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Abstract The Valley of Lakes is approximately a 500-km
elongate depression in Central Mongolia, where Eocene to
Miocene continental sediments are long known for their out-
standing fossil richness. The palaeontological record of this
region is an exceptional witness for the evolution of mamma-
lian communities during the Cenozoic global cooling and re-
gional aridification. In order to precisely elucidate the climatic
evolution of the region, we studied the mostly siliciclastic
sediments with several levels of paleosols for their sedimen-
tology, mineralogy, major and trace element composition and
'3C and §'%0 composition. The obtained results show that
temperate hydrothermal fluids induced a strong illitization of
the fluvial and lacustrine sediments. This finding contradicts
the current conceptual view that the fine fraction of the sedi-
ments is of acolian origin. Moreover, the diagenetic growth of
illite resulted in a strong overprinting of the sediments and,
subsequently, largely disturbed the pristine mineralogical and
geochemical composition of the sediments that could have
carried any palaeo-climatic information. An exception is the
'3C (and 5'%0) isotope values of authigenic carbonate found
in calcrete horizons that still record the ambient climatic con-
ditions prevailing during paleosol formation. Our novel §'°C
and 5'®0 record suggests an early Oligocene aridification in

This article is a contribution to the special issue “The Valley of Lakes in
Mongolia, a key area of Cenozoic mammal evolution and stratigraphy”

P4 Sylvain Richoz
sylvain.richoz@uni-graz.at

Institute of Earth Sciences, Nawi Graz, Graz University,
Heinrichstra3e 26, 8010 Graz, Austria

Institute of Applied Geosciences, Graz University of Technology,
Rechbauerstr. 12, 8010 Graz, Austria

Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria

Central Asia at ~31 Ma, whereas the Oligocene glacial max-
imum shows no increase in aridification. A second, regional-
scale aridification occurs at ~25 Ma and corresponds to a late
Oligocene marked mammalian turnover in the Valley of Lakes
sediments.
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Introduction

The Cenozoic climate cooling is well recorded in marine sed-
iments; however, its repercussion on the evolution of conti-
nental ecosystems on a global and regional scale remains
questionable, as appropriate continental sediment records are
rather scarce. Central Asia is certainly a key area for investi-
gating the impact of this global cooling event and particularly
the Valley of Lakes in Mongolia. This ~500-km-long sedi-
mentary basin comprises an almost continuous succession of
Eocene to Miocene continental sediments that are charac-
terised by an outstanding Oligo-Miocene fossil record (see
Harzhauser et al. 2016; Daxner-Hock et al. 2017 and other
contributions of this special issue and references therein for
a palacontological overview). Three prominent flood basalts
crop out at distinct levels in the sedimentary succession and
represent stratigraphic marker beds (Hock et al. 1999).
Absolute dating of these basalt levels (Hock et al. 1999), fine
biostratigraphy of small mammals (Daxner-Hock et al. 2010;
Daxner-Hock et al. 2017, this issue) and magnetostratigraphy
(Sun and Windley 2015) allow good correlation between the
different studied sections and a well-established stratigraphy
of the Valley of Lakes sediments (see Harzhauser et al. 2017,
this issue and Daxner-Hock et al. 2017, this issue for a more
detailed discussion on the stratigraphy). In this contribution,
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we revise the current model proposed for the climatic and
mineralogical evolution of the Valley of Lakes sediments
based on mineralogical, major and trace elemental and §'°C
and 5'®0 isotope signatures of the sediments.

The Eocene-Oligocene Transition (EOT, ~34 Ma) is the
first major cooling phase during the long-term transition from
Cenozoic greenhouse to icehouse climate (Zachos et al. 2001;
Lear et al. 2008). It is well recorded in 5'%0 profiles
established on the basis of deep-sea benthic foraminifers
(Zachos et al. 2001; Coxall et al. 2005). In Central Asia, this
transitional phase started in the late Eocene and is marked by a
sudden acceleration of the aridification (Dupont-Nivet et al.
2007; Xiao et al. 2010; Abels et al. 2011; Bosboom et al.
2014; Li et al. 2016) and by a dramatic faunal turnover, the
“Mongolian Remodeling” (Meng and McKenna 1998; Kraatz
and Geisler 2010; Harzhauser et al. 2016). The EOT
aridification has been assigned to coupled global cooling,
stepwise retreat of the proto-Paratethys Sea (Abels et al.
2011; Bosboom et al. 2014; Caves et al. 2015) and intensified
uplift of the Tibetan and Mongolian Plateaus (Wang et al.
2012; Caves et al. 2014). The global climate in the Oligocene
is characterised by glacial-interglacial cycles responding to
astronomical forcing (Wade and Pilike 2004; Retallack et al.
2004; Pélike et al. 2006; Xiao et al. 2010). During this period,
the more pronounced cooling phase, which is the Oligocene
Glacial Maximum (OGM), occurred around 28-27 Ma and
could correspond to a significant uplift phase of the
Himalayan—Tibetan region accompanied by an increase in
the rate of silicate weathering (Li et al. 2005), coevolution of
grasses and grazers (Retallack 2013) and/or by an important
volcanic activity at La Garita caldera (Colorado) (Phillips and
Matchan 2013). This OGM is followed by the global
Late Oligocene Warming, which is terminated by a

Fig. 1 Location of the Taatsiin
Gol region (rectangle), which is
part of the Valley of Lakes in
Central Mongolia. Colour ban
indicates altitude in metres

50°N

45°N

renewed glacial episode at the Oligocene—Miocene transition
(Miller et al. 1991; Paul et al. 2000). Based on sedimentolog-
ical evidence, this latter cooling event is thought to have
corresponded to a second prominent pulse of aridification
expressed by the widespread formation of deserts in Central
Asia (Guo et al. 2002, 2008; Sun et al. 2010).

At present, there is compelling evidence for two major
aridification pulses at the Eocene—Oligocene and Oligocene—
Miocene transition in Central Asia that could be related to
global cooling events. To date, however, the correlation of
the numerous climatic variations observed in the Oligocene
marine record with the sedimentological and palaecontological
data of Mongolia (presented in this issue and by Harzhauser
et al. 2016) remains poorly constrained. We present here a
novel and comprehensive mineralogical and (isotope) geo-
chemical dataset of the highly fossiliferous Oligo-Miocene
sediments from the Valley of Lakes (Mongolia) and critically
re-evaluate the palaeo-climatic evolution of this famous
study site.

Geological setting and lithostratigraphy

The Valley of Lakes is an elongate, ~500 km long, ESE-
WNW striking Cis-Altai depression, located in Central
Mongolia (Fig. 1). This sedimentary basin is situated between
the Gobi Altai Mountains in the south and the Khangai
Mountains in the north. It is filled with continental sedimen-
tary rocks of Cretaceous to Quaternary age, deposited above
the Proterozoic—Paleozoic basement (Hock et al. 1999;
Daxner-Hock et al. 2010, 2014). The mostly siliciclastic
Eocene to Miocene sediments are exposed along steep cliffs
of mostly dry river beds of the Taatsiin Gol Basin and are long
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known for their extraordinary fossil richness (e.g. Daxner-
Hock et al. 1997, 2010, 2014; Hock et al. 1999; Daxner-
Hock and Badamgarav 2007; and other contributions of this
special issue). The nomenclature, type area, reference profiles
and lithological and sedimentological description of the
Eocene Tsagaan Ovoo Fm., the Oligocene Hsanda Gol Fm.
and the Miocene Loh Fm. are extensively described by Hock
etal. (1999) and Daxner-Hock et al. (2017) in this issue. Three
groups of basalt horizons are exposed in the sedimentary suc-
cession (Fig. 2) and provide the basis for the chrono-
stratigraphic classification of the Oligo-Miocene sediments
(Hock etal. 1999). From the bottom to the top of the sequence,
the lower Oligocene basalt I group (~30 to 32 Ma), the upper
Oligocene basalt II group (~25-29 Ma) and the middle
Miocene basalt III (~13 Ma) (Hock et al. 1999; Daxner-
Hock et al. 2014).

For this study five sections, all located in the Taatsiin Gol und
Taatssin Tsagaan Nuur regions of the Valley of Lakes, have been
chosen, namely the Taatsiin Gol right (TGR-AB) and south
(TGR-C), the Hsanda Gol (SHG-D), the Tatal Gol (TAT-E) and
the Hotuliin Teeg (HTE). We concentrate our study on the upper
Eocene to lower Miocene interval in these sections (~35 to
~21 Ma including basalt I and basalt II), leaving the main
Miocene part. This covers the upper part of the Eocene
Tsagaan Ovoo Fm., the Oligocene Hsanda Gol Fm. and the
lowermost part of the Miocene Loh Fm. A comprehensive strat-
igraphic profile is shown in Fig. 2 and represents a rather contin-
uous sedimentation even if the gap cannot be excluded. The
geographic details, sedimentological characteristics and strati-
graphic position of these sections are reported and discussed by
Daxner-Hock et al. 2017 and Harzhauser et al. 2017 in this issue.

Petrography and sedimentology

The coarse clastic Tsagaan Ovoo Fm. is about 150 m thick and
comprises predominantly white-greyish, massive to cross-
bedded sand and gravel bodies, in which greyish-yellow-
green to reddish-brown clay and silt layers are intercalated
(Fig. 2). The gravel beds, which have been interpreted as debris
flow deposits, following the facies classification of Miall
(1996) for fluvial sediments, are up to 5 m thick, poorly sorted
and mostly without visible sedimentary structures. Finer clastic
beds occur towards the top of this sequence and show trough
and planar cross-bedding with up to 1 m thickness, besides
lamination, ripples, inverse to normal grading, horizontal bed-
ding and channel fills. These sedimentary structures are indic-
ative of gravel- to sand-bed braided river deposits associated
with N to S propagating alluvial fans in a tectonically active
basin margin (Miall 1990, 1996; Hock et al. 1999).
Bioturbation, roots and plant debris point to the local formation
of paleosols. Magnetostratigraphic studies reveal a late Eocene
age of the Tsagaan Ovoo Fm. (Kraatz and Geisler 2010).

The Oligocene Hsanda Gol Fm. is characterised by a high
fossil content and comprises poorly sorted, brick-red to reddish-
brown clay with grey sandstone in some places (Fig. 2). The
massive, mostly horizontally bedded, clayey and silty beds show
non-erosive boundaries and frequently contain irregular marly
layers, besides cm- to dm-sized nodules of soil material cemented
with secondary calcite. These features have been interpreted as
calcrete (also called caliche) developed in paleosols under arid to
semiarid climate (McPherson 1979; Reineck and Singh 1986).
Root-traces, plant debris and burrows occur in these layers. More
rarely, sand and granule lenses can be found, which have been
attributed to lacrustrine or fluvial reworking processes. In section
SHG, a horizon with greyish-coloured sands and gravels forms a
notable interval. The depositional environment was interpreted as
semiarid, open steppe with ephemeral rivers and playa lakes
(Daxner-Hock et al. 2010; Sun and Windley 2015). At nearly
4041 m and between 94-100 m, the stratigraphic important
basalt I and II groups crop out (Fig. 2).

The widespread Loh Fm. is up to 150 m thick and is
characterised by a complex lithological variability (Fig. 2),
comprising alternating poorly sorted, greenish-yellow-red
and widely structure-less sandy clays with pebbles and
greyish-white to reddish-brown, trough to planar cross-
bedded clayey sands and gravels of fluvial origin (Miall
1990, 1996). Channel and scour infillings, fining upward se-
quences with inverse to normal grading, small ripple marks
and overbank fines can be found and have been interpreted as
abandoned channel and waning flood deposits of either a shal-
low, gravel-bed braided river or a perennial flowing sand-bed
braided river with ephemeral character (Reineck and Singh
1986; Miall 1996). Sediments of the Loh Fm. are partly
interfingering with those from the Hsanda Gol Fm. and are
of late Oligocene to early Miocene age. Burrows and plant
debris occur within the fossiliferous calcrete horizons.
Imbricated gravel beds, cross-bedded sands and flow struc-
tures in the basalt group III (not represented in Fig. 2) point
to a palaco-current direction from N to S (Hock et al. 1999).

Paleosol horizons

Paleosol horizons are frequently developed within the Hsanda
Gol and Loh fms. (Fig. 2). These paleosols can be easily
identified in the field due to their close association with
calcrete horizons (see the above petrological description).
Calcretes are ubiquitous features of arid to semiarid and sub-
humid landscapes, where net evaporation typically exceeds
net precipitation (Retallack 1994). The formation of calcretes
is generally associated with soil-forming (pedogenic) process-
es or related to a prolonged interaction with meteoric solutions
and/or groundwater (Khadikikar et al. 2000). In the Hsanda
Gol and Loh fms., they occur in the form of either laminar
(continuous) or irregular and patchy (discontinuous) carbon-
ate nodules and crusts of whitish to pinkish colour. Both types
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<« Fig.2 Stratigraphic overview of the investigated sedimentary succession
from the Taatsiin Gol region including the 5'%0 and 5'>C isotope profiles
of soil carbonate preserved in calcrete horizons. The stratigraphic and
biozone classification follows Daxner-Hock et al. 2017 in this issue.
SHG is the upper part of the Hsanda Gol section. TAT corresponds to
the Tatal Gol section

of calcrete consist of almost pure crypto- to microcrystalline
calcite. Nodules are often mottled, occasionally arranged in
honeycomb-like structures and may contain traces of roots,
as well as orange-brown (limonitic) Fe-(oxy)hydroxides and
greyish-black Mn-oxides. In some sections, the extensive for-
mation of calcrete affected several metres of the underlying
sediments (e.g. TGR-C/10, TGR-C/19, TAT/14-16), suggest-
ing a considerable time of paleosol formation. It is generally
accepted that the ambient climatic conditions prevailing during
the formation of paleosols may be best preserved in the calcrete
horizons and, in particular, in the isotopic and major and trace
element composition of the authigenic carbonate. We collected
sediment samples from each layer which differed from the
underlaying layer by colour, composition, structure, fossil con-
tent, etc. All calcrete horizons were sampled in order to identify
potential (palaco-) climatic changes throughout the Oligo-
Miocene transition recorded in the Valley of Lakes sediments.

Methods
X-ray fluorescence and the chemical index of alteration

The major and minor element composition of rock samples was
analysed with a Philips PW2404 wavelength dispersive X-ray
fluorescence (XRF) spectrometer. About 0.8 g of finely ground
sample was heated to 1050 °C to remove volatiles, such as CO,
and H,0, and then the loss on ignition (LOI) was determined by
gravimetric analysis. The residual was fused at 1200 °C using 4 g
of LiBO, as the fluent agent. The tablets produced were run
together with a range of USGS standards. The analytical error
is +0.5 wt% for the major elements.

Geochemical estimations of weathering intensity and paths
were derived from XRF data, assuming that changes in the bulk
rock composition reflect distinct alteration features, i.e. hydroly-
sis and K-metasomatism. For instance, the progressive transfor-
mation of feldspar to more stable clay minerals, such as illite and
kaolinite, at ambient environmental conditions can be traced by
following changes in the ratio of immobile Al,O; to the more
mobile cations K*, Na*™ and Ca®* expressed as oxides. The quan-
titative measure of chemical weathering is the Chemical Index of
Alteration (CIA, Nesbitt and Young 1982), which is defined as:
CIA = (ALO5(ALOs + Na,O + K,0 + Ca0*) ')-100. Note that
CaO present as carbonate was subtracted from the bulk CaO
content (on the basis of TIC values) to obtain CaO* of the silicate
fraction. CaO present as phosphate was not considered in the

calculation of the CIA values because it increases the CIA by
~2 units if all P,Os is assigned to apatite.

Carbon and oxygen isotopes

The carbonate present in the calcrete horizons was analysed
for their stable 5'°C and &'®0 isotope composition in order to
evaluate potential palaeo-climatic trends recorded in the
paleosols. All samples were crushed and analysed as bulk
rock. For some delicate samples, carbonate nodules and crusts
were separated by hand using a dental drill. Sample powders
were reacted with 102% phosphoric acid at 70 °C in a Kiel 11
automated reaction system, and the evolved CO, was
analysed with a ThermoFinnigan Mass spectrometer MAT
Delta at the University of Graz. The §'°C and §'®0 values
are corrected according to the NBS19 standard and reported
in per mill (%o) relative to the Vienna-PeeDee Belemnite (V-
PDB) standard. The analytical precision is <0.05%0 for 5'C
and <0.1%o for 5'%0, respectively.

X-ray diffraction

X-ray diffraction (XRD) patterns were recorded for quantitative
mineral phase analyses using a PANalytical X Pert PRO diffrac-
tometer (Co-Ko radiation) operated at 40 kV and 40 mA
and equipped with a Scientific X’Celerator detector, 0.5°
antiscattering and divergence slits, spinner stage, primary and
secondary soller and automatic sample changer. Representative
rock samples were first crushed in a McCrone micronizing mill
for 8 min, together with 10% zincite as the internal standard.
Subsequently, randomly oriented samples were prepared using
the top loading technique. The specimens were examined over
the range 4-85 20 using a step size of 0.008°26/s and a count
time of 40 s/step. Rietveld-based mineral quantifications were
carried out with the PANanalytical X Pert Highscore Plus soft-
ware and its implemented pdf-2 database. Assuming the
idealised compositions for quartz, albite, orthoclase, illite, hema-
tite and calcite (Baldermann et al. 2013), the accuracy of these
results was verified by comparison with mass—balance calcula-
tions based on bulk rock XRF data. All mineral phases with an
abundance below 1 wt% (chlorite, kaolinite, vermiculite, halite,
amphibole and zeolite, if present) were not considered in the
quantitative mineral analyses. The deviation between XRD and
XRF results was <3 wt%.

The clay mineral fraction (<2 pwm) was further charac-
terised using XRD analysis of oriented preparations per-
formed on a Phillips PW 1830 diffractometer (Cu-K« radia-
tion, 40 kVand 30 mA) outfitted with automatic slits, a graph-
ite monochromator and a scintillation counter. About 50 mg of
the sample was mixed with 5 mL of deionised water, follow-
ing dispersion for 10 min in an ultrasonic bath. The clay-in-
suspension was then sucked through a ceramic tile of about
4 em? in order to produce oriented specimens (Baldermann
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et al. 2014). These clay films were X-rayed from 3 to 30° 20
with a step size of 0.02° 20 and a count time of 2 s per step,
each at air-dried states and after the solvation of the clay mat-
ter with ethylene glycol (EG) and heating of the preparations
to 550 °C for 1 h. The percentage of illite layers (%]I) in
illite—smectite (I-S) mixed layered clay minerals was deter-
mined based on EG-solvated patterns with an analytical pre-
cision of £5% (Baldermann et al. 2013).

Scanning electron microscopy

The mineralogy, particle form and particle shape of authigenic
versus detrital (clay) minerals were studied by scanning elec-
tron microscopy (SEM) using a GEMINI®technology Zeiss
Ultra 55 microscope at the FELMI-ZFE (TU Graz).
Representative rock chips were therefore prepared on stubs,
and the specimens were sputtered with Au/Pd to reduce charg-
ing. The SEM is equipped with a high efficiency in-lens sec-
ondary electron (SE) detector and an EDAX Si(Li)-detector
for energy-dispersive X-ray spectrometry (EDS) analysis and
was operated at an accelerating voltage of 5 kV.

Results

In this chapter, special focus is placed on the identification and
characterisation of unidirectional alteration and chemical
weathering pathways of the sediments (and intercalated basalts).
Such processes have to be considered for the interpretation of

palaeo-climatic trends that are based on mineralogical and
(isotope) chemical signatures of rock samples discussed below.

Bulk and clay mineralogy

The bulk mineralogy of the investigated sedimentary succession
is displayed in Fig. 3. Quartz, sheet silicates, calcite, hematite,
plagioclase and minor orthoclase are by far the major constitu-
ents. Considering the particle size, more than 50% of the popu-
lation belongs to the clay fraction, whereas less than 1% belongs
to the sand fraction or coarser (Hock et al. 1999). In contrast to
the mineralogical composition previously reported by Hock et al.
(1999), no indication of dolomite, ankerite, anhydrite and pyrite
was found in the investigated samples, and more importantly, the
proportions of mica and smectite are negligible. Indeed, illite
(%1 > 95%) with a 1 M polytype structure and, to a minor extent,
I-S (%1 ~25-30%) with a 1My polytype structure dominate
throughout the entire succession. Such a microstructure suggests
an authigenic origin of these clay minerals (Baldermann et al.
2012, 2013) rather than reworking of detrital material from allu-
vial fan source areas (Tsagaan Ovoo Fm.) and subsequent depo-
sition by dust and/or braided rivers (Hsanda Gol Fm. and Loh
Fm.), as proposed by Hock et al. (1999) and Sun and Windley
(2015).

More precisely, the Tsagaan Ovoo Fm. consists predomi-
nantly of quartz (41-50 wt%) and illite (33—46 wt%), in addi-
tion to moderate proportions of plagioclase, orthoclase (feld-
spar: 7-13 wt%) and hematite (2—10 wt%), with calcite, kao-
linite, I-S, chlorite and Ti-oxides being minor constituents
(<2 wt%). A similar mineralogical composition is evident

Fig. 3 Bulk mineralogy of meter Basalt Quartz (wt.%) Feldspar (wt.%) Traces
sediments from the Tsagaan Ovoo age (Ma) 1 1 I T 1 (<1 wt.%)
Fm., Hsanda Gol Fm. and Loh 120 __ 10 35 60 0 75 15
Fm. (Valley of Lakes, Central 2 _ _ E
Mongolia) based on XRD data. § <)
The 19cation and age of the 100 = g I U o E
prominent basalt horizons I to 1T — . ,43
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for the Hsanda Gol Fm., except for the highly variable calcite
content, attributed to calcrete horizons (1-69 wt%), and local
restricted occurrences of zeolite, vermiculite and amphibole
(each < 1 wt%) found between 3243 m and 81-93 m adja-
cent to the weathered horizons of basalt groups I and II. Thus,
illite (1048 wt%), quartz (12-53 wt%), feldspar (3—13 wt%)
and hematite + goethite (1-9 wt%) are the main substituents,
besides small admixtures of kaolinite, I-S, chlorite and halite,
if present. The predominance of illite (1745 wt%), quartz
(18-46 wt%), calcite (2-59 wt%), feldspar (3—6 wt%) and
Fe-(oxy)hydroxides (2—7 wt%) is also valid for the samples
from the Loh Fm., which additionally contains minor amounts
(<1 wt%) of kaolinite, I-S and chlorite as well as traces of
zeolite, vermiculite and amphibole in close vicinity (94—
101 m) to a basaltic horizon of group II (Fig. 3).

Petrographic observations

Representative SEM images of rock chips from the Hsanda Gol
Fm. collected at 78.5 m (Fig. 4a, b), 59.0 m (Fig. 4c, d) and 33.8 m
(Fig. 4e, ) respectively show rock textures typical for immature

Fig. 4 SEM-SE images of
calcareous and illitized (arkosic)
sandstones from the Oligocene
Hsanda Gol Fm. collected at
78.5 m (a, b), 59.0 m (¢, d) and
33.8 m (e, f). The association of
hairy illite, platy I-S and euhedral
quartz cement suggests intense
alteration of the sediments at ele-
vated temperatures. See text for
further explanations.
Abbreviations: Qtz detrital quartz,
Otzs,.. authigenic quartz cement,
Msc muscovite, Fsp feldspar, Cc
calcite, Clays,. secondary clay
minerals, / hairy illite, /-S inter-
stratified illite-smectite

(arkosic) sandstones that are weakly cemented with quartz and in
particular with authigenic pore filling sheet silicates. Most of the
quartz grains are diagenetically affected by the syntaxial
(over)growth of quartz cement, and original quartz surfaces are
notpreserved. The clay minerals have eitheralath-like morphology,
with lath widths of 0.1 to 0.5 pm, <200 nm thickness and lengths
ranging up to 20 pm (Fig. 4d, f) or a platy to irregular morphology
with an average particle diameter of 2—4 pum and a particle thickness
between 0.1 and 0.3 um (Fig. 4b, d). EDS analyses of these two
particle types reveal Si, Al and K as the major constituents, with the
platy clays containing less K and Al and more Si and Na than the
lath-like clays. In accordance with the mineralogical results, these
particle morphologies and chemical compositions correspond ei-
ther to “hairy” illite or interstratified I-S, respectively (Giiven et al.
1980). The association of hairy 1 M illite, IMy I-S and quartz
cement (Fig. 4d, f) is usually restricted to elevated temperatures
around 70 to 150 °C and is therefore attributed to the advanced
stages of sandstone diagenesis and the related burial diagenetic
dissolution of feldspar-rich sediments (Nadeau et al. 1985; Lynch
et al. 1997; Haszeldine et al. 2000; Baldermann et al. 2012).
However, the shallow burial of the Valley of Lakes sediments (in
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the range of few hundred metres) is insufficient to create tempera-
tures suitable for illitization (see discussion below).

Calcrete occurs mainly as mm- to dm-sized honeycomb-type
nodules and continuous hardplan in the Oligo-Miocene sedi-
ments, indicating an advanced stage of soil formation (stage III
to IV, following the classification scheme of Goudie (1983) and
Machette (1985)). The crypto- to microcrystalline nature of the
calcite nodules and the absence of calcite spar and secondary
dolomite suggest carbonate precipitation in the vadose zone rath-
er than through interaction with groundwater (Quast et al. 20006).
This observation is confirmed by both the presence of hematite
(instead of goethite) in the carbonate and the comparable low Sr
content (90 to 300 ppm) of the calcite, which is largely indepen-
dent from the calcite content of the bulk rock samples (Fig. 5;
Khadikikar et al. 2000). These features suggest that the pristine
isotopic composition of the calcite is preserved in calcrete hori-
zons and was virtually not disturbed by the later illitization (see
below).

Major, minor and trace element geochemistry

The element composition of samples from the Tsagaan Ovoo
to Loh fms. is highly variable (Table 1) and follows mainly the
changes in the ratio of the silicate relative to the carbonate
fraction. Accordingly, the Al,O5; + MgO, SiO, and CaO con-
tents can be directly attributed to abundances of (sheet) sili-
cates, such as illite and minor orthoclase, as well as quartz and
calcite, respectively, complying with the petrographic and
mineralogical results (Figs. 3 and 4). Na,0, Fe,O5 and TiO,

@ Springer

contents reflect variations in minor amounts of plagioclase,
Fe-(oxy)hydroxides and Ti-oxides, i.e. rutile and anatase.
MnO and P,05 occur only in minor amounts.

The averaged CIA values (left part of Fig. 6) ranged between
70 and 76 and plot slightly below the field of illite (75-90). This
indicates that the Tsagaan Ovoo to Loh fms. sediments
underwent sustained chemical weathering, considering that fresh
basalt, unweathered granite and granodiorite and feldspar have
CIA values of 3045, 45-55 and 50, respectively (Bahlburg and
Dobrzinski 2011). Moreover, by transferring the XRF data in
Nesbitt and Young's (1984) A-CN-K (AlL,O3-CaO* + Na,O-
K,0) diagram (Fig. 6), it becomes clear that the majority of the
samples plot either near the compositional range of Post-Archean
average Australian Shale (PAAS) and Average Proterozoic Shale
(APS) or follow the predicted weathering trend for basalt
protolith and Upper Continental Crust (UCC) rocks (von
Eynatten 2004; Bahlburg and Dobrzinski 2011 and references
herein). This observation demonstrates that sorting, K-
metasomatism and frictional variations in palaeo-climate and tec-
tonic setting played only a minor role in affecting the chemical
composition of the sediments and basalt groups I to II, in contrast
to the pronounced illitization event(s) (Fedo et al. 1995;
Armstrong-Altrin et al. 2004; Yang et al. 2004).

The positive correlation of large-ion lithophile elements such
as K, Rb and Ba (also-called LILE) as well as Cr, Zn and V with
Al,O3 suggests their incorporation in sheet silicates, i.e. illite and
I-S, and/or sorption onto clay mineral surfaces (Table 1). High
K,O/RbD ratios, in the range from 165 to 384, point to moderate-
to-high weathering intensities and arid to semiarid climatic
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Fig. 6 A-CN-K (Al,03-CaO* + Na,0-K,0) diagram of Nesbitt and
Young (1984) showing the chemical compositions of intensively weath-
ered (calcareous and illitized) sediments from the Tsagaan Ovoo Fm.,
Hsanda Gol Fm. and Loh Fm. (Valley of Lakes, Central Mongolia).
Compositions of Upper Continental Crust (UCC), Average Proterozoic

conditions (Jin et al. 20006), a feature confirmed by the high CIA
values. The low but highly variable Sr contents (95-330 ppm;
Fig. 5) roughly correspond to variations in the fraction of calcite
present in calcrete horizons (Table 1). The patterns of Co, Cu, Ga,
Hf, Nb, Ni, Pb and U are mostly inconspicuous. However, pos-
itive trends of the heavy rare earth element (HREE) Y, with
incompatible TiO, and the immobile high field strength elements
(HFSE) Ce, La, Sc, (Th) and Zr (Table 1), point to their presence
in heavy minerals that have been delivered from metamorphosed
and magmatic source rocks exposed in the hinterland
(McLennan et al. 1993).

Carbon and oxygen isotopes

The 5'%0 values of carbonates present in calcrete horizons in
the lower part of the Hsanda Gol Fm., i.e. below the basalt I
group, reveal the heaviest isotopic signatures throughout the
entire investigated succession and very high variation in the
range from —0.2 to —9.3%o (see Fig. 2 and Table 2). A signif-
icantly lower scatter in the 5'30 values, from —7.0 to —9.6%o,
is evident above the basalt I group in the Hsanda Gol Fm. In
the Loh Fm. at the Hotuliin Teeg section, the 5'%0 values
show again higher variability with values from —12.9 to
—8.6%o. Overall, an evolution towards progressively lighter
%0 values of the carbonate is evident up-section in the pro-
file, starting in the upper biozone B.

K

Shale (APS), Post-Archean average Australian Shale (PAAS) and basalt
protolith (1) are included for comparison (Bahlburg and Dobrzinski 2011
and references herein). Note that the lower part of the diagram (A <40) is
not shown. The range and averages (dots) of the CIA values are indicated
in the left part of the figure

Below 55 m in the profile (in the lower part of the Hsanda
Gol Fm.), the §'3C values vary from —6.4 to —7.6%o, except
for the two samples taken immediately below basalt I, which
yielded —9.2 and —8.3%o of §'C, respectively. The remaining
sections of the Hsanda Gol Fm. display heavier 5'°C values,
ranging from —6.8 to —3.8%0. Only two outliers were
recognised, with 8'°C value of approximately —7.2%o (TAT
24 and TGR-C 11). Finally, the Loh Fm. is characterised, as
for the 5'®0 values, by a stronger variability in the 5'°C values
in the range from —9.4 to —4.4%o.

Discussion

Based on a seminal sedimentological, petrographic and chemical
description of the Eocene to Miocene sedimentary succession
and embedded basalt groups I to III, Hock et al. (1999) discussed
the provenance of the sediments from the Valley of Lakes
(Mongolia) and proposed a partly aeolian origin for the finest
fraction of the Hsanda Gol to Loh fins. Their hypothesis was
mainly based on a general coincidence between the grain size
distribution patterns of the Valley of Lakes sediments compared
with those of modern Loess deposits from Kansas. However,
Hock et al. (1999) noticed some discrepancies in the grain size
distribution patterns of sediments from the Hsanda Gol and Loh
fms. and interpreted them to be attributed either to short distance
aeolian transport or coupled aeolian—fluvial transport
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Table 2 §'3C and 5'%0 isotope

composition of sediments from BIOZONE High in profile (m) SAMPLE 8"3Cearp, v-pDB 8" Ocarb, v-PDB
the Tsagaan Ovoo Fm., Hsanda
Gol Fm. and Loh Fm. (Valley of Biozone D 108.42 HTE/13a carb —8.1 —10.2
Lakes, Central Mongolia) Biozone D 107.65 HTE/12 carb —4.4 -8.6
’ Biozone D 105.78 HTE/11b carb =54 -89
Biozone D 104.98 HTE/11a carb -7.3 -11.0
Biozone D 101.38 HTE/9b carb =5.1 -9.5
Biozone D 100.97 HTE/9a carb -6.3 -11.2
Biozone D 100.40 HTE/8 carb —6.1 -10.6
Biozone D 100.00 HTE/7b carb =5.7 -89
Biozone D 98.73 HTE/7a carb —6.4 -11.7
Biozone C1-D 97.90 HTE/6 carb -6.3 -10.3
Biozone C1-D 97.50 HTE/5b carb -89 -10.2
Biozone C1-D 94.90 HTE/4b carb -9.0 -12.9
Biozone C1-D 94.43 HTE/4a carb -6.3 -9.6
Biozone C1-D 94.20 HTE/3A carb -9.4 -11.0
Biozone C1-D 94.00 HTE/3 carb -8.8 -11.0
Biozone C1-D 93.36 TGR-C/19b -3.8 -8.7
Biozone C1-D 92.49 TGR-C/19a —4.8 -85
Biozone C1 91.84 TGR-C/18 4.7 -7.8
Biozone C1 91.41 TGR-C/17b -5.0 -8.6
Biozone C1 91.18 TGR-C/17a -4.5 -83
Biozone C1 91.06 TGR-C/16¢ -4.9 -85
Biozone C1 89.24 TGR-C/15 —6.1 -7.8
Biozone C1 88.49 TGR-C/14b —6.1 -9.1
Biozone C1 85.86 TGR-C/13b =5.7 9.1
Biozone C1 84.77 TGR-C/12 =54 =7.7
Biozone C1 84.32 TGR-C/11a -6.8 -9.1
Biozone C1 84.14 TGR-C/10b =59 -9.6
Biozone C 83.24 TGR-C/10a =5.7 -7.8
Biozone C 82.66 TGR-C/9 -5.8 —8.8
Biozone C 82.39 TGR-C/8b -5.6 -7.6
Biozone C 81.12 TGR-C/8a -5.8 -83
Biozone C 80.49 TGR-C/7c —5.5 -9.1
Biozone C 80.01 TGR-C/7b —5.4 -9.3
Biozone C 79.52 TGR-C/7a -5.9 =7.6
Biozone C 78.97 TGR-C/6 =59 9.2
Biozone C 78.74 TGR-C/5 =54 -9.2
Biozone C 78.57 TGR-C/4b -5.6 -8.1
Biozone C 77.87 TGR-C/4a -5.6 -8.7
Biozone C 77.48 TGR-C/3A 6.1 -8.8
Biozone C 77.40 TGR-C/3c =5.1 =7.0
Biozone C 76.80 TGR-C/3b =55 -8.8
Biozone C 76.20 TGR-C/3a =53 -8.6
Biozone C 75.47 TGR-C/2 =59 -8.6
Biozone C 75.13 TGR-C/1 -5.9 -9.2
Biozone B 72.32 SHG-D/25 -5.4 -8.8
Biozone B 71.98 SHG-D/24 =52 -9.3
Biozone B 71.85 SHG-D/23j =55 -8.5
Biozone B 71.38 SHG-D/23i =53 -8.3
Biozone B 70.91 SHG-D/23 h —5.4 -8.5
Biozone B 70.44 SHG-D/23 g =5.0 —82
Biozone B 69.97 SHG-D/23f =52 -83
Biozone B 69.50 SHG-D/23¢ =53 =79
Biozone B 69.03 SHG-D/23d —5.4 -8.1
Biozone B 68.56 SHG-D/23¢ —4.6 =78
Biozone B 68.09 SHG-D/23b -5.4 -8.3
Biozone B 67.62 SHG-D/23a =5.0 -89
Biozone B 67.05 SHG-D/22 =52 -8.8
Biozone B 66.70 SHG-D/21 =5.1 -9.1
Biozone B 66.40 SHG-D/20b =55 -83
Biozone B 65.83 SHG-D/20a =58 =79
Biozone B 65.42 SHG-D/19 -4.9 -8.1
Biozone B 65.11 SHG-D/18 =53 -8.1
Biozone B 64.93 SHG-D/17 =5.1 9.2
Biozone B 64.73 SHG-D/16¢ -5.6 =78
Biozone B 64.30 SHG-D/16b -5.6 -83
Biozone B 63.86 SHG-D/16a =55 =79
Biozone B 63.26 SHG-D/15 =5.1 -8.6
Biozone B 62.73 SHG-D/14b =59 -8.0
Biozone B 62.43 SHG-D/14a -5.6 -8.6
Biozone B 61.98 SHG-D/13 =53 7.6
Biozone B 51.43 SHG-D/6 -7.3 -85
Biozone B 46.68 SHG-D/2 -7.6 -8.7
Biozone A 38.73 TGR-AB/33c -9.2 9.1
Biozone A 38.36 TGR-AB/33b -83 -8.6
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Table 2 (continued)

BIOZONE High in profile (m) SAMPLE 8" Cearb. v-pDB 8"% 0carp. v-PDB
Biozone A 38.00 TGR-AB/33a =72 -93
Biozone A 37.63 TGR-AB/32 1 =75 -84
Biozone A 36.66 TGR-AB/32 k -7.0 -89
Biozone A 35.70 TGR-AB/32j -7.0 —4.6
Biozone A 34.73 TGR-AB/32i —6.8 -1.5
Biozone A 33.76 TGR-AB/32 h —6.9 =72
Biozone A 32.80 TGR-AB/32 g —6.6 -8.6
Biozone A 31.83 TGR-AB/32f —6.8 -2.6
Biozone A 30.86 TGR-AB/32¢ —6.8 -0.2
Biozone A 29.90 TGR-AB/32d -6.7 -5.8
Biozone A 28.93 TGR-AB/32¢ —6.4 -84
Biozone A 27.96 TGR-AB/32b =72 6.1
Biozone A 27.00 TGR-AB/32a -7.0 -6.9
Biozone C1 91.20 SHG-D/30 =55 8.1
Biozone C1 91.00 SHG-D/29b =57 -82
Biozone C1 90.82 SHG-D/29a =54 -8.8
Biozone C1 90.18 SHG-D/28a —5.4 -84
Biozone C1 89.55 SHG-D/26b -5.6 —8.8
Biozone C1 89.15 SHG-D/26a =55 -10.3
Biozone C1-D 96.11 TAT/33b =53 -9.6
Biozone C1-D 95.18 TAT/33a -4.9 -9.7
Biozone C1-D 94.71 TAT/32d 4.7 -8.8
Biozone C1-D 94.19 TAT/32¢ =5.1 -9.6
Biozone C1-D 93.66 TAT/32b —5.4 -9.5
Biozone C1-D 93.14 TAT/32a =5.1 -9.0
Biozone C1-D 93.07 TAT/31 =54 -89
Biozone C1-D 92.99 TAT/30b -5.6 9.4
Biozone C1 91.22 TAT/28 -4.9 -9.0
Biozone C1 91.09 TAT/27b -5.4 9.5
Biozone C1 90.76 TAT/27a =52 -9.3
Biozone C1 90.01 TAT/25 -5.0 -84
Biozone C1 88.81 TAT/23 =52 -9.0
Biozone C1 88.64 TAT/22d =52 93
Biozone C1 87.94 TAT/22¢ -4.9 -9.2
Biozone C1 87.24 TAT/22b -4.9 -89
Biozone C1 86.54 TAT/22a -4.9 -9.2
Biozone C1 83.87 TAT/18a =5.0 -9.3
Biozone C 83.54 TAT/17¢ -4.7 —8.8
Biozone C 83.24 TAT/17b —4.8 -9.0
Biozone C 82.94 TAT/17a —4.8 9.2
Biozone C 82.64 TAT/16b —4.8 -9.7
Biozone C 82.11 TAT/16a -4.9 -9.6
Biozone C 81.84 TAT/15¢ —4.8 9.2
Biozone C 81.26 TAT/15b —4.2 -8.6
Biozone C 80.67 TAT/15a =5.5 -9.7
Biozone C 80.09 TAT/14b -4.9 -9.2
Biozone C 79.59 TAT/14a -4.9 -9.0
Biozone C 79.04 TAT/12¢ —4.8 -8.8
Biozone C 78.47 TAT/12b —4.8 -8.6
Biozone C 7791 TAT/12a —4.8 -89
Biozone B 68.99 TAT/8¢ 4.7 -8.7
Biozone B 68.32 TAT/8a —4.5 -89
Biozone B 67.99 TAT/7b -4.7 -8.8
Biozone B 67.62 TAT/7a 4.6 -8.7
Biozone B 67.44 TAT/6¢ —4.5 -8.8
Biozone B 67.24 TAT/6b —4.6 -8.8
Biozone B 67.04 TAT/6a -4.6 -89
Biozone B 66.77 TAT/5 4.6 -8.7
Biozone B 66.62 TAT/4b —4.6 -8.7
Biozone B 66.29 TAT/4a —4.7 —9.1
Biozone B 66.12 TAT/3¢ —4.8 94
Biozone B 65.79 TAT/3b —4.5 -8.3
Biozone B 65.08 TAT/2 —4.8 -8.8
Biozone B 65.00 TAT/lc -4.7 -8.7
Biozone B 64.47 TAT/1b -4.9 -9.3
Biozone B 63.93 TAT/1a —4.8 -9.1

mechanisms. Sun and Windley (2015) proposed an aeolian ori-  Chinese Loess Plateau. They concluded that the finest fraction
gin of the fine fraction based on REE patterns and comparison of ~ of the Hsanda Gol and Loh fins. was deposited along with the
grain size distribution patterns with that from the modern ~ Cenozoic cooling through long distance transport.
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Fig. 9 5'°C vs. total calcite (expressed as wt.% CaCOs) cross plot, showing that the vast majority of the soil carbonate is authigenic in origin and
resistant to diagenetic overprinting. Red squares represent samples taken in close vicinity to the basalt groups I and II. See text for explanations

The herein obtained mineralogical and petrographic
results (Figs. 3 and 4), however, clearly reveal a diage-
netic origin of illite, which represents a main constituent
of the fine fraction of the Hsanda Gol and Loh fms.
Moreover, the association of hairy 1 M illite, flaky 1My
I-S and macroquartz cement in the sediments points to a
formation during the advanced stages of sandstone dia-
genesis at elevated temperatures (70 to 150 °C), which is
in contrast to the very low burial (in the range of a few

hundred metres) proposed for the Valley of Lakes sedi-
ments. Thus, there is an apparent inconsistency between
the actual literature and our results, particularly regarding
the mineralogical and palaeo-climatic evolution of the
Valley of Lakes sediments. We present here a new model
for the post-depositional history of this famous study
site, besides discussing implications for changes in the
palaeo-climatic evolution reflected in the Valley of
Lakes sediments.

Table 3 5'°C and §'80 isotope

composition measured on bulk LECO Calcrete Bulk

rock and on calcrete nodules and - s - s

lenses extracted from the same CaCO; 8°C 870 8°C 570

samples. These values indicate % (%c), VPDB (%c), VPDB (%0), VPDB (%0), VPDB

that only few samples with

<10 wt% of calcite may be HTE/13a 6.9 —8.1 -10.2 —6.4 9.7

influenced by detrital and/or sec- HTE/12 512 —4.4 -8.6 —4.6 -85

ondary carbonate minerals HTE/11b 54.6 54 -89 53 8.8
HTE/l1a 3.8 =13 -11.0 -7.1 -10.7
HTE/9b 28.4 =5.1 9.5 =52 -94
HTE/9a 3.8 -6.3 -11.2 -6.3 -11.3
HTE/8 5.0 —6.1 -10.6 —6.2 -10.9
HTE/7b 46.0 =5.7 —8.9 =55 -94
HTE/7a 2.8 -6.4 -11.7 —6.6 -11.5
HTE/6 11.8 -6.3 -10.3 -6.5 -10.4
HTE/1e 38.9 -59 -10.3 -6.2 -10.3
HTE/1d 4.9 -6.9 -11.7 =7.0 -11.9
HTE/lc 61.2 —6.2 -9.5 —6.0 -10.0
HTE/la 67.2 —6.2 —10.1 —6.3 —10.1
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A revised model for the post-depositional evolution
of the Valley of Lakes sediments

The source rock composition, depositional environment and
potential recycling processes can be identified using trace el-
ement composition data of bulk rock samples. Positive trends
of the HREE with TiO, and HFSE (Table 1) point to their
incorporation in heavy minerals present in the Hsanda Gol
and Loh fms. sediments. These heavy minerals have been
delivered from metamorphic and magmatic source rocks ex-
posed in the hinterland of the Valley of Lakes (McLennan
et al. 1993). Based on gravel lithologies, Hock et al. (1999)
demonstrated that the samples from the Tsagaan Ovoo to Loh
fms. are predominated by quartz, pegmatite, granite, siltstone,
basalt and carbonate clasts, with the heavy mineral fraction
containing epidote, zircon, tourmaline, garnet, rutile, pyrox-
ene, amphibole and sphene. Such a diamictic composition
suggests a heterogeneous provenance of the gravel compo-
nents being influenced by basic to intermediate, low- to
medium-grade metamorphic and magmatic source rocks of
Late Proterozoic to Late Permian age, which crop out in the
catchment areas of the alluvial fans (Zorin et al. 1993).
Despite the fact that the heavy mineral spectra are comparable
throughout the entire Tsagaan Ovoo to Loh fms., recycling of
older sediments and long transport distances are considered
unlikely because multiple reworking-(re)deposition cycles
typically result in a strong enrichment of Zr and in a depletion
of Sc and Th. The Th/Sc vs. Zr/Sc cross-plot (Fig. 7) is a
sensitive indicator for studying the source rock composition.
This plot reveals that the investigated sediments have an upper
crustal composition and were virtually not affected by post-
depositional recycling processes. Even though an aeolian or-
igin of the finest fraction cannot be ruled out based on the trace
element data presented here, this finding suggests that the
immature (arkosic) mud- to sandstones from the Hsanda Gol
and Loh fins. were primarily derived from alluvial fans that
have formed the upper Tsagaan Ovoo sediments. The latter
feature is confirmed by remarkable lithological changes ob-
served throughout the entire sedimentary succession (Fig. 3),
which were interpreted to reflect changes in the depositional
environment during the Eocene to Miocene. This is expressed
in the Tsagaan Ovvo Fm. being dominated by braided fluvial
fan and lake deposits (Hock et al. 1999: 92—-100, Daxner-
Hock et al. 2017, this issue), whereas the Hsanda Gol sedi-
ments represent ephemeral lake to braided fluvial fan deposits
that are affected by re-sedimentation of the underlying
Tsagaan Ovo Fm. (Badamgarav 1993; Hock et al. 1999).
Finally, the Loh sediments are of similar composition but con-
tain reworked lithoclasts from the basalt I and Hsanda Gol
sediments (Daxner-Hock et al. 2017, this issue) and thus can
be easily differentiated from the former.

However, a pre-condition required for the accurate inter-
pretation of mineralogical as well as major and trace element
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signatures of bulk samples is the identification of distinct
weathering paths (Zhang et al. 2014). Hydrolysis, leaching,
sorting of sediments and diagenesis, for instance, result in
distinct chemical, mineralogical and physical changes in the
sediments and sedimentary rocks. Such processes have to be
considered in the assessment of source rock compositions,
depositional settings and sedimentary recycling processes
and can be traced by means of the CIA, which provide a
quantitative measure for tracing physical and chemical
weathering (McLennan et al. 1993; Bauluz et al. 2000; Jin
et al. 2006; Bahlburg and Dobrzinski 2011). The obtained
CIA values, from 70 to 76, suggest that chemical weathering
of the (arkosic) sandstones occurred during illitization (Fig. 4).
This unidirectional weathering pathway can also be followed
by the A-CN-K diagram (Fig. 6), where sorting, K-
metasomatism and frictional variation in the provenance of
sediments played only a minor role on affecting the bulk sed-
iment’s mineralogical and geochemical signatures compared
with their strong modification associated with the illitization
(Nesbitt and Young 1984; Fedo et al. 1995; Yang et al. 2004;
Bahlburg and Dobrzinski 2011).

The post-depositional alteration of the mostly (arkosic)
mud- to sandstones need temperature around 70 to 150 °C.
As the geological setting does not allow diagenesis through
burying, we propose that hydrothermal fluids were the driving
force for this diagenetic pathway. As samples post-basalt
group II are affected in the same way than older ones, this
hydrothermalism should have been active from Miocene to
present. We thus propose that the latest illitization event co-
occurred with the deposition of the basalt I1I during the middle
Miocene at ~13 Ma, even if this basalt group has, today, a
smaller geographic expansion than the Hsanda Gol Fm. The
hydrothermal alteration of K-feldspar provided the K* and
AI** ions and the silicic acid to the interstitial solution, which
are required both for the growth of discrete illite and I-S and
for the syntaxial overgrowth of quartz as soon as a certain
supersaturation threshold, with respect to these mineral
phases, was reached in the interstitial solution (e.g. Hower
et al. 1976; Bauer et al. 2000; Baldermann et al. 2012). This
conceptual model is adequate to explain: (i) the predominance
ofiillite and quartz (33 + 8 and 35 £ 9 wt%, on average), (ii) the
very low orthoclase content (2 + 1 wt%, on average) observed
throughout the sedimentary succession and (iii) the local re-
stricted occurrences of zeolite and vermiculite associated with
intensively weathered amphibole minerals originally present
in basalt (Fig. 3). Kaolinite and chlorite could have also been
formed by a dissolution—precipitation mechanism simulta-
neously and/or soon after the multi-stage illitization event(s),
but they can be allochthonous in origin as well (Lanson et al.
1996; Beaufort et al. 2016). Even if we assume an allochtho-
nous origin of kaolinite and chlorite, their occurrence in trace
amounts (<2 wt%) contradicts the pronounced large aeolian
deposition previously proposed by Sun and Windley (2015).
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In consequence, we cannot exclude local and short-distance
aeolian contribution to the fluvial and lake deposit sedimenta-
tion, as it is common in arid to semi-arid environments (e.g.
Xiao et al. 2010; Licht et al. 2014, 2016a), but apparently, we
found no mineralogical and geochemical evidence for long
distance transport and/or large aeolian deposition.

Processes controlling the (isotope) geochemical composition
of soil carbonates

The illitization resulted in a strong mineralogical and chemical
overprinting of the Hsanda Gol to Loh sediments, implying
that any palaeo-climatic information recorded in the paleosols
could have been disturbed during post-depositional alteration.
Moreover, the pristine §'°C and §'®0 isotopic signatures of
soil carbonate are often affected by exposure to meteoric or
hydrothermal fluids (Marshall 1992), burial diagenesis (e.g.
Marshall 1992; Kaufman and Knoll 1995) and oxidation of
organic matter (Kent-Corson et al. 2009). Thus, palaeo-
environmental reconstructions based on isotopic signatures
of carbonate present in calcrete have to be interpreted
carefully.

We propose, however, that the §'°C and 5'%0 isotope com-
position of soil carbonate was not disturbed by the post-
depositional illitization event(s) and still records the climatic
conditions prevailing during the precipitation of calcite from
meteoric solutions, for the following reasons: (i) the 5'*C and
§'80 profiles should show a covariation in the case of strong
diagenetic overprinting, which is apparently not the case here
(Fig. 8), and (ii) 8'°C and §'®0 signatures are more prone to
diagenetic alteration in a siliciclastic matrix than in pure car-
bonates (Kaufman and Knoll 1995). However, our isotopic
values show no correlation with the total amount of carbonate
present in the bulk samples (Fig. 9).

Soil carbonate frequently comprises of authigenic (i.e.
calcrete), secondary (i.e. calcite spar) and detrital (i.e.
lithoclasts) carbonate that may carry different §'°C and 5'%0
signatures. From a petrological point of view, the most widely
absence of secondary calcite spar and dolomite, and the pres-
ervation of the crypto- to microcrystalline, honeycomb-like
texture of calcite suggest that there is no other significant
source of detrital and secondary calcite that could disturb the
bulk 5'3C and 'O signatures of carbonate bound to paleosol
horizons. In order to prove that the authigenic calcrete nodules
and lenses account for ~100% of the soil carbonate, some
samples were analysed for their 6'°C and §'®0 isotope bulk
composition (Table 3). These values indicate that only few
samples containing less than 10 wt% of calcite could be influ-
enced by small abundances of detrital carbonate, but they do
not blur the 5'°C and §'®0 signatures of the authigenic soil
carbonate.

The only exception is the carbonate samples collected in
close vicinity to the prominent horizons of basalt groups I and

II (Figs. 2 and 8, red squares), which display notably lighter
83 (and 580 for basalt II) values, compared with the rest of
the calcrete samples (Figs. 2 and 8, blue rhombs). During
volcanic activity associated with the development of the basalt
groups, '*C—"2C bonds break more easily than '?C-'°C
bonds, and the result is that residual carbonates, after vapori-
zation, typically show more negative 5'°C values than their
precursor phase (Valley 1986; Richoz 2006). Thus, these sam-
ples (two samples taken below basalt I at the Taatsiin section
and few samples collected at different levels around basalt II at
the Hutuliin Teeg section) have not been considered in the
climatic trends discussed below.

Considering, however, that most of the calcrete samples
preserved their pristine 5'*0 and §'°C signatures of forma-
tion, palaco-climatic trends can be interpreted based on chang-
es in the 5'°C curve (Fig. 2). The 8'3C record of the soil
carbonate is ultimately linked to variations in the isotopic
composition of the soil solution from which the calcrete nod-
ules and lenses have been precipitated (Schon et al. 2016).
However, the §'3C isotopic composition of the soil solution
can be modified in various ways. For instance, CO, present in
soil is a mixture of two isotopically distinct endmembers,
namely atmospheric CO, and CO, derived from the in situ
oxidation of organic matter present in soils (e.g. Khadikikar
et al. 2000). Changes in the relative abundance of these isoto-
pically different carbon pools and subsequent fractionation of
the oxygen and carbon isotopes during (re)equilibration of
CO, with the soil solution greatly modify the &6'°C signal of
the precipitating calcite. Stratigraphic changes in 5'3C,; (and
accordingly in the 8"°Carbonate) Values follow the: (i) varia-
tions in aridity, (ii) changes in the atmospheric pCO, and (iii)
changes in proportion between the C4/C3 photosynthesis
pathways of plants. In our case, this last point cannot have
any effect as C4 plants arrived in Mongolia not before late
Miocene (Zhang et al. 2009; Edwards et al. 2010). From ~33
to 22 Ma, the atmospheric CO, concentration decreased from
800 to 200 ppm (Zhang et al. 2013), which should be trans-
lated in a trend towards lighter 513C,,; values. We do not see
this trend in our data, and thus, changes in aridification in
Central Mongolia may have overprinted this effect.

Increases in aridity can increase the 5'°C of soil carbonate
in three ways: (1) water stress induces a limitation of diffusion
during photosynthesis, which increases the 5'3C in plants
(Kohn 2010); (2) a decrease in plant productivity, which in-
creases the ratio of atmospheric CO, to soil respired CO,
(Cerling 1984; Takeuchi et al. 2010); and (3) a shallowing of
soil carbonate formation due to reduced infiltration, which
also increases the ratio of atmospheric CO, relative to the
contribution of §"*Cy,;. The abovementioned processes result
in an increase in 6'>C (Caves et al. 2014), but the decrease in
plant productivity is proven to have the largest effect (Cerling
and Quade 1993; Caves et al. 2014). In summary, a positive
excursion of the 5'>C signature of soil carbonate (i.e. calcrete
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nodules) preserved in the paleosols of the Valley of Lakes
sediments is ultimately linked to aridification.

5'%0 values of pedogenic carbonates are mainly deter-
mined by the 5'*0 composition of the soil water, which in
turn is strongly related to the §'*0 composition of local me-
teoric water, being affected by soil temperature and evapora-
tion rate (Cerling 1984; Quade et al. 1989; Li et al. 2016). It
has been shown that in semi-arid and arid areas, the ratio soil
water evaporation/amount of precipitation has the most signif-
icant effect (Quade and Cerling 1995; Li et al. 2016).

Palaeo-climatic trends recorded in the Oligo-Miocene
sediments

A palaeo-climatic reconstruction of the Oligocene to Miocene
sediments from the Valley of Lakes is mainly established on
the 5"Ceabonate profile (Fig. 2). A distinctive, positive 5'>C
isotope excursion (approximately —7.6 to —5.4%. of 5'°C,
VPDB) occurs in the lower Rupelian (~31 Ma, lower to mid-
dle Hsanda Gol Fm., 40 to 62 m in Fig. 2), which can be
assigned to a distinct early Oligocene aridification in Central
Asia, a feature confirmed by the 5'30 data. This aridification
step has to be differentiated from the well-known Eocene—
Olicocene Transition aridification event at ~33 Ma (Meng
and McKenna 1998; Dupont-Nivet et al. 2007; Kraatz and
Geisler 2010; Abels et al. 2011; Wang et al. 2012; Bosboom
etal. 2014; Caves et al. 2014; Li et al. 2016) as it post-dated it
clearly. This shift at ~31 Ma correspond to the boundary be-
tween Biozone A and B. The mammal assemblage, however,
does not show significant changes in diversities or turnover
rates (Harzhauser et al. 2016); the communities seem to be
stable. Above a prominent sandstone bed at ~59 to 62 m, the
§'3C signatures scatter in the range from approximately —5.9
to —4.6%o0 of 513C, VPDB, during the late Rupelian and the
early Chattian without any significant variations in the carbon
isotopic record. The transition between the biozones B and C
is, however, marked by an important turnover in the mamma-
lian community, mainly the rodents (Harzhauser et al. 2016),
and corresponds to the OGM. This major climatic event is not
well resolved in our record. Another significant shift towards
heavier §'°C values (6.2 to —4.8%0 of 5'3C, VPDB, 88 to
93 m in Fig. 2) occurs at the top of the Hsanda Gol Fm.,
~24 Ma, between the biozones C1 and C1-D. This trend is
seen in the Taatssiin Gol section (TGR-C) and Hsanda Gol
section (SHG), but is less clear in the Tatal Gol section (TAT),
where the §'°C values scatter around —4.5 +0.4%o already
since the base of biozone C. This emphasises the very local
response of the paleosols to climatic changes on different set-
tings in the same area. This latter aridification corresponds to
the prominent Late Oligocene Extinction (Harzhauser et al.
2016) and to the global Late Oligocene Warming (Paul et al.
2000). During the latest Oligocene to earliest Miocene, the
'3C (and 5'%0) values show very strong variation (—10.5 to
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—4.5%o of §'3C, VPDB, above 94 m in Fig. 2), which corre-
sponds to an increased presence of cross-bedded fluvial de-
posits. This coarser lithology could have been more prone to
diagenesis and late cement precipitation than the fine sedi-
ments of the Hsanda Gol Fm. Alternatively, a more humid
climate during the formation of the Loh Fm. is certified by
these fluvial sediments and changes in the gastropod record
(Neubauer et al. 2013). These strong isotopic fluctuations
could therefore reflect cyclic regional-scale climatic variations
associated with the end of the global Late Oligocene Warming
and the first Miocene Glacial period. The combination of our
(isotope) geochemical, mineralogical, sedimentological and
petrographic results leads us to suggest that long-term changes
in the global and regional climate are partly well recorded in
the investigated sedimentary succession of the Valley of
Lakes. However, some global events like the OGM are not
well documented in our records, and some aridification events
(at ~31 and ~24 Ma) do not seem to correspond to any major
global climatic change. Ongoing research and novel climate
models are now required to better resolve global and regional
scale palaeo-climate changes in Central Asia.

Variations in the 5'®0 values of soil carbonate throughout
the lower Hsanda Gol Fm. (biozone A, 25 to 40 m in Fig. 2)
are very large ( approximately —9.1 to —0.2%q of &'*0,
VPDB). Alternating extremely high to low evaporation de-
grees can produce such variability in the 5'%0 values (green
squares in Fig. 8). This is in general agreement with the sed-
imentological data that point to sediment deposition in playas
during the early Rupelian (Badamgarav 1993). Up-section, a
trend towards heavier 5'%0 values (approximately —9.5 to
—8.0%0 of §'®0, VPDB) was observed in the Rupelian (lower
part of biozone B, 40 to 65 m in Fig. 2), which points to a
distinct decrease in precipitation. This corresponds to the in-
crease in aridification seen in our §'>C record. The 5'°C peak
is not seen at the transition between the Tibetan and the
Chinese Loess Plateaus (Li et al. 2016). However, an increase
in 5'%0 could be seen in the Lanzhou basin (Li et al. 2016) and
in some section of the south Tarim Basin and of the Qaidam
Basin (Kent-Corson et al. 2009). This discrepancy could be
explained by changes in air-masses circulation, which have
only localy an impact on soil productivity. This is followed
by a shift towards progressively lighter 5'%0 data (approxi-
mately —8.0 to —9.0%o of 5'*0, VPDB) in the upper Rupelian
(the upper part of biozone B). This could indicate an in-
crease in precipitation which is not seen in the §'>C re-
cord or another change in air-masses circulation (Kent-
Corson et al. 2009). Due to the large scatter in the 5'%0
values in the range from approximately —7 to —12%o
above ~75 m in the section (Fig. 2), potential palaco-
climatic changes recorded in the Upper Hsanda Gol to
Loh fms. are not distinguishable based on §'®0 data.
This important scattering could be due to either climatic
variability or increased diagenetic influences.
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Conclusions

Our novel mineralogical and (isotope) geochemical dataset of
the highly fossiliferous Valley of Lakes sediments (Mongolia,
Central Asia) suggests that intense illitization resulted in a
strong overprinting of the mostly fluvial and lacustrine sedi-
ments of the Taatsiin Gol basin. The lath-like morphology and
the 1 M polytype structure of the illite particles point to pre-
cipitation at elevated temperatures (70 to 150 °C), implying
that the illitization was the result of circulating hydrothermal
fluids generated during post-Oligocene basalt flood event(s).
This hydrothermal circulation resulted in a significant post-
depositional alteration and in an accompanying all encom-
passing homogenization of the mineralogical and major ele-
ment composition of the entire Eocene to Miocene succession.
The trace element composition, i.e. Th/Sc and Zr/Sc ratios,
however, reveals a short transportation distance of the sedi-
ments and little, if any, reworking-(re)deposition cycles. This
confirms that the sediments of the Hsanda Gol to Loh fms.
were mainly derived from the alluvial fans that have formed
the later Tsaggan Ovoo sediments (Hock et al. 1999). Such
short transportation distance and the huge abundance of
authigenic illite and I-S contradict the large aeolian origin
previously proposed for the fine fraction of the Hsanda Gol
sediments (Sun and Windley 2015).

The crypto- to microcrystalline, honeycomb-like calcite
present in calcrete nodules and lenses within abundant
paleosol horizons shows, by contrast, an outstanding resis-
tance against alteration and is therefore suitable to be used
for palaco-climatic reconstructions. In particular, the excur-
sions towards less negative values in the §'°C record of the
authigenic soil carbonate reveal a distinct early Oligocene
aridification in the Valley of Lakes at ~31 Ma and a less in-
tense (regional-scale) aridification at ~24 Ma that correlates
with the Late Oligocene Extinction in mammalian communi-
ties. The Oligocene Glacial Maximum, which corresponds to
an important faunal turnover in the Valley of Lakes, did not
produce any significant imprint in our geochemical record.
The Oligocene to Miocene Transition (OMT) is characterised
by a higher variability in climate, which corresponds to the
Late Oligocene Warming and the first Miocene Glacial. This
record, which post-dates the retreat of the Tarim sea and
predates the main tectonic up-lift events, confirm that
aridification during Oligocene is a general feature for
Central Asia (Licht et al. 2016b). These multiple aridification
events generally follow global climatic trends; however, re-
gional scale climatic and faunal variation is also recorded in
the sediments of the Valley of Lakes.
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