
Eur. Transp. Res. Rev. (2014) 6:455–467
DOI 10.1007/s12544-014-0143-3

ORIGINAL PAPER

Argos-ESL: a versatile tool for planning and managing
experiments on driving behavior

Antonio Pérez · M.Isabel Garcı́a · Manuel Nieto ·
José L. Pedraza · Santiago Rodrı́guez · Juan Zamorano

Received: 30 October 2012 / Accepted: 26 June 2014 / Published online: 31 July 2014
© The Author(s) 2014. This article is published with open access at SpringerLink.com

Abstract
Purpose Argos is a long-term program started in 1990 to
promote experimental research about driver behavior under
realistic driving conditions. The development of the lat-
est Argos platform has recently been completed and some
experiments have been carried out based on this new com-
plex and powerful tool.
System Description Argos allows recording multiple car
parameters (such as speed), driver variables (such as the
point of gaze), and environmental parameters (some of
which are obtained by means of real-time signal process-
ing, such as the distance to lateral road marks). All of these
data can be used to replay driving sessions in the laboratory
and to extract data associated with different driving session
segments.
Paper contents This paper is focused on the description
of the “Roadmap Program Interpreter”, a tool 2 embed-
ded in the Argos acquisition and control system which

A. Pérez (�) · M. I. Garcı́a · M. Nieto · J. L. Pedraza ·
S. Rodrı́guez · J. Zamorano
Department of Computer System Architecture and Technology,
Technical University of Madrid Facultad de Informática,
Campus de Montegancedo, sn 28660 Madrid, Spain
e-mail: aperez@fi.upm.es.

M. I. Garcı́a
e-mail: mgarcia@fi.upm.es.

M. Nieto
e-mail: mnieto@fi.upm.es.

J. L. Pedraza
e-mail: pedraza@fi.upm.es.

S. Rodrı́guez
e-mail: srodri@fi.upm.es.

J. Zamorano
e-mail: jzamora@fi.upm.es.

not only interacts with the equipment, but also with the
driver and with the experiment supervisor. This tool is
based on a new language, ESL –Experiment Specifica-
tion Language– designed for the Argos project to help
the experiment designer to formally specify complex, con-
trolled, and repeatable experiments in a very efficient way.
Argos-ESL has allowed the Spanish Traffic Agency (DGT,
a governmental agency) as well as other local agencies to
develop complex experiments in a fraction of the time pre-
viously needed by the DGT for designing similar driving
experiments.

Keywords In-vehicle data recorder (IVDR) · Advanced
Driver-assistance systems · Driver behavior · Feedback

1 Introduction

Car driver behavior is a crucial issue in road safety.
This field, which has seen great research efforts by both
governmental agencies and vehicle manufacturers, involves
a combination of human, environmental, and vehicle related
factors.

Many driver behavior studies are based on driving
simulators, because they represent a safe option [1, 5, 16].
However, driving in real conditions can provide human
behavior experts with complementary data about actual
driver behavior, albeit at the cost of requiring the use of
costly instrumented vehicles. Most often instrumented vehi-
cles limit their functionality to logging several kinds of
data, thus acting as simple data-loggers [17]. On-board data-
acquisition systems are usually referred to as In-Vehicle
Data Recorders (IVDR).

Many specific experiments can be designed to
characterize driver behavior using instrumented vehicles

mailto:aperez@fi.upm.es.
mailto:mgarcia@fi.upm.es.
mailto:mnieto@fi.upm.es.
mailto:pedraza@fi.upm.es.
mailto:srodri@fi.upm.es.
mailto:jzamora@fi.upm.es.


456 Eur. Transp. Res. Rev. (2014) 6:455–467

or driving simulators. Some primary examples can be
classified based on their respective main subject of study:

– Effects of mental workload on driving performance
(including research about how phone conversations or
other sources of driver distraction affect driving.)

– Driver perception and reaction time in response to
unexpected or surprising events.

– Several aspects of car-following behavior, such as the
relationship between following distance and speed, lane
following analysis and longitudinal driving behavior.

Belonging to the first class, Liang et al. [5] propose a
method to detect driver distraction in real time using eye
movements and driving data captured while the driver inter-
acts with an acoustic communication in-vehicle system.
Comte [1] focuses on attempting to reduce drivers’ ten-
dency to exceed speed limits. Her work falls within the
second of the above-mentioned classes because its main
subject is focused on driver reaction time. Also in this class
Rakha et al. [12] use an instrumented vehicle equipped
with a differential global positioning system (DGPS) and
a data acquisition system to characterize the impact of
driver age and gender as well as driver behavior based on
the perception-reaction time (PRT) at high speed through
signaled intersections. Finally, other authors use instru-
mented vehicles to acquire data to build a simulation model
of driver behavior in car-following – see Ma [6] – or to pre-
dict the intention to change lanes by analyzing the driver’s
head movements and eye gaze –Doshi [2]. These studies
belong to the last class in the above classification.

In general, repeating experiments with the same driver
under the same conditions allows an experiment supervisor
to draw conclusions about driver behavior reproducibility.
Repeating the same experiment with different drivers or
under different external conditions provides information
about usual/unusual driver behavior characteristics. How-
ever, repeating experiments is not easy when working with
a real car in standard conditions.

Argos is an instrumented vehicle developed at the
Computer Architecture Department (DATSI) of the Tech-
nical University of Madrid (UPM) based on an embedded
multicomputer that records mechanical and environmental
parameters as well as video images synchronized on a time
code basis [7, 10]. The system also includes several software
applications allowing a follow-up analysis of the collected
data. Argos has been used in different research projects to
study the relationship between driver attention and speed
control [14] and the impact of using mobile phones on road
safety [8].

The last version of the Argos instrumented car [10] con-
tinuously records vehicle data and driver information such
as the point of gaze, environmental information such as the
distance to other vehicles and to the lateral road markings.

Several video cameras provide synchronized information
about the driving scene. A cursor superimposed on the main
road video scene tracks the gaze direction in real time.
A major improvement of the new Argos system is its ability
to interact with the driver by means of light and audio
stimuli activated at specific or scheduled time intervals.

This paper is focused on the description of the Roadmap
Program Interpreter, a tool embedded in the Argos acquisi-
tion and control system which simultaneously interacts with
the equipment, the driver, and the experiment supervisor.
This tool is based on a new language, ESL –Experiment
Specification Language– designed for the Argos project to
help the experiment designer to formally specify complex,
controlled, and repeatable experiments in the easiest possi-
ble way. Being able to program sessions with ESL is one
of the main differences between the Argos system and other
IVDR or instrumented vehicles.

The rest of this paper is organized as follows. The
next section describes the instrumented Argos vehicle.
Section 3 outlines the requirements to be considered while
defining and developing driving experiments by means
of the experiment Roadmap Program. Section 4 presents
the Experiment Specification Language. Section 5 briefly
describes an experiment example for driving sessions,
defined through ESL. Finally, some concluding remarks are
presented in Section 6.

2 The Argos system

In 1987, the Spanish Traffic Agency (DGT, a Public Admin-
istration agency) started the Argos Program whose main aim
is to promote experimental research about driver behavior
under realistic driving conditions. The first step of the pro-
gram consisted in designing and implementing a platform
to perform driving experiments involving an instrumented
car and a laboratory. The main purpose of the car was to
collect data related to both the driver and the car, as well
as to environmental conditions. The experiments were con-
ducted by the session supervisor (usually a psychologist)
who could monitor the acquired data on a laptop computer
and store predefined codes or comments. All the collected
data had to be post-processed in the laboratory in order
to reproduce the driving session and to extract any rele-
vant information. A more detailed description can be found
in [7, 9].

While the design of the platform proved to be suitable
for the initially planned experiments and research, using the
system and planning the experiments soon created the need
for new features which the Argos car did not offer as it was
a pure data recorder. This was particularly apparent in the
lack of ways for the driver to effectively interact with the
system.



Eur. Transp. Res. Rev. (2014) 6:455–467 457

As new and more complex experiments were designed
[8, 13–15], new peripheral equipment was added to the sys-
tem, most of it to provide some kind of interaction, such
as push buttons included in the steering wheel body or a
light barrier detection system. However, in most cases the
associated data could only be stored synchronously to be
post-processed with the rest of the session data.

Managing the experiments meant that the supervisors had
to write detailed road maps on sheets of paper that included
the configuration procedures, the steps to be followed, the
conditions or the moments at which certain actions needed
to be performed, the precise instructions to be given to the
driver, etc.

2.1 The new Argos car

The instrumented car was used for more than ten years and
it helped DGT to make regulatory decisions on road safety.
In 2003 DGT started a second project with the DATSI to
develop a new platform. This new platform combines the
wide experience acquired by the DGT experts and that of
the platform designers based on their continuous feedback
from the actual Argos car users. Thus, the system was com-
pletely redesigned including state of the art equipment and
foreseeing a long useful life of the platform including con-
tinuous and easy updates with new features and peripheral
equipment [10]. One of the added improvements is an
experiment management tool, the Roadmap Program Inter-
preter, which interacts with the equipment, the driver and
the experiment supervisor allowing the design of multistage
and fully unattended experiments, i.e. experiments without
any supervisor inside the car.

The new Argos system is an instrumented car with
multiple sensors, cameras and devices. It has two main
operational seats: the driver’s seat and the supervisor’s
seat. The driver’s seat includes several push-buttons in the
steering wheel, a camera pointing at the driver, a camera
pointing at the road and located as close as possible to the
driver’s head (scene camera), eye-tracking peripherals, a
high-luminosity LED array to project text and graphics on
the windshield, and an LCD display placed in front of the
vehicle instrument panel that can be used to give instruc-
tions, to display video images, or to draw graphics replacing
the instrument panel (see Fig. 1). The rear seat constitutes
the main supervisor’s post and consists of a wireless key-
board with an incorporated track-ball, three LCD displays,
and two additional push-buttons.

Additionally, the front passenger’s seat has a car pedal
extension, an LCD display placed over the GPS navigator,
and connectors for an auxiliary keyboard-mouse set and for
tachistoscopic glasses (liquid crystal glasses whose lenses
can be individually occluded). This post can be used in
experiments involving tachistoscopic glasses, for security

Fig. 1 Argos driving post

purposes in experiments on driving under fatigue, alcohol,
drugs, etc, or as a secondary supervising post.

Argos has been designed as a multicomputer system
built on top of four main PC subsystems interconnected
by a Gigabit Ethernet (see Fig. 2). Additionally, two
microcomputer-based subsystems were designed to perform
specific tasks, the Sensor Management System (SMS) and
the Stimuli Display System (SDS), and two commercial
products were integrated in the system, the Eye Tracking
System (ETS), that estimates the driver’s point of gaze on
the scene camera, and the Radar Scanning System (RSS).
Argos software modules are depicted in Fig. 3 in which a
summary of the hardware subsystems is represented in the
top right corner, the main software modules in the top half
and the auxiliary or specialized modules in the bottom half
of the figure.

2.1.1 Control and Acquisition System (CAS)

The CAS manages the acquisition of all the numerical data
gathered by the sensors distributed across the car, most of
them provided by the SMS; it generates an overall system
clock used to synchronize all the information stored in the
system; and it manages the presentation of stimuli to the
driver.

2.1.2 Image Storage and Management System (ISMS)

The main purpose of the ISMS is to capture, store, and
distribute video images obtained from a high-resolution
firewire scene camera and up to four additional PAL-format
video inputs. Two of these inputs are connected to two video
cameras, one of them pointing at the driver’s face and a
second one, located near the rear window, pointing at the
road behind the vehicle; the third input receives video
images from the ETS video output, and the fourth one is



458 Eur. Transp. Res. Rev. (2014) 6:455–467

Fig. 2 Argos hardware
architecture

provided to increase system flexibility allowing the experi-
ment supervisor to connect an additional camera placed at
any other point of the car depending on specific experiment
requirements. For instance, the supervisor can place this
extra camera over the driver’s shoulder or head, pointing at
the steering wheel or at the pedals.

Every video image frame is timestamped with the time
code supplied by the CAS and stored in the ISMS along
with a timestamp-based index so that video sequences can
quickly be located. The experiment supervisor can select
one or several video images to be shown on the displays
connected to the CAS and to the UISS.

2.1.3 Lateral Position System (LPS)

The LPS has two main functions; the first is to estimate
in real-time the distance to the road lane marks on both
sides of the vehicle using image processing algorithms.
It uses two PAL cameras installed in the place of the
front fog lamps to capture the lane marks. In a different
working mode, the LPS can also perform image processing
algorithms to detect predefined visual beacons, as required
in some experiments.

The second function of the LPS is to perform the
same video image processing as described in the ISMS

Fig. 3 Argos software
architecture



Eur. Transp. Res. Rev. (2014) 6:455–467 459

subsection, i.e. to capture, store and distribute video
images obtained from up to four additional cameras.
Two are fixed and correspond to both lateral position
cameras. The other two PAL inputs are not in use yet, but
they are provided for future expansions of the system.

2.1.4 User Interface and Storage System (UISS)

The UISS is the Argos front-end that provides user access to
the whole system through the supervisor’s post to manage
driving sessions, as well as for maintenance tasks, backups,
etc. It coordinates all the computers and software modules
and sends instructions to configure, start, manage, and end
the driving sessions. The instructions may be generated by
direct actions of the supervisor or by the Roadmap Program.

The UISS is responsible for storing all the informa-
tion required for performing experiments and all the data
collected by Argos during the driving sessions.

It executes the graphical user-interface application that
allows the supervisor to monitor any signal and video image.
If the scene image is selected, the UISS superimposes a
mark on the coordinates of the driver point of gaze. The
user interface also allows the supervisor to activate cer-
tain stimuli and to interact with the Roadmap Program
Interpreter to control the experiments. After completing a
session, the UISS allows the supervisor to replay the whole
session or selected fragments, or to extract relevant selected
data into text-formatted files.

Finally, the UISS executes the Roadmap Program Inter-
preter, which is a tool designed to manage complex
experiments and fulfills the supervisor’s role in unattended
experiments. This tool is responsible for interpreting the
Roadmap Program written in ESL. It monitors all the
session data stated as relevant in the Roadmap Program and
uses them to control the experiment. The monitored ses-
sion data include the signals collected by the subsystems,
the driver’s and the supervisor’s push-buttons, and the com-
mands directly issued by the supervisor. On the other hand,
the interpreter can trigger the activation of different kinds
of pre-programmed or generated stimuli: luminous, acous-
tic, graphical, etc, so the interpreter can interact with the
system, the driver and the supervisor. Graphics can be
generated in real time, for example to reproduce the instru-
ment panel of the car showing actual values collected by
the system or others artificially altered by the Roadmap
Program (see Fig. 4).

2.2 Exploitation of Argos

The new Argos was delivered to the DGT in 2008. Since
then it has mainly been used in two projects co-funded
by the European Commission under the Seventh Frame-
work Programme of the European Union. The first one is

Fig. 4 Reproduced instrument panel

called “Integrated Human Modelling and Simulation to sup-
port Human Error Risk Analysis of Partially Autonomous
Driver Assistance Systems (ISi-PADAS)” [3]. Within this
project the Foundation for the Research and Development in
Transport and Energy (CIDAUT) has used Argos to gather
information about the behavior of drivers of diverse age
and gender under different real traffic scenarios, analyzing
the influence of various factors related to distraction. Sce-
narios consisted of a categorization of driving maneuvers
in the following situations: free driving, car following,
lane change, overtaking, approaching a slower vehicle, and
approaching a traffic light. In some particular scenarios, a
distracting cognitive secondary task was given to the driver.
About 20 drivers participated in the study in 80 minute
driving sessions. As a result of these field tests, a set of
enriched data about real driving behavior was generated
and is currently being analyzed. CIDAUT has developed
this research as part of the project to support the concep-
tion of a new driver assistance system, aimed at improving
longitudinal driving by means of information, warning and
intervention strategies.

The second project, “Promoting real Life Observa-
tions for Gaining Understanding of road user behaviour in
Europe” (PROLOGUE), aims “to contribute to reducing the
number of road casualties in Europe by further developing
and testing the naturalistic observation methodology” [11].
At the time of writing, the Argos car is being used by
the Institute of Traffic and Road Safety (INTRAS) of
the University of Valencia, which are partners of the
PROLOGUE consortium. As part of its research, a suite of
unattended 2-3 hour sessions is being performed under real
traffic conditions.

3 Roadmap Program requirements

Experiments usually have to be designed and fully con-
trolled by the experiment supervisor, and performed by the



460 Eur. Transp. Res. Rev. (2014) 6:455–467

driver. The supervisor usually divides the experiment into
several stages, each one oriented to achieve specific objec-
tives, and the different stages can be connected in a complex
way. This complex structure may require the supervisor to
spontaneously introduce small changes depending on the
specific experiments. The dynamic characteristics of the
experiments require Argos to be equipped with an auto-
mated system that facilitates controlling experiments and
modifying their stages.

These considerations led Argos designers to build a tool
that would allow the supervisor to formally specify complex
and controlled experiments, having to fulfill the following
requirements:

– It has to be based on a powerful but easy-to-learn
programming language, allowing the supervisor to pro-
gram the experiment with a few sentences.

– It has to be embedded in the acquisition software, to
enable on-line access to the recently acquired data.

– It has to be able to accept commands from the super-
visor during the driving session. These commands have
to be evaluated in the same way as data acquired during
the driving session.

– It has to be able to influence the driver during the
driving session by managing the tachistoscopic glasses,
the emulated instrument panel, the stimuli board, and
the acoustic stimuli.

4 ESL features

Before starting the experiment, the supervisor has to sched-
ule the tasks to be performed by the driver during the driving
session. These tasks are coded in a Roadmap Program writ-
ten in ESL. The Argos designers provided the system with
this imperative high level language assuming that although
the supervisor is a computer user, not a software engineer,
he/she would be familiarized with the use of this kind of
languages, such as Visual Basic, embedded in very popular
applications. The language is tightly typed in order to pre-
vent the supervisor from introducing errors, thus avoiding
assignments between variables belonging to different data
types.

The Roadmap Program is divided into two sections:
preamble and code. The preamble contains the complex
types and variable definitions. The code section contains the
ESL sentences that are fetched and executed. Several mech-
anisms have been provided to allow accessing the data being
acquired during the driving session.

The program is checked before the first execution, as
soon as it is loaded, in order to ensure that no syntax
error is present. When the experiment starts, the first exe-
cution of the whole program initializes the devices to be

used in the experiment and memory is allocated for storing
variables. Further executions are triggered when a rele-
vant data item is received by the UISS from any system.
The code section is then completely executed in order to
modify the driving session conditions if necessary. The fol-
lowing subsections detail the most important aspects of the
language.

4.1 Data types

Basic data types are the types usually found in imperative
high-level languages [4]: characters, integers (signed and
unsigned), floating point numbers and strings.

In order to cope with data abstractions in the development
of experiments, complex data types have been included
in ESL. A complex data type is a set of basic data
types, grouped in order to form an abstract data type. The
definitions of complex data types have to be included in the
preamble before the definition of the variables that will be
used in the experiment. These types are used to model dif-
ferent vehicle devices and instruments to interact with the
driver, for example, the RPM and speed gauges, the acoustic
and visual stimuli, several icons to appear on the instrument
panel, etc. Several complex data types are predefined to help
the supervisor represent the emulated instrument panel, the
visual and acoustic stimuli, and the tachistoscopic glasses.
The following paragraphs describe the complex data types
to model the experiment environment.

4.1.1 Emulated instrument panel data types

A set of predefined types is provided to graphically display
data emulating the original car panel (see Fig. 4). Every
symbol has the necessary fields to model the position in the
panel where it has to be displayed, as well as its size and
color. The types provided model the following symbols:

– Circles, triangles, and rectangles.
– Arrows. This data type includes the angle. In this way,

left, right, up, and down arrows can be displayed.
– Icons. Some industry de-facto standard icons are

included, such as low-fuel, low beam lights, or high
beam lights.

– Text. Textual box can be displayed by selecting its font
size, text color, and panel position.

– Bars. Vertical and horizontal bars can be displayed on
the panel.

– Sectors. They can be used to show the coolant tempera-
ture and the fuel tank level.

– Gauges. Used to represent the speed and the RPM
tachometer.

The last three types have additional similar fields and
they include minimum and maximum values, number of



Eur. Transp. Res. Rev. (2014) 6:455–467 461

divisions in the scale, size, position on the panel, label, and
color.

The supervisor can build different instrument panels by
defining the Instrument_Panel complex type and includ-
ing fields belonging to the types listed above. Figure 5
shows the definition of a simple instrument panel containing
two gauges for engine RPM and car speed, and a text box.
The code section contains the speed field initialization, set-
ting 220km/h in a speed gauge with a radius of 180 pixels,
in red color, at the (100, 100) position of the instrument
panel, and a range of [0,220]km/h. The rpm field is built
from the speed field and only rpm specific fields are mod-
ified in order to make compact programs. The RPM gauge
displays the value 2000, at (100, 200) and the gauge is
[0, 5000]RPM.

4.1.2 Visual stimuli data types

The high-luminosity LEDs are arranged in two rows and
eight columns of 5×7 cells (see Fig. 1), each one con-
trolled independently and devoted to projecting a charac-
ter or a shape on the windshield. This approach implies
that the UISS has to send reverse characters to the cells.
Every cell is modelled by using a variable belonging to the
Visual_Stim type specifying the complete stimuli board.
Thus, the led array is modelled as an array of 16 elements of
this type. This type contains the number of the cell and the
five columns that represent the character.

The ESL provides the led_set function (described
below) in order to define the characters to be displayed in
the light stimuli board.

4.1.3 Acoustic stimuli and peripheral data types

Acoustic stimuli are modelled by using the three field
Acoustic_Stim data type. The file field specifies the
mp3 file containing the acoustic stimulus and the start

and length fields specify the starting of the stimulus speci-
fied in seconds from the beginning of the file and how many
seconds the stimulus has to be played, respectively.

A similar data type is also predefined for handling the
tachistoscopic glasses.

4.2 Sentences, operators and functions

ESL contains the control structures of imperative program-
ming languages such as C, Fortran or Visual Basic: if, for,
and while. The arithmetic, logical and relational operators
are identical to those of C language.

The ESL provides the supervisor with several embed-
ded functions to facilitate experiment programming. Some
functions are included to convert variables between types
while others deal with strings: concatenation, comparison,
searching for a substring in a string, etc. Random num-
ber generation is included in ESL to support simulation of
random situations, and several random variable generators
are available to the programmer. Several clock related func-
tions are included allowing ESL to measure the elapsed time
between two events with millisecond precision.

We will pay special interest to signal handling functions
used for obtaining data being acquired and functions to
interact with the driver, which are explained in depth in the
next sections.

4.2.1 Signal handling functions

Signal data access is necessary for the ESL program to be
able to take decisions depending on signal values. Hence the
first requirement is to be able to select relevant signals. Two
functions have been included for this purpose:

– get_id_signal associates a name to a signal descrip-
tor. In this way, vehicle signals can be known by their
assigned names.

Fig. 5 Definition and initialization of a basic instrument panel



462 Eur. Transp. Res. Rev. (2014) 6:455–467

– select_signal notifies the system that the ESL pro-
grammer wants to take decisions based on the values of
the specified signal. The number of seconds of interest
also has to be specified in order to allocate the necessary
memory.

Several functions are provided in order to give the pro-
grammer more freedom to obtain the signal values:

– get_signal obtains the last acquired value of a signal.
– get_signal_min, get_signal_max, and

get_signal_avg give the minimum, maximum, and
average values during the relevant interval.

– Two additional functions to manage operator codes
allow marking specific instants of the session or
influencing the driver environment: insert_code

records an operator code in the session files and
get_code obtains the last operator code inserted in the
session.

4.2.2 Interacting with the driver

Some functions have been included to be able to inter-
act with or modify the driver environment through the
instrument panel and the visual and acoustic stimuli.
update_panel is used by the programmer to display sym-
bols on the instrument panel. The programmer specifies
the display where the symbols have to be displayed (GPS
or the instrument panel) and a variable belonging to the
Instrument_Panel type containing all the symbols to be
used.

Visual and acoustic stimuli are played by using simi-
lar functions: update_stimuli. This function receives a
Visual_Stim or Acoustic_Stim variable and plays the
stimulus accordingly. Acoustic stimulus files are only sent
once to the CAS by the initialization section.

An additional function has been included to manage
visual stimuli so as to make it easy for the programmer
to draw a character. led_set receives a Visual_Stim

variable and four integers specifying a rectangle to be filled
without modifying the bits that are outside the specified
area.

Similarly, the activate_peripheral function is pro-
vided to modify the status of the tachistoscopic glasses.

4.2.3 Sample program

Figure 6 shows an example of obtaining the value of a signal
(RPM) that has to be displayed on a gauge in the instrument
panel. Thus, an instrument panel containing the RPM gauge
is defined in the preamble. The initialization of this struc-
ture is completed inside the first if sentence of the program
code. This sentence is only executed during the first exe-
cution of the program because the initialized variable
contains the value 0. Inside this sentence, the program
“notifies” the interpreter that the RPM signal is going to be
used to take decisions, and to store RPM data for the last
two seconds by calling the select_signal function.

When a data set is received from any system, the program
is executed and the last RPM data are obtained and rounded
to the nearest integer (lines 15 to the end of the code).

Fig. 6 Obtaining the value of a signal and updating the instrument panel



Eur. Transp. Res. Rev. (2014) 6:455–467 463

The program checks the difference between the recently
acquired data item and the previous value in lines 17 to 20.
If the absolute value of this difference is significant (greater
than 100), the instrument panel is updated in lines 22 to 24.

5 Example: estimating arrival time

Estimating arrival time is an experiment promoted by the
Spanish Traffic Agency to study the speed and time-to-
collision perception of young car drivers. The experiment
was carried out by selecting participants from a chosen
group of drivers of different gender and age to travel in
the front passenger’s seat. The sample was composed by 20
male and 20 female drivers aged between 20 and 30.

Participants were deprived of vision for a variable
distance to a target located at the end of a straight lane. They
were required to estimate the instant when the car would
reach the target. Different constant speeds and different
predefined distances were used.

In order to properly perform these experiments, a lane
was marked by using 6 beacons and 1 target at the end.
Beacons were situated at distances of 225, 150, 125, 100,
75, and 0 meters to the target. The Roadmap Program
was in charge of controlling the instants when the pas-
senger had to be blindfolded depending on the beacon
signals and the predefined distances.Participants started the
experiment deprived of vision, they recovered vision at
225 m and, at predefined distances (150, 125, 100, or 75 m),
they were deprived of vision and asked to push a but-
ton when they judged that the vehicle reached the target
position.

The Roadmap Program makes it easy to automate these
experiments, as well as to control some additional Argos
equipment that was also needed:

– tachistoscopic glasses to blindfold the passenger.
They are activated or deactivated by the CAS when the
Roadmap Program sends a command in response to the
detection of beacons.

– beacon signals are generated by image processing algo-
rithms running on LPS.

– the UISS executes the Roadmap Program but it is also
in charge of monitoring several parameters such as the
speed. Thus, if there are significant variations (20 %)
the experiment is invalidated by the Roadmap Program
and has to be repeated.

– the ISMS processes and stores data from the
high-resolution scene camera in order to be reproduced
in the laboratory.

– the SMS monitors the button that participants have to
push when they think that the target has been reached.

– the CAS receives an mp3 file containing a sound that

has to be played when the experiment is cancelled.
The UISS decides when an experiment needs to be
cancelled.

The Roadmap Program that manages this experiment
uses four types of operator codes used as commands to
configure the experiment:

– “c” code. The experiment has to be cancelled because
the supervisor detects something wrong in the experi-
ment.

– “vxxx” codes. Used to specify the constant speed for the
experiment. For example, the code “v100” specifies that
the target speed is 100 km/h and the possible variation
for the speed ranges from 80 to 120 km/h.

– “b1, b2, b3, and b4” codes. Used to specify the beacon
at which the participant is deprived of vision. They indi-
cate the distance where the participant is blindfolded:
150, 125, 100, and 75 m respectively.

– “s” code. Used to specify the experiment starting
instant, i.e. the participant is blindfolded until the first
beacon is reached.

The Roadmap Program is in charge of performing every
action to carry out the experiment, ensuring that the car
speed is correct and that no beacon is missed by estab-
lishing a timeout for the experiment, i.e. if 30 seconds
after starting the experiment the Roadmap Program has not
received the signal indicating that the participant has pressed
the button, the experiment is automatically cancelled. In
order to achieve these objectives, the Roadmap Program is
divided into four parts:

– the configuration segment is in charge of establish-
ing the experiment parameters by using the operator
codes;

– the evaluation segment is in charge of testing the beacon
signal, activating the tachistoscopic glasses to blindfold
the participant, and ensuring that the speed is in the
range specified by the supervisor;

– the cancel segment is in charge of notifying the partici-
pant that the experiment has been cancelled.

The current status of the experiment is stored in an
integer variable with four possible values:

– 0. The experiment has not started (the supervisor has
not yet sent the “s” code).

– 1. The experiment has started, the participant is blind-
folded and the program is waiting to reach the first
beacon.

– 2. The experiment has started and the first beacon has
been reached. The participant is not blindfolded and the
program is waiting for the beacon the supervisor spec-
ified by using one of the “b1”, “b2”, “b3”, or “b4”
codes.



464 Eur. Transp. Res. Rev. (2014) 6:455–467

– 3. The participant is blindfolded again because the
beacon has been reached and the program is waiting for
the participant to press the button and for the last beacon
to be reached.

In Fig. 7 the preamble and the initialization segments are
shown. These segments contain the variable definitions and
the if sentence that is executed during the first execution
of the program. This sentence body contains the declaration
of the set of signals that will be used in the experiment: the
speed, the beacon to identify the current experiment phase;
and the red button the participant has to press when he/she
estimates the car is reaching the final beacon. The selection
of these signals is notified to the ESL interpreter by call-
ing the get_id_signal and select_signal functions.
On the other hand, the participant of a cancelled experiment
is notified by an acoustic stimulus, contained in an mp3
file that is delivered to the CAS during the first execution
of the Roadmap Program by calling the update_stimuli
function. The tachistoscopic glasses are initialized in
transparent status so the participant is not blindfolded.
The blindfolding interval is set to 30 seconds, which is only
a timeout, because the tachistoscopic glasses are fully con-
trolled by the Roadmap Program. Finally, the status and

cancel variables are set to 0, the timeout for the experiment
is set to 30 seconds and the experiment target speed is set
to 60 km/h. The last sentence sets the initialized vari-
able to 1, preventing the if sentence from being executed
again.

In Fig. 8 the configuration segment containing the acqui-
sition of user codes is shown. This code segment starts
by recovering the last user code introduced. If no code is
returned, no action is taken. Otherwise, user codes returned
in the usr_code variable are checked. As soon as the “s”
code is detected the experiment is started by blindfolding
the participant, the tachistoscopic glasses are activated by
calling the activate_peripheral function, the status

changes to 1 (waiting for the first beacon), the number of
registered beacons is set to 0 and the timeout to end the
experiment is stored in the end_experiment variable in
milliseconds.

If the “c” code has been acquired, the cancelled

variable is set to 1 in order to cancel the experiment at the
end of the Roadmap Program.

If the first character of usr_code is set to “b”, one of
the b1, b2, b3 or b4 codes has been introduced. So, the sec-
ond character of usr_code is obtained and stored in the
target_beacon variable.

Fig. 7 Preamble and initialization code segment



Eur. Transp. Res. Rev. (2014) 6:455–467 465

Fig. 8 Configuration segment

If the first character of usr_code is set to “v”, the tar-
get speed is established. So, the number that follows this
character is obtained and the min_speed and max_speed

variables are updated with the speed range. If there is any
error in recovering the user code, the supervisor is notified.

Figure 9 contains the evaluation segment showing how
the experiment is managed. If the status of the experi-
ment is not 0, the last value of the “Beacon” signal is
obtained. If this value has changed from 0 to 1, a new
beacon has been reached and the new_beacon variable is
set to 1. When a new beacon is detected and the experi-
ment status is 1, the activate_peripheral function is
called and the participant recovers vision while the exper-
iment changes to status 2. If the experiment status is 2 or
3, the number of beacons detected, n_beacons, is incre-
mented. For status 2, if the value of this variable reaches the

target_beacon value the participant has to be blindfolded
and the status is updated to 3. For status 3, the program
waits for the participant to press the button and for the car
to reach the target beacon. Both events are registered by
including a user code by means of the insert_code func-
tion. The speed value is obtained by calling get_signal.
If the integer speed value is greater than max_speed or
lower than min_speed it means that the speed is out
of range. This event is registered by recording a user
code in the session. Finally, the current time is compared
with the timeout stored in the end_experiment variable.
If this timeout has been exceeded, the experiment is can-
celled and the timeout user code is inserted.

The code finishes checking the cancelled variable. If
it is set, the experiment has to be cancelled and an acoustic
stimulus is played to notify the participant.



466 Eur. Transp. Res. Rev. (2014) 6:455–467

Fig. 9 Evaluation segment

6 Conclusion

Car accidents represent a notable percentage of deaths or
serious injuries, which makes the study of driver behavior a
crucial issue for understanding and improving road safety.
Some studies can be carried out by means of driving sim-
ulators, but driving in real traffic conditions makes a great
difference in obtaining significant results. However, there is
a small number of instrumented vehicles and most of them
are limited to logging vehicle or ambient data (IVDR).

The authors have designed and built a multi-sensor and
interactive experimental vehicle, Argos, a complex sys-
tem built around a multicomputer platform. It is based
on state of the art technologies: last generation sensors,
advanced human machine interfaces, image compression,
video on disk recording, image processing and pattern
recognition algorithms. These features, together with the

fact that open software operating systems running on stan-
dard hardware PCs are the base of the main subsystems,
complemented by major off-the-shelf components, ensure a
long life expectancy for the system.

An innovative component of the Argos platform is
the Roadmap Interpreter, a powerful tool that allows
experiment designers to write experiment programs spec-
ifying the different driving session stages and the
actions that have to be performed when relevant events
occur. Experiment programs run under control of the
Roadmap Program Interpreter that is embedded in the
User Interface and Storage System, which allows to
interact with the driver and the experiment supervisor.
This tool-set has been used to design some experiments [10]
such as the example described in this paper. This exam-
ple includes sentences specifying interaction with both the
experiment supervisor (by means of user codes that the



Eur. Transp. Res. Rev. (2014) 6:455–467 467

Roadmap Program manages as commands) and the driver
or participant (through the tachistoscopic glasses and the
steering wheel push buttons).

By incorporating the Roadmap Interpreter and the
Experiment Specification Language, Argos has turned into
a sophisticated tool reducing the usual time required
to develop experiments and opening up possibilities for
designing highly complex experiments, allowing design-
ers to reuse previous work and to concentrate on the
experiment target rather than the details of running the
experiment. In fact, with the new version of the car
(with ESL), the experiment setup takes a few hours
instead of several days as was the case with the previous
version.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.

References

1. Comte L (2000) New systems: new behaviour Trans Res F Traffic
Psychology and Behaviour 3(2):95–111

2. Doshi A, Trivedi M (2009) On the roles of eye gaze
and head dynamics in predicting driver’s intent to change
lanes. IEEE Trans Intell Transp Syst 10(3):453–462.
doi:10.1109/TITS.2009.2026675

3. ISi-PADAS Project Home Page (2011) http://www.isi-padas.eu
4. Kernighan BW, Ritchie D (1978) The C Programming Language.

Prentice-Hall
5. Liang Y, Reyes ML, Lee JD (2007) Real-time detection of driver

cognitive distraction using support vector machines. IEEE Trans
Intell Trans Syst 8(2):340–350

6. Ma X. Andreasson I (2007) Behavior measurement, analysis, and
regime classification in car following. IEEE Trans Intell Transp
Syst 8(1):144–156. doi:10.1109/TITS.2006.883111

7. Nunes L, Recarte M (1997) Argos program: Development of
technological systems and research programs for driver behavior
analysis under real traffic conditions. In: Proceedings of the inter-
national seminar on human factors in road traffic 2 (ISHFRT 2),
pp 630–640

8. Nunes L, Recarte M (2002) Cognitive demands of hands-free-
phone conversation while driving. Trans Res F Traffic Psychology
and Behaviour 5(2):133–144

9. Pastor L, de Miguel P, Pérez A, Rosales F, Rodrı́guez S, Cabańas
A, Rodrı́guez A (1993) Sensor techniques using image process-
ing for driver behaviour study. In: Nwagboso CO (ed) Automotive
sensory systems, chap 9. Chapman and Hall, pp 185–209

10. Pérez A, Garcı́a M, Nieto M, Pedraza JL, Rodrı́guez S,
Zamorano J (2010) Argos: An advanced in-vehicle data recorder
on a massively sensorized vehicle for car driver behavior
experimentation. IEEE Trans Intell Transp Syst 11(2):463–473.
doi:10.1109/TITS.2010.2046323

11. (2011) PROLOGUE Project Home Page. http://www.prologue-eu.
eu

12. Rakha H, El-Shawarby I, Setti JR (2007) Characterizing driver
behavior on signalized intersection approaches at the onset of a
yellow-phase trigger. IEEE Trans Intell Trans Syst 8(4):630–640

13. Recarte M, Nunes L (2000) Effects of verbal and spatial-imagery
tasks on eye fixations while driving. J Exp Psychol Appl 5(2):31–
43

14. Recarte M, Nunes L (2002) Mental load and loss of control over
speed in real driving towards a theory of attentional speed control.
Transp Res F Traffic Psychology and Behaviour 5(2):111–122

15. Recarte M, Nunes L (2003) Mental workload while driving:
effects on visual search, discrimination and decision making. J
Exp Psychol Appl 9(2):119–137

16. Sekizawa S, Inagaki S, Suzuki T, Hayakawa S, Tsuchida N, Tsuda
T, Fujinami H (2007) Modeling and recognition of driving behav-
ior based on stochastic switched ARX model. IEEE Trans Intell
Trans Syst 8(4):593–606

17. Toledo T, Musicant O, Lotan T (2008) In-vehicle data recorders
for monitoring and feedback on drivers’ behavior. Transp Res C
Emerg Technol 16(3):320–331

http://dx.doi.org/10.1109/TITS.2009.2026675
http://www.isi-padas.eu
http://dx.doi.org/10.1109/TITS.2006.883111
http://dx.doi.org/10.1109/TITS.2010.2046323
http://www.prologue-eu.eu
http://www.prologue-eu.eu

	Argos-ESL: Tool for managing experiments on driving behavior
	Abstract
	Introduction
	The Argos system
	The new Argos car
	Control and Acquisition System (CAS)
	Image Storage and Management System (ISMS)
	Lateral Position System (LPS)
	User Interface and Storage System (UISS)

	Exploitation of Argos

	Roadmap Program requirements
	ESL features
	Data types
	Emulated instrument panel data types
	Visual stimuli data types
	Acoustic stimuli and peripheral data types

	Sentences, operators and functions
	Signal handling functions
	Interacting with the driver
	Sample program


	Example: estimating arrival time
	Conclusion
	Open Access
	References


