sterigmatocystin (STE), OTA, roquefortine C (ROQ-C),
AOH, AME, T-2 toxin (T-2), HT-2 toxin (HT-2), neosolaniol
(NEO), diacetoxyscirpenol (DAS), DON, 3-acetyl-
deoxynivalenol (3ADON), 15-acetyl-deoxynivalenol
(15ADON), deoxynivalenol-3-glucoside (DON3G), NIV,
fusarenon-X (F-X), ZEN, fumonisin B1 (FB1), fumonisin B2

(FB2), and fumonisin B3(FB3), were obtained from Sigma-
Aldrich (Bornem, Belgium). An internal standard of deepoxy-
deoxynivalenol (DOM-1) was obtained from Romer Labs
(Getzersdorf, Austria). All mycotoxin solid standards were
dissolved in methanol (1 mg/mL) and stored at − 18 °C.

Water was obtained from a Milli-Q® SP Reagent water
system from Millipore Corp. (Brussels, Belgium).
Disinfectol® (denaturated ethanol with 5% ether) was sup-
plied by Chem-Lab (Zedelgem, Belgium). Methanol (LCMS
grade) was purchased from BioSolve (Valkenswaard, the
Netherlands), while acetonitrile (Analar Normapur) was ob-
tained from VWR International (Zaventem, Belgium). Acetic
acid (glacial, 100%) was supplied by Merck (Darmstadt,
Germany). Magnesium sulphate (MgSO4) and sodium chlo-
ride (NaCl) were purchased from Fischer Scientific (NJ,
USA).

Samples

Various types of bottled and canned beers (n = 61) were
bought from supermarkets and beer stores of Veracruz city
(Mexico) between July and October 2017. Every product
was purchased by duplicate or triplicate (2 or 3 different lots
of each beer) according to their availability at the time of
buying (total of 132 samples). Twenty-five different beer-
producing companies, originating from eight countries,
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Mexico (40), the USA (10), Belgium (4), Germany (3), Spain
(1), Netherlands (1), Argentina (1) and Guatemala (1), were
chosen for the analysis. To facilitate the interpretation and
discussion of results, the samples were grouped as follows:
according to their fermentation style—ale (31.1%) and lager
(68.9%); their alcohol content—alcohol-free (3.3%), between
4 and 5% vol. (80.3%) and > 5.5% vol. (16.4%); their
colour—golden (62.2%), amber (28.0%) and dark coloured
(9.8%); and their production method—industrial (73.8%)
and craft (26.2%).

Sample pre-treatment

Extraction of beer samples was carried out following a proto-
col modified from Monbaliu et al. (2009), validated by the
Laboratory of Food Analysis from Ghent University,
Belgium. Briefly, from each sample, a 100-mL aliquot was
taken, degassed, sonicated for 15 min and stored at − 18 °C
until analysis. Then, 18mL of extraction solvent composed by
acetonitrile:water:acetic acid (59:40:1, v/v/v) was added to
2 mL of degassed beer sample containing the internal standard
(DOM-1) at a concentration of 10 μg L−1. The mixture was
vigorously shaken for 30 s prior to the addition of premixed
4 g of MgSO4 and 1 g of NaCl, after which it was shaken
again for 60 s and agitated during 30 min at 200 rpm in an
orbital rotary shaker (Infors AG CH-4103, Bottmingen,
Switzerland). The mixture was then centrifuged at 2336×g
during 10 min with a Hettich Universal 320R centrifuge
(Tuttlingen, Germany), and 7 mL of supernatant was collected
and evaporated to dryness under a low nitrogen stream
(40 °C). The dry extract was resuspended in 0.5 mL of
methanol:water (95:5, v/v) and filtered (PTFE syringe filter,
0.22 μm) before injection in HPLC-MS/MS system.

Mycotoxin analysis

A Waters Acquity UHPLC system coupled to a Quattro
XEVO TQ mass spectrometer (Waters, Milford, MA, USA)
was used to analyse the samples. Data acquisition and pro-
cessing were performed with MassLynx™ version 4.1 and
QuanLynx® version 4.1 software (Waters, Manchester, UK).
A Waters Acquity UPLC® HSS T3 2.1 × 100 mm, 1.8 μm
column was applied (Milford, MA, USA).

The mobile phase consisted of a gradient with phase A:
water:methanol (95:5, v/v) and phase B: methanol:water
(95:5, v/v), both buffered with 10 mmol L−1 ammonium ace-
tate and acidified with 0.3% of glacial acetic acid.

The phase gradient was adjusted with 5% of solvent B and
the rest with solvent A. After 7 min, it was increased linearly
at 65% of solvent B, and 4 min later, it was increased to 75%
of B. Following that, the proportion dropped to 1% B within
2 min and increased to 99% B the next minute. After that, the
proportion of solvent B again decreased to 5% and increased

to 65% B and 75% B in the next 3.5 min and 1 min, respec-
tively. In the following 1.2 min, the proportion of solvent B
decreased to 1%, increasing to 5% after 1 min. Then, the
solvent B proportion was increased linearly to 65% in
3.5 min to 75% in 1 min and to 99% in the next 1.6 min. In
the last 2 min of the chromatogram, solvent proportion was
kept at 5% B until the next injection. The flow rate was set at
0.3 mL min−1 through the entire analysis process.

The mass spectrometer was operated in positive
electrospray ionisation mode (ESI+). The ESI parameters
were set up as follows: capillary voltage 30 kV, and nitrogen
applied as spray gas; source and dissolution temperatures
150 °C and 200 °C, respectively; argon collision gas pressure
9 × 10−6 bar; cone gas flow 50 L h−1; dissolution gas flow
4 mke h−1. Two selected reaction monitoring (SRM) transi-
tions with a specific dwell time were chosen for each analyte,
in order to increase the sensitivity and the selectivity of the
mass spectrometric conditions.

LC-MS/MS method validation

The LC-MS/MS method for the simultaneous detection
of 23 mycotoxins was successfully validated in-house
based on European Commission 401/ 2006a. Validation
data for each selected compound are presented in
Table 1. Matrix-matched calibration plots were con-
structed for the determination of the analytes. Linearity
and the homogeneity of variance were checked for each
mycotoxin studied. The linearity was interpreted graph-
ically using a scatter plot. The precision was represented
in terms of relative standard deviation (RSD) and the
bias of the method represented by measurement uncer-
tainty (MU). The MU evaluation was performed accord-
ing to European Regulation (European Commission
2002/657), which corresponded to a confidence interval
of 95%. Limit of detection (LOD) and limit of quanti-
fication (LOQ) were calculated as three and six times
the standard error of the intercept divided by the slope
of the calibration curve, respectively. The calculated
LOD and LOQ were verified by the signal-to-noise ratio
(s/n), which should be more than 3 and 10, respectively,
according to the IUPAC guidelines (IUPAC, prepared by
Currie 1995). The results of the performance character-
istics of the LC-MS/MS method were in good agree-
ment with the cr i ter ia mentioned in European
Commission 401/ 2006a.

The resulted detection and quantification limits are higher
compared to the ones obtained in similar studies (Bertuzzi
et al. 2011; Rodríguez-Carrasco et al. 2015; Bauer et al.
2016; Piacentini et al. 2017); however, none of them per-
formed a simultaneous multi-analysis study of 23 mycotoxins
with conversion rates close to 100%.
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Treatment of left-censored data

Analytical methods are defined by LOD and LOQ; to express
quantitatively the result below these limits, several techniques
can be used. EFSA published a scientific report evaluating the
accuracy of methods currently used and providing recommenda-
tions for more advanced alternative statistical approaches. WHO
has proposed recommendations for replacing the non-detected
samples by LOD/2 or 0 and LOD according to the percentage
of non-detects in the samples; similar guidelines have been pro-
vided in the case of non-quantified values (EFSA 2010a).

In this study, taking into account that more than 60% but less
than 80% of the samples were found to be below the detection
limit (with < 25 results quantified), EFSA’s recommendations
were applied: lower bound (LB) or best-case scenario, where
the < LOD values were considered equal to zero and upper
bound (UB) or worst-case scenario, where the < LOD values
were equalled to LOD (EFSA 2010a).

Theoretical distribution of mycotoxin beer
contamination

Using the Risk 7.5 (Palisade, Inc.) risk software, a comparison
of different probability distribution functions was carried out.
Considering the asymmetry of the histogram of mycotoxin
contamination in beer, the data were adjusted to an exponen-
tial function. Probability density functions and descriptive sta-
tistics (the mean, median, standard deviation and the 95th

percentile) of mycotoxin concentration in beer were also de-
termined and analysed. The Monte Carlo method was applied
with the iteration number (10,000) recommended by interna-
tional agencies (US-EPA 1997).

Data used for body weight population and beer
consumption

The high variability of alcohol consumption within the
population makes it one of the most difficult food items
for exposure assessment studies. According to the FAO/
WHO (2014), in Mexico, alcohol consumption is six times
higher in men (12.4 L of pure alcohol per year) than in
women (2.6 L of pure alcohol per year) and 76% of the
alcohol consumed comes from the intake of beer. Because
there are no available studies describing the behaviour of
beer consumption in groups of population, such as age,
gender, region or socioeconomic level, the national aver-
age volume of 60 L of beer per year, equivalent to
164.38 mL/day, established by the Mexican Ministry of
Economy (Secretaría de Economía 2015), will be applied
in the present publication. To estimate the levels of intake
in high drinkers, the beer consumption average of
Czech Republic (143.3 L per year), the country with the
highest consumption of beer in the world, was used.

The benchmark body weight used was that established by
CANAIVE (2012) for an average Mexican (71.7 kg) (Cámara
Nacional de la Industria del Vestido, (CANAIVE 2012).

Table 1 Validation parameters for the LC-MS/MS method for mycotoxins analysis in beer

Analyte LOD
(μg L−1)

LOQ
(μg L−1)

Recover
range (%)

Lowest level recovery was
tested (μg L−1)

Recover range at
lowest level (%)

RSD r %
(n = 10)

CCα
(μg/L)

CCβ
(μg/L)

Measurement
uncertainty (2×)

AFB1 3.22 6.43 107. 86 10.00 103.74 3.86 1.77 2.39 3.48
AFB2 2.29 4.57 106.00 10.00 104.47 3.38 0.97 2.35 5.71
AFG1 2.10 4.20 105.83 10.00 107.02 3.16 1.10 1.46 2.68
AFG2 1.16 2.23 103.11 10.00 103.65 1.60 0.69 1.42 2.48
STE 5.27 10.54 104.41 25.00 107.60 3.65 2.70 3.51 0.46
OTA 4.04 8.08 122.08 25.00 107.50 9.71 2.25 2.46 15.46
ROQ-C 0.67 1.34 105.90 2.50 104.47 1.24 0.35 0.42 2.41
AOH 7.78 15.57 104.37 50.00 104.57 1.14 3.71 6.18 2.45
AME 24.73 49.47 109.06 100.00 111.12 2.62 12.23 22.60 7.96
T-2 8.23 16.46 105.50 50.00 105.20 1.19 5.03 7.45 3.83
HT-2 6.39 12.79 102.61 50.00 104.82 2.0 3.47 4.25 1.35
NEO 9.58 19.16 104.11 50.00 103.86 1.65 4.57 8.68 4.73
DAS 0.52 1.03 104.76 5.00 104.47 1.68 0.29 0.55 3.74
DON 51.76 103.53 107.21 200.00 108.85 0.84 27.16 32.44 4.58
DON3G 22.36 44.71 101.32 20.00 102.59 1.08 12.21 12.28 0.16
3ADON 4.97 9.95 103.59 25.00 102.57 3.08 2.82 3.34 4.95
15ADON 2.65 5.29 106.18 12.50 103.97 4.08 1.52 1.84 1.88
NIV 31.75 63.50 107.71 100.00 103.49 3.22 18.26 23.07 4.51
F-X 20.68 41.35 104.59 100.00 106.78 1.53 11.25 11.47 0.32
ZEN 14.12 28.23 103.11 50.00 108.24 1.60 7.42 9.24 3.88
FB1 42.77 85.54 106.96 200.00 108.23 3.76 19.87 59.66 7.70
FB2 172.91 345.82 123.51 200.00 124.23 10.42 102.48 159.31 31.40
FB3 23.20 46.40 105.90 125.00 105.26 2.06 11.76 25.02 6.20

CCα decision limit, CCβ detection capability
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Estimation of mycotoxins daily intake and exposure
risk

Daily intake was then calculated under a semi-probabilistic
approach by Eq. (1):

EDI ¼ Mc� Bc
bw

ð1Þ

where:
EDI= Probability density function of estimated daily intake

(ng mycotoxin kg−1 bw day−1)
Mc= Probability function density of mycotoxin concentra-

tion in beer (ng L−1)
Bc= Beer consumption (L day−1)
bw= Body weight (kg)
In the case of mycotoxins that are not classified as

genotoxic or carcinogenic, the exposure estimates were com-
pared with the guidance values of tolerable daily intake (TDI).
TDI used in the present study is summarised in Table 2.

Results and discussion

Occurrence of mycotoxin in beer

Mycotoxins were detected in 16 of the 61 analysed samples
(26.2% positive samples); however, none overpassed the
limits of quantification of the methodology used. Only one
beer presented contamination in the two analysed replicates
(different production batches).

The samples were purchased in supermarkets and beer
stores in Veracruz city, so there is no information available
on the traceability of the raw material or of the process; how-
ever, all the mycotoxins detected are produced by Fusarium
fungi, which are characterised by invading cereals in the field
(Gimeno and Martins 2003). Thus, the contamination proba-
bly originates in the field, with minimal possibility of contam-
ination during storage or processing. From the analysed

samples, nine presented contamination with DON, two with
3ADON, six with DON3G and three with FB1.

Similar results were reported by Pascari et al. (2018b) in
beer purchased in Lleida, Spain, with 20.3% of samples con-
taminated by DON, DON3G, ZEN, HT2 and FB1.
Kuzdraliński et al. (2013) and Rodríguez-Carrasco et al.
(2015) reported contamination by DON in 100% of beers
analysed; however, all samples showed contamination less
than 48 μg L−1. This concentration is lower than the LOQ of
our methodology, so decreasing the LOQ of our methodology,
the proportion of positive samples would probably increase to
a large extent.

The most frequent contaminants were DON and its metab-
olites, detected in 87.5% of the positive samples. In two sam-
ples, co-occurrence of DON and 3ADONwas detected, which
could have been due to their release from barley matrix during
mashing and subsequent transfer to wort and beer because of
their relatively high solubility in water (Samar et al. 2001;
Kostelanska et al. 2011). Similarly, the presence of DON3G
in five samples can be attributed to DON conversion during
malting due to grain defence mechanisms against the presence
of the contaminant, as reported by Lancova et al. (2008). ZEN
was not detected in any of the samples. It would have been
advisable to analyse α-zearalenone (α-ZEL) and β-
zearalenone (β-ZEL) to discard contamination by ZEN me-
tabolites (Karlovsky et al. 2016).

FB1 contamination was found in three analysed beers; this
could be a consequence of the use of corn as an unmalted
adjunct—corn grits are commonly used in order to achieve a
greater degree of lightness in colour, clarity, calories and fla-
vour (Bertuzzi et al. 2011). Corn has been proven susceptible
to infestation by FB-producing Fusarium, which would ex-
plain the abovementioned finding (Robledo et al. 2001;
Mendoza et al. 2017).

There are limited surveys that classify samples for data
analysis (Rodríguez-Carrasco et al. 2015; Peters et al. 2017;
Pascari et al. 2018a). In our study, beers with an alcohol con-
tent greater than 5.5% had mycotoxin contamination in 60%
of the samples analysed, similar to the results reported by
Pascari et al. (2018b). A possible explanation would be the
necessity to use more grain in high-density malt wort to reach
these alcohol levels, which could contribute to greater myco-
toxin contamination. Light and non-alcoholic beers did not
show contamination above LOD.

Craft beer presented a higher percentage of mycotoxin con-
tamination (56.3%) than industrial beers (15.55%). In the
same way, Peters et al. (2017) detected more mycotoxins
(AFB1, OTA, ZEN, FBs, DON, T-2, and HT2) in craft beer
than in industrial beer from 1000 beers analysed. It is recom-
mended that small craft breweries consider the implementa-
tion of rapid analysis techniques for mycotoxins in cereals to
control purchased malts and adjuncts as well as their final
products.

Table 2 Compilation of tolerable daily intake (TDI) values for myco-
toxins issued by the European Union

Mycotoxins Tolerable daily intake
(ng kg−1 bw day−1)

Reference

OTA 17 EFSA 2010b

T-2 60 EFSA 2011a

HT-2 100 EFSA 2011a

DON 1000 SCF 2000

NIV 700 SCF 2002

ZEN 250 EFSA 2011b

FBs 2000 SCF 2003
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TheMexican-brand orMexican-made beers presented con-
tamination in 27.5%.Althoughwith a non-representative sam-
ple size (three positive samples from a total of seven
analysed), the results agree with that reported by Bauer et al.
(2016), who found a high frequency of mycotoxin contami-
nation (75% for DON) although in low concentrations (2.2–

20 μg L−1) in European beers. Regarding the colour classifi-
cation, similar contamination was found, dark beers presented
33%, amber 26% and golden 23%. Finally, as for the fermen-
tation style, ale beers had a higher percentage of contamina-
tion (42%) than lager (29%), which could be probably ex-
plained by different adsorptions of the toxins to the yeast cell
during fermentation (Lancova et al. 2008); nonetheless, more
investigation is needed to confirm this statement.

Estimation of the DON intake via beer consumption
in various scenarios

Due to the limited number of positive samples contaminated
with FB1 and other mycotoxins, only an assessment of the
intake of DON through beer consumption was performed,
considering the recommendations of EFSA (2013, 2014) to

Table 3 Fitted exponential probability density function (PDF) parame-
ters for the content of DON mycotoxins (DON + DON3G + 3ADON +
15ADON) in beer marketed in Veracruz (Mexico)

PDF parameters (μg L−1) Lower bound (LB) Upper bound (UB)

Mean 5.24 86.59

Median 3.64 85.02

Standard deviation 5.24 4.79

95th percentile 15.71 96.05

99th percentile 24.12 103.77

Fig. 1 a Probability density function fitted exponential distribution (solid
line) for DON contamination in beer marketed in Mexico (lower bound
values), obtained by the Monte Carlo method, showing contamination in
the 5th and 95th percentiles (broken line). b Probability density function

for estimated daily intake of DON (Lower bound values) though beer,
obtained by Monte Carlo method, showing exposure in the 5th and 95th
percentiles (broken line)
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use the sum of DON and its modified forms (DON3G,
3ADON, and 15ADON) for calculation.

Table 3 shows the statistical parameters of the probability
density function for mycotoxin contamination in beer for the
two risk scenarios (LB and UB). It can be seen that even in the
99th percentile, the values are below the DON TDI of
1000 ng kg−1 bw day−1 (SCF 2000). Similar concentrations
were presented by Bryła et al. (2018) (9.0 μg L−1),
Kuzdraliński et al. (2013) (20.66 μg L−1) and Rodríguez-
Carrasco et al. (2015) (28.9 μg L−1) in beer from different
countries. The data on contamination by DON and its metab-
olites were adjusted to an exponential function. Figure 1a pre-
sents the probability density function of DON contamination
in LB scenario.

Probability density function and probability density func-
tion parameters of the EDI calculated by the Monte Carlo
method are shown in Fig. 1b and Table 4. The EDI average
was 12.03 ng kg−1 bw day−1 (LB) and 198.31 ng kg−1 (UB) or
28.69 ng kg−1 bw day−1 (LB) and 473.64 ng kg−1 bw day−1

(UB) in the high consumption scenario. Those are lower than
t h e r e commenda t i on o f t h e JEFCA (2010 ) o f
1000 ng kg−1 bw day−1. The percentage of TDI of DON my-
cotoxins that beer provides as a result of LB consumption is
similar that reported by Pascari et al. (2018a) in Spain (1.6%)
and lower that than obtained by Bauer et al. (2016) (5–10%)
and Rodríguez-Carrasco et al. 2015 (10%) in beer consumers
from Germany and Ireland respectively. Regarding other
products, TDI in the LB scenario that beer provides for expo-
sure to DON is similar to bread (5.3 ng kg−1 bw day−1) and
cookies (5.7 ng kg−1 bw day−1) in the population of Brazil
(Savi et al. 2016) and pasta (22 ng kg−1 bw day−1) in Spain. It
is lower than corn flour (1600 ng kg−1 bw day−1) and greater
than of oat flakes (0.07 ng kg−1 bw day−1) in China (Ji et al.
2018).

This is the first study with a large number of mycotoxins
analysed in beer commercialised in Mexico, the country with
the largest world export of beer. Mycotoxins were present in a
greater proportion in craft beers than in commercial beers.
DON and its modified forms (DON3G, 3ADON) were the

most frequently occurring mycotoxins compared to other
analized compounds. Although the contamination data obtain-
ed in the present study were not above the legal limits, DON
intake through beer consumption should not be ignored (con-
tribution to exposure from 1.20 to 19.83% of TDI). An even
greater contribution may take place for the population con-
suming a daily amount of beer above the national average,
such as the Mexican male population (according to WHO
reports, men consume six times more alcohol than women).
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