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Abstract In this article, the similarity relations are studied, together with invert-
ibility conditions and eigenvalues of intuitionistic fuzzy matrices (IFMs). Besides,
idempotent, regularity, permutation matrix and spectral radius of IFMs are consid-
ered here with some properties and results for IFMs investigated.
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1. Introduction

In 1971, Zadeh [24] introduced the similarity relations and fuzzy ordering. After
that many authors [4, 5, 16] developed the theory of fuzzy relations and relational
compositions along with their applications.

The use of fuzzy relations originated from the observation that the real-life objects
can be related each other to a certain degree. In real-life situations, one person is
either related with another or not. That is, there is no scope to mention about the
degree or strength of relationship. But, using the concept of fuzzy set theory we can
assign the degree/strength of relationship between two persons/objects. If there is no
doubt or hesitation to determine the degree/strength of relationship, then the fuzzy set
theory is enough to represent relationship. But, in general, it is very difficult to assign
the degree/strength of relationship, there may be hesitation/uncertainty. To overcome
the hesitation, intuitionistic fuzzy set (IFS) is successfully used. IFSs, defined by
Atanassov in 1983 [1] give us the possibility to model hesitation and uncertainty by
using an additional degree.
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The intuitionistic fuzzy relations (IFRs) was introduced by Burillo and Bustince
[10-12]. In 2003, Deschrijver and Kerre [16] present an intuitionistic fuzzy version of
the triangular compositions, theory and application to policy analysis and information
systems and the variants of their compositions.

In this paper, the similarity relations, invertibility conditions and eigenvalues of
IFM are introduced. Idempotent, regularity, permutation matrix and spectral radius of
IFMs are considered here. Also some properties and results for IFMs are investigated.

2. Preliminaries

In this section, some basic notions related to this topics are recalled.

Definition 2.1 (Instuitionistic fuzzy set) An IFS A in X (universe of discourse) is
defined as an object of the following form

A = {〈x, μA(x), νA(x)〉 | x ∈ X},

where the functions μA : X → [0, 1] and νA : X → [0, 1] is defined as the degree of
membership and the degree of non-membership of the element x ∈ X in A, respec-
tively and for every x ∈ X,

0 ≤ μA(x) + νA(x) ≤ 1.

Let I be the set of all real numbers lying between 0 and 1, i.e., I = {x : 0 ≤ x ≤ 1}.
Also let 〈F〉 be the set of tuples 〈a, b〉, where a, b ∈ I and 0 ≤ a + b ≤ 1,
i.e.,

〈F〉 = {〈a, b〉 : 0 ≤ a + b ≤ 1; a, b ∈ I}.
The addition and multiplication between any two elements of 〈F〉 are defined bel-

low.

Definition 2.2 Let x = 〈xμ, xν〉 and y = 〈yμ, yν〉 be any two elements of 〈F〉. The
addition (+) and multiplication (·) between x and y are defined as

x + y = 〈xμ, xν〉 + 〈yμ, yν〉
= 〈max(xμ, yμ),min(xν, yν)〉
= 〈xμ ∨ yμ, xν ∧ yν〉, where xμ ∨ yμ = max(xμ, yμ),

and
x · y = 〈xμ, xν〉 · 〈yμ, yν〉
= 〈min(xμ, yμ),max(xν, yν)〉
= 〈xμ ∧ yμ, xν ∨ yν〉, where xμ ∧ yμ = min(xμ, yμ).

In arithmetic operations (such as addition, multiplication, etc.), only the values of
the membership and the nonmembership are needed. So from now, we denote IFS as

A = {x = 〈xμ, xν〉 | x ∈ X}.
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Definition 2.3 (Cartesion product of IFSs) Let X1 and X2 be two universes and let
A = {x = 〈xμ, xν〉 | x ∈ X1}, B = {y = 〈yμ, yν〉 | y ∈ X2} be two IFSs. The Cartesian
product of A and B is defined as follows

A × B = {(x, y) | x ∈ X1 and y ∈ X2}.

Definition 2.4 (Intuitionistic fuzzy relation (IFR)) An IFR between two IFSs A and B
is defined as an IFS in A × B. If R is a relation between A and B, x ∈ A and y ∈ B,
then μR(x, y) denotes the membership degree to which x is in relation R with y and
νR(x, y) denotes the non-membership degree to which x is in relation R with y. Also,
if πR(x, y) denotes the uncertainty degree to which x and y are in relation R with each
other, then the real degree to which x is in relation R with y lies somewhere between
μR(x, y) and μR(x, y) + πR(x, y) = 1 − νR(x, y).

3. Similarity Relation on IFS

In this section, IFMs are introduced satisfying the properties of IFRs such as reflexive,
symmetric and transitive.

Let R(A, A) be an IFR on a set A. Let μR : A→ [0, 1] be the membership function
and νR : A→ [0, 1] be the non-membership function and MR be the IFM with respect
to the relation R.

Definition 3.1 (Reflexive relation) The relation R(A, A) is reflexive if the diagonal
entries of MR are all 〈1, 0〉, i.e.,

μR(x, x) = 1 and νR(x, x) = 0 for all x ∈ A.

Definition 3.2 (Symmetric relation) The relation R(A, A) is symmetric if MR = MT
R ,

where MT
R is the transpose of MR, i.e.,

μR(x, y) = μR(y, x) and νR(x, y) = νR(y, x) for all x, y ∈ A.

Definition 3.3 (Transitive relation) The relation R(A, A) is transitive if MR ≥ M2
R,

i.e., μR(x, z) ≥ max
y∈X
{min{μR(x, y), μR(y, z)}} and νR(x, z) ≤ min

y∈X {max{νR(x, y), νR(y, z)}}
for all pair (x, z) ∈ A × A.

Definition 3.4 (Similarity relation) The relation R(A, A) is a similarity relation if and
only if R(A, A) is reflexive, symmetric and transitive.

The set of all IFMs of order m × n over an IFS A in X is denoted by Fmn(A) or
simply Fmn. If m = n, then it is denoted by Fn. The zero matrix On = [〈0, 1〉] and the
identity matrix In of order n × n is define as, In is the IFM whose principle diagonal
elements are all I = 〈1, 0〉 and other elements are all φ = 〈0, 1〉.
Proposition 3.1 For an IFM P ∈ Fn, P is reflexive if P ≥ In.

Proof Since P ≥ In, therefore all diagonal entries of P are 〈1, 0〉. Therefore P is a
reflexive matrix.



434 Sanjib Mondal ·Modhumangal Pal (2013)

Definition 3.5 For an IFM P = [pi j] = [〈pi jμ, pi jν〉] ∈ Fn, we define the following
IFMs:

Type of P Definition

Reflexive P ≥ In.

Weakly reflexive pii ≥ pi j for all i, j ∈ {1, 2, 3, · · · , n}.
Symmetric P = PT .

Idempotent P = P2.

Transitive P2 ≤ P.

Proposition 3.2 Let P ∈ Fn be a reflexive IFM. Then the following holds.

1) PT is a reflexive IFM,

2) Pk is a reflexive IFM for some positive integer k,

3) PQ ≥ Q for Q ∈ Fn,

4) QP ≥ Q for Q ∈ Fn,

5) PQ and QP are reflexive IFMs if Q is reflexive,

6) PPT and PT P are reflexive IFMs.

Proof 1) Since P is reflexive, its diagonal entries are all 〈1, 0〉. Therefore, the
diagonal entries of PT are also 〈1, 0〉. Hence PT is reflexive.

2) Since P is reflexive, P ≥ In. Then
P2 ≥ P ≥ In (Multiplying by P in both side).

Proceeding in this way, we get Pk ≥ Pk−1 ≥ · · · ≥ P2 ≥ P ≥ In for any positive integer
k.

Hence Pk is reflexive.
3) P ≥ In, then PQ ≥ InQ, this implies that PQ ≥ Q.
4) Also QP ≥ QIn or QP ≥ Q.
5) Since Q is reflexive Q ≥ In.Then

PQ ≥ Q ≥ In and QP ≥ Q ≥ In.
Hence PQ and QP are also reflexive.
6) From 1) and 5), it follows that PPT and PT P are reflexive.

Proposition 3.3 If P ∈ Fn be transitive and reflexive, then P is idempotent.

Proof Since P is reflexive, P ≥ In. Therefore

P2 ≥ P ≥ In. (1)

Also, P is transitive,
P2 ≤ P. (2)

Combining (1) and (2), we get P2 = P.
Hence P is idempotent.
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The condition is not sufficient which can be shown by the following example.

Example 3.1 Let

P =

⎡⎢⎢⎢⎢⎢⎣
〈0.8, 0.1〉 〈0.8, 0.1〉
〈0.8, 0.1〉 〈0.8, 0.1〉

⎤⎥⎥⎥⎥⎥⎦ � I2.

Hence P is not reflexive. But

P2 = P · P =
⎡⎢⎢⎢⎢⎣
〈0.8, 0.1〉 〈0.8, 0.1〉
〈0.8, 0.1〉 〈0.8, 0.1〉

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
〈0.8, 0.1〉 〈0.8, 0.1〉
〈0.8, 0.1〉 〈0.8, 0.1〉

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
〈0.8, 0.1〉 〈0.8, 0.1〉
〈0.8, 0.1〉 〈0.8, 0.1〉

⎤⎥⎥⎥⎥⎦

= P.

That is, P is idempotent.
The proof of the following result is straight forward.

Proposition 3.4 If P and Q are two symmetric IFMs in Fn such that PQ = QP, then
PQ is symmetric.

Remark 3.1 If P is a symmetric IFM in Fn, then Pk is symmetric for any positive
integer k.

Proposition 3.5 If P and Q are transitive IFMs in Fn such that PQ = QP, then PQ
is transitive.

Proof Since P and Q are transitive, P2 ≤ P and Q2 ≤ Q. Now

(PQ)2 = (PQ)(PQ) = P(QP)Q (by associative property)
= P(PQ)Q (Since PQ = QP)
= (PP)(QQ)
= P2Q2.

That is, (PQ)2 ≤ PQ.
Hence PQ is transitive.

Remark 3.2 If P is transitive in Fn, then Pk is transitive for any positive integer k.

Proposition 3.6 If P = [pi j] = [〈pi jμ, pi jν〉] ∈ Fn is symmetric and transitive, then
pi j ≤ pii for i, j ∈ {1, 2, 3, · · · , n}.
Proof Since P is symmetric, pi j = p ji for all i, j ∈ {1, 2, 3, · · · , n}.

Also since P is transitive, P2 ≤ P i.e., P ≥ P2. Thus

pi j ≥ max
k
{min(pik, pk j)} for all i, j.

That is
pii ≥max

k
{min(pik, pk j)} for i = j and k ∈ {1, 2, 3, · · · , n}

≥min(pi j, p ji) for k = j for each i.

This gives pii ≥ pi j (Since pi j = p ji).
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4. Invertible Matrices

Von Neumann [21] was first who introduced the regularity for rings. We know that
axa = a holds for all x ≥ a in the max-min intuitionistic fuzzy algebra (IFA). So,
every element in IFA is regular, although all IFMs are not regular. Regular matrices
are very interesting because of their close relationship with inverses.

Cen [13] introduced T-ordering in fuzzy matrices and discussed the relationship
between the T-ordering and the g-inverses. Khan and Pal [18] introduced the concept
of g-inverses for IFMs, minus partial ordering and studies several properties of it.
Sriram and Murugadas [22] study the relation between the minus-ordering and the
various g-inverses of IFM.

Definition 4.1 (Regular IFM) An IFM A ∈ Fmn is said to be regular if there exists
X ∈ Fnm, such that AXA = A. In this case, X is called a generalized inverse (g-
inverse) of A and it is denoted by A−. The set of all g-inverses of A is denoted by
A{1}.
Definition 4.2 (Invertible matrix) An IFM A ∈ Fn is said to be invertible if and only
if there exists B ∈ Fn, such that AB = BA = In.

Definition 4.3 (Permutation matrix) An IFM A ∈ Fn is called permutation matrix
if it has exactly one entry I = 〈1, 0〉 in each row and each column and all the other
entries are φ = 〈0, 1〉.

The intuitionistic fuzzy permutation matrices (IFPMs) play an important role in
mathematics specially in matrix theory. Here we investigate that if an IFM is a per-
mutation matrix, then it is invertible.

Proposition 4.1 Let A ∈ Fn be an intuitionistic fuzzy permutation matrix (IFPM).
Then AAT = AT A = In.

Proof Let A = [ai j] = [〈ai jμ, ai jν〉]. Then AT = (a ji) = [〈a jiμ, a jiν〉] = [bi j] (say).
Now, the i jth entries of AAT is

n∑

k=1

aikbk j =

n∑

k=1

aika jk =

⎧⎪⎪⎨⎪⎪⎩
φ, if i � j,
I, if i = j.

(Since A is an IFPM
n∑

k=1
aikaik = I.)

Hence AAT is an identity matrix of order n.
Similarly, it can be proved that AT A = In. Thus, AAT = AT A = In.

Proposition 4.2 Let A ∈ Fn, A is invertible if and only if A is an IFPM.

Proof Condition is necessary: Let A be a permutation matrix. Then
AAT = AT A = In (By Proposition 4.1).

Hence A is invertible and AT is the inverse of A, i.e., A− = AT .
Condition is sufficient: Let A = [ai j] be invertible and B = [bi j] be the inverse of

A. Then AB = BA = In follows that,
n∑

k=1

aikbk j =

n∑

k=1

bikak j = φ for i � j and
n∑

k=1

aikbki =

n∑

k=1

bikaki = I.
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Then by max-min algebra, we get each

aikbk j = bikak j = φ for i � j and k ∈ {1, 2, 3, · · · , n}, (3)

and

aikbki = bikaki = I for at least one k ∈ {1, 2, · · · , n} and for i ∈ {1, 2, · · · , n}. (4)

Now (3) implies that

aik = φ or bk j = φ or both aik = bk j = φ for i � j, k ∈ {1, 2, 3, · · · , n}, (5)

and

bik = φ or ak j = φ or both bik = ak j = φ for i � j, k ∈ {1, 2, 3, · · · , n}. (6)

Also (4) implies that

aik = bki = I and aki = bik = I (7)

for at least one k ∈ {1, 2, 3, · · · , n} and for each i ∈ {1, 2, 3, · · · , n}.
Let the results of (7) exist for k = p (say), that is aip = bpi = I = 〈1, 0〉. Then from

(5), we get bp j = φ = 〈0, 1〉 for all i � j and a jp = φ = 〈0, 1〉 for all i � j. Therefore,
the pth row of B has exactly one I and the remaining entries are all φ and pth column
of A has exactly one I and the remaining entries are all φ.

Similarly, by using (6) the pth row of A has exactly one I and the remaining entries
are all φ and pth column of B has exactly one I and the remaining entries are all φ.

Thus, A and B both are intuitionistic fuzzy permutation matrices.

Remark 4.1 An intuitionistic fuzzy permutation matrix A ∈ Fn is invertible and AT

is the inverse of it.

Remark 4.2 The permutation matrices are only the invertible matrices in Fn.

Example 4.1 Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈0, 1〉 〈1, 0〉 〈0, 1〉
〈0, 1〉 〈0, 1〉 〈1, 0〉
〈1, 0〉 〈0, 1〉 〈0, 1〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then

AT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈0, 1〉 〈0, 1〉 〈1, 0〉
〈1, 0〉 〈0, 1〉 〈0, 1〉
〈0, 1〉 〈1, 0〉 〈0, 1〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore,

AAT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈1, 0〉 〈0, 1〉 〈0, 1〉
〈0, 1〉 〈1, 0〉 〈0, 1〉
〈0, 1〉 〈0, 1〉 〈1, 0〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= I3.

Similarly, AT A = I3.
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Hence, A is invertible and A− = AT .

5. Eigenvalues of IFMs

Eigenvalue problems are very important in many fields. These are formulated when
modeling real cases into mathematical models. For example, the natural frequencies
and mode shapes in vibration problems, the principal axes in elasticity and dynamics,
the Markov chain in stochastic modeling and queueing theory, and the analytical
hierarchy process for decision making, etc. all come up with eigenvalue problems.

Many authors [9, 14, 15] studied the eigenvalues of fuzzy matrices. Here we
introduced the eigenvalues of IFM.

Definition 5.1 Let A ∈ Fn and a scalar λ = 〈λμ, λν〉 ∈ F be called an eigenvalue of
A and a non-zero vector X be called a row (column) eigenvector associated with the
eigenvalue λ of A if XA = λX (AX = λX).

Theorem 5.1 If A = [ai j] = [〈ai jμ, ai jν〉] is an IFM of order n × n, such that a1i =

a2i = · · · = ai−1,i = ai+1,i = · · · = ani = φ (say) where i ∈ {1, 2, 3, · · · , n}, then aii is an
eigenvalue corresponding to the column eigenvector [φ, φ, φ, · · · , I, · · · , φ]T , where
I = 〈1, 0〉 is the ith entry.

Proof Here X = [φ, φ, φ, · · · , I, · · · , φ]T = (xi1) (say). Then

AX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
k=1

a1k xk1

n∑
k=1

a2k xk2

n∑
k=1

a3k xk3

...
n∑

k=1
ank xkn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ

φ
...

aii
...

φ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= aii

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ

φ
...

I
...

φ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(Since the ith entry
n∑

k=1
aik xki = ai1φ + ai2φ + · · · + aiiI + · · · + ainφ = aii.)

Therefore, AX = aiiX.
Hence, aii is the eigenvalue corresponding to the column eigenvector

X = [φ, φ, · · · , I, · · · , φ]T .

Example 5.1 Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈0.5, 0.4〉 〈0, 1〉 〈0.6, 0.2〉
〈0.6, 0.3〉 〈0.4, 0.3〉 〈0.7, 0.2〉
〈0.7, 0.3〉 〈0, 1〉 〈0.8, 0.2〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and X = [〈0, 1〉 〈1, 0〉 〈0, 1〉]T .

Then
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AX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈0.5, 0.4〉 〈0, 1〉 〈0.6, 0.2〉
〈0.6, 0.3〉 〈0.4, 0.3〉 〈0.7, 0.2〉
〈0.7, 0.3〉 〈0, 1〉 〈0.8, 0.2〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈0, 1〉
〈1, 0〉
〈0, 1〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈0, 1〉
〈0.4, 0.3〉
〈0, 1〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 〈0.4, 0.3〉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈0, 1〉
〈1, 0〉
〈0, 1〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 〈0.4, 0.3〉X.
Thus, 〈0.4, 0.3〉 is the eigenvalue of A corresponding to the column eigenvector X.

Theorem 5.2 Let A = [ai j] = [〈ai jμ, ai jν〉] ∈ Fn. If ai1 = ai2 = · · · = ai,i−1 = ai,i+1 =

· · · = ain = φ (say) where i ∈ {1, 2, 3, · · · , n}. Then, aii is an eigenvalue corresponding
to the row eigenvector (φ, φ, φ, · · · , I, · · · , φ), where I is the ith entry.

Proof The proof is similar to Theorem 5.1.

Example 5.2 Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈0.6, 0.3〉 〈0.8, 0.2〉 〈0.7, 0.3〉
〈0, 1〉 〈0.6, 0.4〉 〈0, 1〉
〈0.7, 0.2〉 〈0.5, 0.4〉 〈0.8, 0.1〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and X = (〈0, 1〉 〈1, 0〉 〈0, 1〉).

Then

XA = (〈0, 1〉 〈1, 0〉 〈0, 1〉)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈0.6, 0.3〉 〈0.8, 0.2〉 〈0.7, 0.3〉
〈0, 1〉 〈0.6, 0.4〉 〈0, 1〉
〈0.7, 0.2〉 〈0.5, 0.4〉 〈0.8, 0.1〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (〈0, 1〉 〈0.6, 0.4〉 〈0, 1〉)
= 〈0.6, 0.4〉(〈0, 1〉 〈1, 0〉 〈0, 1〉).

Therefore, XA = 〈0.6, 0.4〉X.
Hence, 〈0.6, 0.4〉 is the eigenvalue of A corresponding to the row eigenvector X.

Theorem 5.3 If A = [ai j] = [〈ai jμ, ai jν〉] ∈ Fn such that a1i = a2i = a3i = · · · =
ani = λ ≥ ai j for all i, j ∈ {1, 2, 3, · · · , n}, then λ is an eigenvalue corresponding to
the column eigenvector [I, I, I, · · · , I]T .

Proof Since a1i = a2i = a3i = · · · = ani = λ ≥ ai j for all i, j ∈ {1, 2, 3, · · · , n}.
Therefore,

n∑
j=1

ai j = λ. Also X = [I, I, I, · · · , I]T . Then

AX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
j=1

a1 jI

n∑
j=1

a2 jI

...
n∑

j=1
an jI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
j=1

a1 j

n∑
j=1

a2 j

...
n∑

j=1
an j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ

λ
...

λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
I
...

I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= λX.

This shows λ is an eigenvalue of A corresponding to the column eigenvector X.
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Example 5.3 Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈0.5, 0.4〉 〈0.8, 0.2〉 〈0.6, 0.3〉
〈0.7, 0.3〉 〈0.8, 0.2〉 〈0.5, 0.3〉
〈0.6, 0.2〉 〈0.8, 0.2〉 〈0.7, 0.2〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and X = [〈1, 0〉 〈1, 0〉 〈1, 0〉]T .

Then

AX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈0.5, 0.4〉 〈0.8, 0.2〉 〈0.6, 0.3〉
〈0.7, 0.3〉 〈0.8, 0.2〉 〈0.5, 0.3〉
〈0.6, 0.2〉 〈0.8, 0.2〉 〈0.7, 0.2〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈1, 0〉
〈1, 0〉
〈1, 0〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈0.8, 0.2〉
〈0.8, 0.2〉
〈0.8, 0.2〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 〈0.8, 0.2〉
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈1, 0〉
〈1, 0〉
〈1, 0〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence, AX = 〈0.8, 0.2〉X.
Thus, 〈0.8, 0.2〉 is the column eigenvalue of A corresponding to the eigenvector X.

Theorem 5.4 If A = [ai j] = [〈ai jμ, ai jν〉] ∈ Fn such that ai1 = ai2 = ai3 = · · · = ain =

λ ≥ ai j for all i, j ∈ {1, 2, 3, · · · , n}, then λ is an eigenvalue of A corresponding to the
row eigenvector (I, I, I, · · · , I).

Proof The proof is similar to Theorem 5.3.

Example 5.4 Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈0.5, 0.4〉 〈0.6, 0.3〉 〈0.7, 0.1〉
〈0.8, 0.1〉 〈0.5, 0.3〉 〈0.6, 0.2〉
〈0.9, 0.1〉 〈0.9, 0.1〉 〈0.9, 0.1〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and X = (〈1, 0〉 〈1, 0〉 〈1, 0〉).

Then

XA = (〈1, 0〉 〈1, 0〉 〈1, 0〉)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈0.5, 0.4〉 〈0.6, 0.3〉 〈0.7, 0.1〉
〈0.8, 0.1〉 〈0.5, 0.3〉 〈0.6, 0.2〉
〈0.9, 0.1〉 〈0.9, 0.1〉 〈0.9, 0.1〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (〈0.9, 0.1〉 〈0.9, 0.1〉 〈0.9, 0.1〉)
= 〈0.9, 0.1〉(〈1, 0〉 〈1, 0〉 〈1, 0〉).

Therefore, XA = 〈0.9, 0.1〉X.
Hence, 〈0.9, 0.1〉 is the eigenvalue of A corresponding to the row eigenvector X.

Definition 5.2 (Diagonally dominant) Let A = [ai j] ∈ Fn be an IFM. A is called

row diagonally dominant if aii ≥
n∑

j�i, j=1
ai j. A is called column diagonally dominant

if aii ≥
n∑

i� j,i=1
ai j. A is called diagonally dominant if it is both row as well as column

diagonally dominant.

Theorem 5.5 If A = [ai j] = [〈ai jμ, ai jν〉] ∈ Fn such that a11 = a22 = a33 = · · · =
ann = c (say) and if A is diagonally dominant, then c is an eigenvalue corresponding
to the row (column) eigenvector (I, I, I, · · · , I)

(
[I, I, I, · · · , I]T

)
.
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Proof Since the IFM A = [ai j] is diagonally dominant, therefore
n∑

j=1
ai j = aii = c

and
n∑

i=1
ai j = a j j = c. Also X = [I, I, I, · · · , I]T . Then

AX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
j=1

a1 jI

n∑
j=1

a2 jI

...
n∑

j=1
an jI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
j=1

a1 j

n∑
j=1

a2 j

...
n∑

j=1
an j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c
c
...

c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
I
...

I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= cX.

Thus, c is an eigenvalue of the IFM A corresponding to the column eigenvector X.
Similarly, we can proved the theorem for row eigenvector.

Example 5.5 Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈0.8, 0.1〉 〈0.5, 0.4〉 〈0.6, 0.3〉
〈0.7, 0.2〉 〈0.8, 0.1〉 〈0.5, 0.4〉
〈0.5, 0.4〉 〈0.7, 0.2〉 〈0.8, 0.1〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and X = (〈1, 0〉 〈1, 0〉 〈1, 0〉).

Therefore,

XA = (〈1, 0〉 〈1, 0〉 〈1, 0〉)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈0.8, 0.1〉 〈0.5, 0.4〉 〈0.6, 0.3〉
〈0.7, 0.2〉 〈0.8, 0.1〉 〈0.5, 0.4〉
〈0.5, 0.4〉 〈0.7, 0.2〉 〈0.8, 0.1〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (〈0.8, 0.1〉 〈0.8, 0.1〉 〈0.8, 0.1〉)
= 〈0.8, 0.1〉(〈1, 0〉 〈1, 0〉 〈1, 0〉).

That is, XA = 〈0.8, 0.1〉X.
Hence, 〈0.8, 0.1〉 is the eigenvalue of A corresponding to the row eigenvector X.

Corollary 5.1 Let A = [ai j] = [〈ai jμ, ai jν〉] ∈ Fn. If
n∑

j=1
a1 j =

n∑
j=1

a2 j = · · · =
n∑

j=1
an j = c (say), then c is an eigenvalue of A corresponding to the column eigenvector

[I, I, · · · , I]T .

Corollary 5.2 Let A = [ai j] = [〈ai jμ, ai jν〉] ∈ Fn. If
n∑

i=1
ai1 =

n∑
i=1

ai2 = · · · =
n∑

i=1
ain = c

(say), then c is an eigenvalue of A corresponding to the row eigenvector (I, I, · · · , I).

Theorem 5.6 Let A ∈ Fn. Then A has a zero column if and only if φ ∈ σ(A) (set of
all eigenvalues of A).

Proof Condition is necessary: Let ith column of A be zero, we take X = [φ, φ, · · · , I,
· · · , φ]T , where I is the ith entry. Then X is a non-zero vector satisfying the equation
AX = φX = φ. Hence, X is an column eigenvector corresponding to the eigenvalue φ.

Condition is sufficient: Let X = [x1, x2, x3, · · · , xn]T be a column eigenvector cor-
responding to the eigenvalue φ. Then AX = φ. We assume that xi � φ for i ∈
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{1, 2, 3, · · · , n}. Then AX = φ implies that
n∑

k=1
a jk xk = φ for each j ∈ {1, 2, 3, · · · , n}.

This implies a jk xk = φ for each j and k. Since xi � φ, ai j = φ for each j, therefore
the ith column of A is zero.

Definition 5.3 Let σ(A) be the set of all eigenvalues of A. Then δ(A) = sup{λ | λ ∈
σ(A)} is called the spectral radius of A.

Theorem 5.7 Let A ∈ Fn. Then δ(A) is either φ or I.

Proof If σ(A) = {φ}, then δ(A) = φ, otherwise, if there exist λ ∈ σ(A) (λ � φ), then
there is a non-zero eigenvector X ∈ Vn (set of column vectors of A of order n) such
that AX = λX. Also we know that for any β with λ ≤ β ≤ I, β · λ = λ and λ · λ = λ.

Therefore,
λX = (β · λ)X = β(λX)
⇒ A(λX) = λ(AX) = λ(λX) = (λ · λ)X = λX = β(λX).

Hence, β ∈ σ(A).
Since β is arbitrary, I ∈ σ(A). Therefore δ(A) = I.

Theorem 5.8 For any A, B ∈ Fn, if A ≤ B, then δ(A) ≤ δ(B).

Proof From Theorem 5.7, δ(A) is either φ or I.
If δ(A) = φ, then δ(A) ≤ δ(B) holds trivially.
If δ(A) = I, we have to prove that δ(B) = I.
Since δ(A) = I, then by definition I ∈ σ(A) and AX = IX = X for some non-zero

column vector X. We consider e = [I, I, I, · · · , I]T , then X ≤ e.
Also AnX = An−1AX = An−1X = An−2X = · · · = A2X = AX = X,

i.e., X = AnX ≤ Ane ≤ Bne. (Since X ≤ e and A ≤ B.)
Since X is non-zero, hence Bne is non-zero.
Now, if Y = Bne, then BY = Bn+1e = Bne = Y = IY . Hence I ∈ σ(B).

Thus, δ(B) = I.

5. Conclusion

We study the properties of similarity relations, invertibility conditions and eigenval-
ues of IFMs. A very few work are available to find the eigenvalues of a fuzzy matrix.
In this paper, first time we investigate the eigenvalues and eigenvectors of an IFMs
and illustrated with suitable examples. Also an outline has been given to find the
eigenvectors and eigenvalues of an IFMs. An attempt has been made to find eigen-
vectors and eigenvalues for some particular types of IFMs. This is the first attempt to
find the eigenvectors and eigenvalues of IFMs. More investigations are required for
find them for all other IFMs.
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