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Abstract In this paper, the concept of lattice over generalized intuitionistic fuzzy
matrices (GIFMs) are introduced and have shown that the set of GIFMs forms a dis-
tributive lattice. Some algebraic properties of generalized intuitionistic fuzzy ma-
trices (GIFMs) are presented over distributive lattice. Also, some characteristics of
generalized intuitionistic fuzzy nilpotent matrices (GIFNMs) are discussed over dis-
tributive lattice. Finally, the reduction of GIFNMs over distributive lattice are given
with some properties.

Keywords Intuitionistic fuzzy matrices - Generalized intuitionistic fuzzy matrices -
Distributive lattice - Generalized intuitionistic fuzzy nilpotent matrices

1. Introduction

The theory of fuzzy sets is applied to many mathematical branches. Many researchers
have done several works on fuzzy sets. Atanassov [5, 6] introduced the concept of
intuitionistic fuzzy sets (IFSs). Also a lot of research works were done by several re-
searchers on the field of IFS. Ragab and Emam [18] defined adjoint of a square fuzzy
matrix. By the concept of IFSs, first time Pal [16] introduced intuitionistic fuzzy
determinant. Later on Pal and Shyamal [20, 21] introduced intuitionistic fuzzy ma-
trices and determined distance between intuitionistic fuzzy matrices. Bhowmik and
Pal [7, 8] introduced some results on intuitionistic fuzzy matrices and intuitionistic
circulant fuzzy matrices and generalized intuitionistic fuzzy matrices. Mondal and
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Samanta [13] introduced another concept of IFSs called generalized IFSs. Bhowmik
and Pal [9] defined generalized interval-valued intuitionistic fuzzy set (GIVIFS) and
presented its various properties.

Algebraic structures play a prominent role in the mathematics with wide range of
applications in many disciplines such as theoretical physics, computer science, con-
trol engineering, information sciences, coding theory, topological spaces etc. This
provides sufficient motivation to the researchers to review various concepts and re-
sults from the area of abstract algebra in the broader framework of fuzzy setting. One
of the structures which is most extensively used and discussed in the mathematics
and its applications is lattice theory. As it is well known that lattice is considered as
a relational, ordered structure and as an algebra.

Lattice matrices are useful tools in various domains like the theory of switching,
automata theory and theory of finite graphs. The notions of nilpotent lattice matrices
seem to appear first in the work of Give’on [11]. In [11], Give’on proved that an n X n
lattice matrix is nilpotent if and only if A” = 0. Since then, a number of researchers
have studied the topic of the nilpotent lattice matrices.

Our aim is to introduce and study distributive lattice over GIFMs. The structure
of this paper is organized as follows. In Section 2, the preliminaries and some defi-
nitions are given. In Section 3, some algebraic structures of GIFMs over distributive
lattice are supplied and some results are given. In Section 4, we present some proper-
ties of generalized intuitionistic fuzzy determinant over distributive lattice (GIFD). In
Section 5, the definition of generalized intuitionistic fuzzy nilpotent matrix (GIFNM)
over distributive lattice is given. In Section 6, the reduction of generalized intuition-
istic fuzzy nilpotent matrices over distributive lattice are given and some properties
are studied. The conclusion is made in Section 7.

2. Preliminaries

Here some preliminaries, definitions of IFSs and GIFMs are recalled and some alge-
braic operations of GIFMs and different types of GIFMs are presented.

2.1. Fuzzy Set and Intuitionistic Fuzzy Set

Definition 2.1 (Fuzzy set) A fuzzy set A in a universal set X is defined as A =
{(x,,uA(x))Ix € X}, where py @ X — [0,1] is a mapping called the membership
function of the fuzzy set A.

Definition 2.2 (Instuitionistic fuzzy set) An instuitionistic fuzzy set (IFS) A over X
is an object having the form A = {x, Wa(x),va(x)) 1 x € X} where uy : X — [0, 1]
andvy : X — [0, 1], ua(x) and va(x) are called the membership and non-membership
values of x in A satisfying the condition 0 < pa(x) + va(x) < 1.
Some operations on IFSs
In the following, we define some relational operations on IFSs. Let A and B be two
IFSs on X, where

A = {x, (ua(x), va) : x € X}
and

B = {x. (up(x). v5(0)) : x € X},
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Then,
(1) A = B & pua(x) = up(x) and v4(x) = vp(x) forall x e X.
(2) A C Biff pua(x) < pp(x)and v4(x) > vp(x) forall x € X.
(3) A =[x 0a (). pa@) : x € XJ.
@) AN B = {(minfpua (), p(0)), max(va(), va()) : x € XJ.

(5) AU B = {(max{jua(x), up ()}, min{va (), va()) : x € X}.

2.2. Fuzzy Matrix and Intuitionistic Fuzzy Matrix

Definition 2.3 (Fuzzy matrix) A fuzzy matrix of order m X n is defined as A = [a,- jy],
where a;j, is the membership value of the ij-th element in A.

Definition 2.4 (Intuitionistic fuzzy matrix) An intuitionistic fuzzy matrix of order
mXn is defined as A = [(aijﬂ, aijv)], where a;j, and a;j, are the membership and non-
membership values of the ij-th element in A satisfying the condition 0 < a;j, +a;j;, < 1
foralli, j.

Definition 2.5 (Generalized intuitionistic fuzzy matrix) A generalized intuitionistic
fuzzy matrix (GIFM) of order m X n is defined as A = [(aijﬂ, aij,,)], where a;j, and a;j,
are the membership and non-membership values of the ij-th element in A satisfying
the generalized intuitionistic fuzzy condition 0 < a;j, A a;j,, < 0.5 for all i, j.

Let G,x, denotes the set of all GIFMs of order m X n. In particular, G, denotes the
set of all GIFMs of order n X n.

Definition 2.6 (Comparable GIFMs) Let A and B be two GIFMs such that A =
[(a,-jﬂ, aijv)] and B = [(b,-jﬂ, b,-jv)] € Gsn. Then two matrices A and B are said to be
comparable GIFMs if a;;,, < b;j, and a;j, 2 b;j, for all i, j.

Some algebraic operations of GIFMs

Let A and B be two GIFMs, such that A = [(a,-j,,, a,-jv)] and B = [(b,-j,l, bijv)] € Gouxn-
(1) Matrix addition and subtraction are given by

A+ B = [(max{agju, biju), minfagy, by )]

and
A-B= [(a,-j,l = biju, aijy — bijv>],

Qjjus Aiju = bijy Qjjy, Qijy < bjjy,

where a;;, — b;;, = and a;;, — b;;, =
y/z y/z J J

0, elsewhere 0, otherwise.

(2) Componentwise matrix multiplication is given by
A© B = [(min{a;j,. bij,}, max{agy. by )|

(3) Let A, B be two GIFMs of order m X n and n X p. Then the matrix product AB is
given by
AB = [( > minfaiy, biju, | | max{aiy, bij)] € Gy,
k k
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Different types of IFMs

(1) Intuitionistic fuzzy zero matrix is denoted by O and all entries of it are (0, 1).

(2) Intuitionistic fuzzy identity matrix I, is defined by [(a,- s i jv>] such that a;, =
1,a;j, =0fori= janda;j, = 0,a;, = 1 forall i # j.

(3) If all element of an IFM are (1, 0), then it called intuitionistic fuzzy universal
matrix and is denoted by J,.

(4) AnIFM A is reflexive if and only if a; = (1,0) for all i.

(5) If a;; = (0, 1) for all i of an IFM A, then it is called irreflexive.

2.3. Poset of Fuzzy Sets and GIFMs

Definition 2.7 A binary relation ‘<’ defined on a fuzzy set A is a partial order on the
fuzzy set A if the following conditions hold identically in A:

()a=<a,

({i)a =bandb =< aimply a = b,

(ili)a <band b < cimply a < c.

A nonempty fuzzy set A with a partial order on it is called a partially ordered set or
briefly a poset and it is denoted by (A, <).

Lemma 1 (Poset of GIFMs) Let G,, be the set of all n X n GIFMs and ‘<’ be compa-
rable fuzzy matrix relation. Then (G,, <) is a poset.

Proof LetA, BandC € G,. Then
(1) A < Aistrue since a;j, < a;j, and a;;, > a;j,. Hence the relation ‘<’ is reflexive.

(2) A < Band B < A possible only when A = B, since A < B when a;j,, < b;j,, and
ajjy, 2 bij; B < A when b;j, < a;j, and b;j, > a;j,. Combining these two give
A = B. Therefore the relation ‘<’ is anti-symmetric.

(3) A < Bthen QAjjy < b,‘jﬂ and Ajjy = b,’jv; B < C then b,‘jﬂ < Ciju and b,‘jv = Cijy- It
is obvious that A < C since g;j, < ¢;j, and a;j, > c;j,. Hence the relation ‘<’ is
transitive.

Therefore a nonempty set of GIFMs G,, satisfies the partial order relation. Hence
G, is a partial order set i.e. poset.

Linearly ordered set of matrix.
If every pair of the elements of a poset (G,, <) are comparable, then G, is said to be
linearly ordered set of matrix.

Predecessor and successor
Let (G,,<)be aposetand A, B € G,. If A < B, then A is called predecessor and B is
called successor.
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Maximal and minimal elements
A matrix A € G, is said to be maximal matrix if there exists no matrix B such that
A<B.

Similarly, a matrix A € G, is said to be minimal matrix if there exists no matrix B
such that B < A.

Theorem 2.1 Every finite nonempty poset (G,, <) has at least one maximal and one
minimal elements.

Proof LetG, ={Ai,A,,---,A,} be a finite poset under <, containing n GIFMs. If
A is not a maximal GIFM, then by the definition there exists another GIFM A, € G,
such that A; < A,. Again, if A, is not a maximal GIFM, then there exists another
GIFM A; € G, such that A, < Aj3. Since G, is finite, this process will terminate after
a finite number of times. Hence, we obtain a finite sequence of GIFMs in G,, in the
following ordered A; < Ay < A3 < --- < A,,. Therefore, there is no GIFM B such that
A, < Bforany B € G,,. Hence A, is a maximal GIFM of the poset (G,, <).
Similarly, it can be proved that poset (G,, <) has minimal element.

2.4. Lattice of Fuzzy Sets

Definition 2.8 (Lattice of fuzzy sets) A lattice is a partial ordered set (L, <) in which
every two elements have a unique least upper bound and a greatest lower bound.

For any two elements @ and b in L, the least upper bound and greatest lower bound
will be denoted by a V b and a A b. Lattice is also denoted by (L, <, A, V).

Definition 2.9 (Universal bounds) An element a in the lattice L is called the universal
upper bound if x < a for all x € L and an element b € L is called universal lower
bound if b < x for all x € L.

The elements 0 and 1 are used to denote the universal lower and upper bounds
respectively.

Definition 2.10 (Distributive lattice of FSs) A lattice (L,<,V, A) is said to be dis-
tributive lattice if the operations NV and A are distributive with respect to each other,
ie.,

(HavbAc)y=(@Vb)yA(@aVc),
2)anbVc)=(@Ab)V(aAc),wherea,bandc € L.

An important special case of a distributive lattice is the real unit interval [0, 1] with
‘max’ and ‘min’ is called fuzzy algebra.

3. Distributive Lattice of GIFMs

In this section, we introduce the concept of distributive lattice of GIMFs and give
some properties of GIFNMs over distributive lattice. We begin this section with some
definitions:

3.1. Lattice of GIFMs

A nonempty poset (G,, <) with two binary operation + and O is called a lattice if the
following axioms hold:
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(1) Closure: A,BeG,thenA+BeG,and A® B € G,.
(2) Commutative : A, Be G,thenA+ B=B+Aand A® B = BOA.

(3) Associative: A, B,C e G,then(A+B)+C=A+(B+C)and(AGB)OC =
A BOOQO).

(4) Absorption: A, Be G, thenAG(A+B)=Aand A+ (AOB) = A.

Therefore, the poset (G,, <) with two binary operation matrix addition and com-
ponentwise matrix multiplication of GIFMs form lattice.

It should be noted that the poset (G,, <) with two binary operation matrix addition
and matrix product of GIFMs does not form lattice as matrix product is not commu-
tative.

Idempotent law

Let A be an n X n GIFMs over distributive lattice (G,(L), <,+,®). Then A satisfies
idempotent law, i.e., () A+ A =Aand (i) AOA = A.

Theorem 3.1 Let A, B be two square GIFMs of nxn over distributive lattice (G, (L), <
,+,0). Then AOB=AifandonlyifA+ B = B.

Proof LetA® B = A, where A, B € G,(L). Therefore, min{a;, b} = aij, and
max{a;j,, bij,} = a;j,.

Hence, max{a;j,, biju} = bij, and min{a;jy, bijy} = bijy.
Now,

A+ B= [( max{aijﬂ, bijy}’ min{a,-jv, b,‘jv}>]
= [(bis bisv)]| = B.
The proof of converse part is similar.

Theorem 3.2 Let (G, (L), <, +,0) be the lattice of GIFMs and A, B, C € G,. IfA< B
and A <C, then(1)A<B+C,(2Q)A<BOC.

Proof If A < B, then we have a;j, < b;j, and a;, > b,

Again, A < C we have a;, < ¢;j, and a;j, > ¢y
Hence, Ajju < max{b,-jﬂ, C,’jﬂ} and Ajjy > min{bijv, C,’jv}.
Therefore,

A =[(ai- )|
< [< max{b, ¢}, min{b;jy, Cijv}>]
=B+C.

The proof of second part is similar.

Theorem 3.3 Let (G,(L), <, +,0) be a lattice over GIFMs and A, B, C, D € G,. If
A<BandC <D, then 1) A+C<B+Dand 2)AGC <BOD.

Proof If A < B, then we have a;j,, < b;j, and a;, > b,
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Again, C< D, we have Ciju < d,’jy and Cijy > dijy-
Hence, max{a;j,, ¢ij,} < max{b;;,,d;;,} and min{a;;,, c;;,} > min{b;;,,d;j}.
Therefore,
A+C = [( max{a;ju, ¢;ju}, min{d;jy, Cijy >]

< [ max{bij, dij), mingbyjy, dij 1) |

=B+ D.
Proof is similar forA® C < BO® D.
3.2. Distributive Lattice of GIFMs

Let A, B, C € G,,. Then the lattice of GIFMs (G, (L), <, +, ®) is said to be distributive
lattice of GIFMs if

1HAB+C)=AGB)+AGC0).

(2)A+(BoC)=(A+B)oA+C).

Example 1 We shown by means of example of the distributive property of GIFMs.
Let A, B, C be three 3 x 3 GIFMs, where

(0.3,0.8)(0.4,0.8)¢0.5,0.9) (0.4,0.7) (0.5,0.7) (0.5, 0.8)
A =1(0.4,0.6)(0.5,0.7)¢0.3,0.8) |, B=1(0.5,0.5)(0.6,0.4) (0.4,0.7) |,
(0.3,0.7)(0.4,0.5)€0.3,0.6) (0.4,0.7) (0.5,0.5) (0.4, 0.6)

(0.6,0.5)¢0.6,0.4)¢0.7,0.5)
C =1(0.6,0.3)¢0.7,0.4)€0.5,0.5) |.
(0.5,0.6) (0.6,0.5)¢0.5,0.3)

Now,
(0.6,0.5)(0.6,0.4) (0.7,0.5)
B+ C=1](0.6,0.3)¢0.7,0.4) (0.5,0.5) |, and
(0.5,0.6) (0.6,0.5) (0.5,0.3)
(0.3,0.8) (0.4,0.8) (0.5,0.9)
AO(B+C)=1(04,0.6)(0.5,0.7)¢0.3,0.8) |,
(0.3,0.7)(0.4,0.5) (0.3,0.6)

(0.3,0.8) (0.4,0.8) (0.5,0.9) (0.3,0.8)(0.4,0.8)(0.5,0.9)
AOB=](04,0.6)(0.5,0.7)¢0.3,0.8) |, A®© C = (0.4,0.6) (0.5,0.7) <0.3,0.8) |,
(0.3,0.7) (0.4,0.5) (0.3, 0.6) (0.3,0.7) (0.4,0.5) (0.3, 0.6)

(0.3,0.8)(0.4,0.8) (0.5,0.9)
AOB+A0GC=](0.4,0.6)¢0.5,0.7)(0.3,0.8) |.
(0.3,0.7)(0.4,0.5) (0.3, 0.6)
Therefore, AG(B+C)=(A0B)+ (A6 ().
Similarly, it can be shown that A + (BOC) =(A+ B) 0 (A + O).

Theorem 3.4 In a distributive lattice of GIFMs (G,(L),<,+,0) if A, B, C € G,(L),
A+B=A+CandAOGB=A0C, then B=_C.
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Proof Since, A, B, C € (G,(L), <, +,0), we have

B = [min{b,ﬁ,, max{a; y, b, }}, max{b;;,, min{a;,, bijv}}] [By absorption property]
= B | max{ayj, c;ju) min{aij, cij}| [Since A+ B= A +C]
= [min{bijw a;j, ), max{b;j,, aijv}] + [max{bijya Ciju}, min{b;,, Cijv}]
[By distributive law]
= [maX{Cijy, ajju}, min{c;jy, aijv}] + [min{bim, Ciju}, max{b;j,, Cijv}]
[SinceBOA = C 0O A]
= [min{cij;u ajju}, max{c;j,, aijv}] + [min{cijpa bij.}, max{c;jy, bijv}]
[By commutative law]
= C © | max{aij,. by}, minfayy. byjy}| [By distributive law]
=C0O (A + C) = C [By absorption property].
Therefore, B = C.
4. Generalized Intuitionistic Fuzzy Determinant (GIFD) over Distributive Lat-
tice

The generalized intuitionistic fuzzy determinant |A| of an n X n GIFM A over a dis-
tributive lattice (G,(L), <, +, ®) is defined as follows:

det A = |A| = Z <a1(r(l);u alo’(l)v><02(r(2)y’ a20’(2)v> T <an0'(n);u ano’(n)v)s

oes,
where S, denotes the symmetric group of all permutations of the indices (1,2, - - ,n).

Proposition 4.1 Ifa GIFM B over a distributive lattice (G,(L), <, +,®), is obtained
from an n X n GIFM A by multiplying the i-th row of A (i-th column) by k = (ky, k»)
such that 0 < k; + k, < 1, then k|A| = |B|.

Proof By definition of GIFD, we have

|B| = Z (b1oys ProyXb20@yus Dao@p) * + * (o> Pror(my?

Tes,

= Z (al(r(]);u al(r(l)v><a20'(2)u, a20’(2)v> o k<aia'(i);u aio’(i)v> e <an(r(n)/u ano’(n)v>
oes,

=k Z (A1o(ys A1)y X A20@yus Q2o@)) ** * {bio(iyus Qioiy) * * * {nor(mys Anor(nyv)
ges,

= Kk|A].

Proposition 4.2 Let A be an n X n GIFM over a distributive lattice (G,(L), <, +, ©).
If all the elements of a row (column) are 0, 1), then |A| = (0, 1).

Proof  Since each term in |A| contains a factor of each row (column) and hence
contains a factor of (0, 1) row (column), so that each term of |A| is equal to (0, 1) and
consequently |A| = (0, 1).
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Proposition 4.3 Let A be an n X n GIFM over a distributive lattice (G,(L), <, +,®).
n
If A is triangular, then |A| = TT{Giiu, diiv)-

i=1
Proof Let A be a GIFM in triangular form below, i.e., {a;j,, a;j») = (0, 1) fori < j.
Now consider a term b of |A|

b= Z {10y Aoy X A20@)u> Q202D * * * {nor(mys Anor(myv)-

ges,

Let o(1) # 1, so that 1 < (1) and therefore {ao(1)u, @1o1)y) = {0, 1) and b = (0, 1).
This means that each term is (0, 1) if o(1) # 1. Now let (1) = 1 but o(2) # 2.
Then 2 < 0/(2) and (a20)u» @202)») = €0,1) and b = (0, 1). This means that each
term is (0, 1) if o(1) # 1 and 0(2) # 2. In the similar manner, we can prove that
each term for which o(1) # 1 or 07(2) # 2--- or o(n) # n must be (0, 1). Hence

|A] = l_[l<aiiy7aiiv>-
i
4.1. Generalized Intuitionistic Fuzzy Principal Submatrix

Let A € (G,(L),<,+,0) and A(iy, i, -, Jilj1, j2, -, Jji) denote (n — 1) X (n — 1)
submatrix obtained from A by eliminating rows iy, i, - - - , i, and columns ji, jo,- -, j;
is called a principal submatrix of order n — ¢ of A.

The adjoint of an IFM over a distributive lattice is defined as below.

Definition 4.1 Adjoint of an nxn GIFM A over a distributive lattice (G,(L), <, +, ®),
is denoted as adjA and is defined as follows

adj A = |Ajl,

where |A | is the determinant of the (n — 1) X (n — 1) GIFM formed by deleting row j
and column i from A.

Definition 4.2 Let A be GIFM and A € (G,(L),<,+,0). Then det A = i a;jA(il ).
i=1

5. Generalized Intuitionistic Fuzzy Nilpotent Matrix (GIFNM) over a Distribu-
tive Lattice

If A € (G,(L), <,+,0) and A™ = 0 for some m > 1, then A is called GIFNM over the
distributive lattice (G,(L), <, +,®). The least positive integer m satisfying A” = 0 is
called the nilpotent index of A and is denoted by A(A).

Definition 5.1 Let A be a GIFM and A € G,(L). Then A is said to be GIFNM if and
only if every principal minor of A is {0, 1).

Proposition 5.1 Let A, B, C, Ay, Ay, Az, -+, A, € (Gy(L), <, +,0). Then
(1)A(B-C)>AB-AC and (A - B)C > AC — BC,
2)(A-B)-C>2A-(B+0),

B)IfA<B thenA-C<B-CandC—-A >C - B,
@D A -A)+A—A))+ -+ (A —A)+A =A + A+ + AL
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Proof Since A, B, C € (G,(L), <, +,0), we have

AB -0 =[( > anudiger | | aodis)]

k=1 k=1
[where dkjﬂ = bkjy — Chkju and dkiv = bkjv - Ck_jv]

n

[< Zatky(bkm Ck/u) ]_[ tkv(bk/v Ck/v))]

k=1

Z(azkybk];t - alk;lck]}l) l_[(azkvbk]v - alkvckjv)>]
k=1

Z(azkpbkj;u l_[ lkvbk]v) Z(azkkam, aikvckjv)>]

k=1 k=1
:AB AC.

Hence, A(B—C) > AB - AC.
Similarly, it can prove the second part of this proposition.
Proofs of (2) and (3) are straight forward.

Proof (4): Let Ay, Ay, Az, -+ A, € (Gy(L), <, +,0). We have to prove
(A1 —A2)+(A2—A3)+---+(Al_1 —A1)+Al =A1 +A2+~-- +A[.

We prove this proposition by means of induction on /. Now for [ = 2, we have
(A1 —A2) +A2 = A1 +A2.

Let us assume that the relation holds for / — 1. Now,

(A1 —A)+ (A2 —A3)+- -+ (A1 —AD + A
=(A-A)+ (A=A +--+ (A1 —A) +A)
=((A; —A2) + Ay) + A3 + - - - + A; [By induction hypothesis]
=A +A+- -+ AL
HCHCC(AI —A2)+(A2—A3)+"-+(A1,1 —AD+A =A +A+---+ AL

Example 2 Let A, B, C be three GIFMs over distributive lattice (G,(L), <, +,0),
where

[(0.7,0.4) (0.7,0.3) (0.7,0.5) ] (0.5,0.6 (0.6, 0.4 (0.5,0.6)
A = [(0.6,0.5)(0.8,0.5)(0.7,0.4) |, B = | (0.6,0.5) (0.6,0.5) (0.5, 0.5)
(0.7,0.5) (0.8, 0.4) (0.8,0.3) | (0.5,0.6) (0.5,0.5) (0.6, 0.4)

(0.3,0.8) (0.4,0.7) (0.4,0.8) |
C =1(0.4,0.7)¢0.5,0.7) (0.5,0.6) | .

1(0.4,0.8)¢0.3,0.8) (0.3,0.9) |
Now we calculate the following

(0.7,0.4)<0.7,0.3) (0.7, 0.5)
A — B =1(0.6,0.0)(0.8,0.0y (0.7,0.4)
(0.7,0.5)¢0.8,0.4) (0.8,0.3)

and

@ Springer



Fuzzy Inf. Eng. (2012) 4: 371-387 381
(0.7,0.4)(0.7,0.3) 0.7, 0.5)
(A—-B)—-C =1(0.6,0.0y¢0.8,0.0) (0.7,0.4) |.
(0.7,0.5) (0.8,0.4) 0.8,0.3)

Again
(0.5,0.6) (0.6,0.4) (0.5, 0.6)
B+ C =(0.6,0.5)(0.6,0.5)¢0.5,0.5)

(0.5,0.6) (0.5,0.5)(0.6,0.4)
and
(0.7,0.4)¢0.7,0.3)(0.7,0.5)

A—-(B+C)=1(0.6,0.0)(0.8,0.0)¢0.7,0.4) |.
(0.7,0.5)(0.8,0.4) (0.8,0.3)
Therefore, (A—B)-C >A—-(B+ ().

Example 3 Let A, B, C be three 3 X 3 GIFMs, where

(0.3,0.8)(0.7,0.5) (0.4, 0.5) (0.4,0.6) (0.7,0.4) (0.6,0.4)
A =1(0.5,0.6)(0.5,0.6) (0.6,0.4) |, B =10.5,0.4)(0.6,0.5) (0.7,0.3)
(0.6,0.4) (0.4,0.7) (0.5,0.8) (0.7,0.4)0.5,0.6)€0.6,0.5)

(0.4,0.5)(0.8,0.4)(0.6,0.5)
C =1(0.6,0.4)(0.6,0.3)(0.7,0.3) |. Here A < B.
(0.8,0.4)(0.6,0.5)¢0.7,0.4)

(0.0,0.0) (0.0, 0.0) 0.0, 0.0)
A —C =1(0.0,0.0)¢0.0,0.0y(0.0,0.0)
(0.0,0.0) (0.0, 0.0} 0.0, 0.0y

(0.4,0.0) (0.4,0.0) (0.6,0.4)
B - C =1¢0.0,0.0)(0.6,0.0) (0.7,0.0) |.

(0.0, 0.0) ¢(0.0,0.0) (0.0, 0.0)
Therefore, if A < B,thenA - C < B-C.

Proposition 5.2 If A is an GIFNM over a distributive lattice (G,(L), <, +,0), then
det A = (0, 1) but converse of the proposition is not true.

Proof Let A be a GIFNM over a distributive lattice (G, (L), <, +,®). Then

n

det A = Za,-jA(iu),j =1,2,-,n.
i=1
Again, by the definition of the GIFNM, a GIFM A will be a nilpotent intuitionistic
fuzzy matrix if and only if every principal minor of A is (0, 1).
Therefore det A = (0, 1).

Example 4 To show the converse part of the proposition, consider a GIFM over a
distributive lattice (G,(L), <, +,0) as
0,1y 0,1y (0, 1)
A =1(0.4,0.9)¢0.5,0.8)(0.4,0.7) |.
(0.5,0.6) (0.4,0.8) (0.4,0.8)
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Therefore, by the Proposition 5.2, we have det A = (0, 1) although it is not a GIFNM.

Proposition 5.3 Let A be a GIFM and A € (G, (L), <,+,®). Then A is GIFNM if and
only ifag.() =0, 1), where ag.()is the diagonal elements of A* for all k.
Example 5 Let us consider a GIFM over a distributive lattice (G,(L), <, +,®) as
0,1y <0,1)¢0.4,0.7)
A =1(0.5,0.6)¢0, 1)(0.3,0.8) |.
0,1y (0,1) (0,1)
Here ag) =(0,1),i=1,2,3. We obtain
(0,1)¢0,1) <0,1)
A% ={(0,1)(0,1)¢0.4,0.7) |-
(0,1)¢0,1) <0,1)
Here a'” = (0,1),i = 1,2,3. and
(0,1)¢0, 1)¢0, 1)
A% =1(0,1)¢0,1)(0, 1) |,
(0,1)¢0, 1)¢0, 1)
alsoa)) =(0,1),i=1,2,3.
Thus GIFM A over a distributive lattice L is a GIFNM and index is h(A) = 3.

Proposition 5.4 Let A be a GIFM over a distributive lattice L, i.e., A € (G,(L), <
,+,0). Then A is GIFNM if and only if A is irreflexive and transitive.

Proof Let A be an IF irreflexive matrix, i.e., a; = (0, 1) for all i. Since, A is IF
transitive matrix, we have A> < A and so A* < A for all k. Therefore, agf) <aj=
{0,1) forall i, k € N. So, A is a GIFNM.

Conversely, suppose that A is a GIFNM. If A is not a GIFNM, then A # 0. If
A? = A, thenA = A> = .- = A% and so A” = A # 0. Thus a contradiction to the
assumption that A is GIFNM.

Again, if A% > A, then A < A% < --- < A” and therefore A” < A # 0, which is also
a contradiction.

Hence, A must be a generalized intuitionistic fuzzy transitive matrix.

Now suppose that A is not generalized intuitionistic fuzzy irreflexive matrix. Then
a;; # {0, 1) for some i € N. Therefore A is not a GIFNM, which is also a contradiction.

Hence A must be a generalized intuitionistic fuzzy irreflexive and transitive ma-
trix.

Proposition 5.5 Let A be a GIFM and A € (G,(L), <, +,0). If A generalized intu-
itionistic fuzzy nilpotent matrix, then

(1) A (adj A) = 0 and (adj A) A = 0.
(2) (adj A)? = 0.

Proof Let B = A(adj A). Then for any i, j € N (set of natural numbers) with i # j.
We have

(biju»bijy) = Z {A1o(ys Qo)+ * {ic iy Bic(iyr) * * * {no(n)> Dicr(iy)-

oes,
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Let o € S, be an arbitrary.

Case () o'(i) # jfor [ > 1. Then there exists d such that 1 < d < n, ol(i) = iand i,
ol(i) - - - 0¢71(i) are mutually different and belong to N. Then

(A1o(ys Qo)+ {io(iys Cioin) ** * {nor(nys Anor(myv)
< LGic iy Qi) * (Ao (s oo i) * Qo1 (Giyiges A1 (iyiv)
< (A%;[since for GIFNM a* = (0, 1) for all i,k € N where A* = [a{.j]]

=[©. 1.

Case (ii) There exists  such that /(i) = j . Then there exists d such that 1 < d < n,
o'(i) = jand i, o'(j) - - - 0¥ (j) are mutually different and belong to N. Then

(1o Aay) * Loty Gioiy) ** * {ic Gy Aic () ** * nor(mys Ano(nyv?
< Gio(jyo Gio(jw) ** (B (e G Ao (o) * e (i A1 (i)

< (A%);[since for GIFNM af, = (0, 1) for all i, k € N where A* = [af]]
= [<0, 1>].
Therefore, for any i, j € N with i # j, we have

(biju> bijy) = Z(ala(l)y,aw(l)y) < AGig (s iciyy) ** * {no(ny» Gicriyy) = 0, 1).
oESs),
If i = j, it is clear that b; = (0, 1).
Thus B = A(adj A) = 0.

0,1y (0,1)¢0.4,0.7)
Example 6 Let A =|(0.3,0.6) (0, 1)(0.3,0.8) [ be a GIFNM over distributive lattice
0,1y <0,1) <(0,1)
(G,(L), <, +,0). Now, the adjoint matrix of GIFM A is
0,1)<0,1) <0, 1)
adj A =1(0,1)¢0,1)¢0.3,0.7) |.
0,1)¢0,1) (0, 1)
Also
0,1)¢0,1y <0, 1) 0,1)¢0,1) <0, 1)
(adj A)? =1¢0,0)(0,1)(0.3,0.7) || (0, 1) (0, 1) (0.3,0.7)
(0,1)¢0,1) (0, 1) 0,1)¢0, 1y <0, 1)
(0,1)¢0, 10, 1)
=1(0,1)¢0,1)¢0,0) | = 0.
(0,1)<0,1)¢0, 1)

Proposition 5.6 Let A be a GIFNM over a distributive lattice L, i.e., A € G,(L).
Then h(A) = 3 if and only if AAT = 0 and for some i, j € N, R; A RJT. # (0, 1), where
R; and R are the i-th and j-th rows of the GIFNM A.
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Proof Let the index of a GIFM A be 3, i.e., h(A) = 3. Since A% # 0, then there
must exist some rows say s-th and #-th such that R; A RJT # (0, 1). Now we show that
AAT = 0. Suppose AA” # 0. Then we can find p, g such that (a@,g., @pg X Agpus Agpv) >
(0, 1). Therefore {a,qy, apgr){Agpus Agpy){lpgus Apgy) > {0, 1), which is a term of (p, g)-
th entry of the matrix A*. So

1<i§2<n<aqi1waqilvxailizw Qiyiyy iy pus Qi pv) > {Agpps Agpy X Apgus Apgy ) Agpu> Agpy)

S > (0, 1),
which leads to a contradiction, since A3 = 0.

Conversely, R; A RJT # (0, 1) for some rows say i, j, then A? # 0. Therefore, from
AAT =0, we get A*> = 0. Hence A is an IFNM of index 3.

Note: Let A be a GIFNM over a distributive lattice L, i.e., A € G,(L), and AAT =0
and foralli,j € N, R; A RJT. = (0,1). Then A is neither GIFNM nor converge to a
GIFM.

0, 1) 0,1y (0.5,0.7)
Example 7 Let A = [(0.3,0.8) (0,1) (0,1) | be a GIFM over a distributive
0,1y (0.4,0.6) <(0,1)
lattice (G, (L), <, +,0) of order 3x3 and AA” = 0, and foralli, j € N, RiAR]T =40, 1).
Now,

0,1y (0.4,0.7) (0, 1) (0.3,0.8) (0,1) (0, 1)
A2=| (0,1) 0,1y (03,0.8)}, A% =| (0,1) (0.3,0.8) (0,1) |,
(0.3,0.8) (0,1) (0, 1) 0,1y  (0,1) (0.3,0.8)
0,1y  (0,1) (0.3,0.8) 0,1y (0.3,0.8) (0, 1)
A*=1(0.3,08) (0,1) (0,1) |,AS=| (0,1) (0,1) (0.3,0.8) |,
0,1y (0.3,0.8) (0, 1) (0.3,0.8) (0,1) (0, 1)
(0.3,0.8) (0,1) (0, 1)
AS=] (0,1) (0.3,0.8) (0,1)
0,1 0,1y (0.3,0.8)

and if continue this process, we get A% = A" where k € N, set of natural numbers
and k > 3.
Here A is neither GIFNM nor converge to any GIFM.

6. Reduction of GIFNMs over a Distributive Lattice

Let L be a distributive lattice and A € (G,(L), <, +,®). Then GIFM A/A = A — A% is
called a reduction of GIFM A. It is clear that A/A < A for all GIFM A in (G,(L), <
,+,0). Hashimoto [12] discussed the reduction of irreflexive and transitive fuzzy
matrices and obtained some properties and applied these properties to nilpotent fuzzy
matrices.

In this section, we shall consider the reduction of GIFNMs over distributive lat-
tice. The results obtained in this section generalize the previous results on nilpotent
matrices by Hasimoto [12].

Theorem 6.1 Let A be a GIFNM and A € (G,(L), <, +,0). Then (A/A)t = A*, where
AJA=A-A’and A" = A+ A%+ A%+ + A",
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LetS = A/A. We note that A and S are GIFNM. It is clear that (A/A4)T < AT since
AJA=A-A%<A.

In the following, we shall prove that A7 < (A/A)T. To do this, we shall prove that
St <Al - A" forall 1.

We shall prove Sl< Al — A by induction on /. It is clear that it holds for / = 1,
since S = A — A2, and we may assume that it holds for / — 1. Then S’ = §S*! >
S@AFt - A = sAFT S AL

Since A — A2 =S < A. We have

Sl > (A _AZ)Alfl _Al+l
> (Al _A/+1) _Al+1
> Al _ (Al+1 +Al+1)
— Al —AHI.

Now,

(AJA) =57
=S +S2+83+...48"
SA-AH+ (A2 -AH+- -+ (A" - A
=(A-AD)+ A2 A+ + (A" — A" + A"(sinceA"™ " = 0)
=A+ A%+ A% + ...+ A"( by Proposition 5.1)
=A"

Therefore, (A/A)* = A*.

Theorem 6.2 Let A be an n X n irreflexive and transitive matrix over (G,(L), <, +, ).
Then (A/A)* = A.

Proof Since A is IF irreflexive and transitive matrix, we have A is IF nilpotent
matrix and A = A*, and so (A/A)" = A.

Theorem 6.3 Let A be an n X n irreflexive and transitive matrix over (G,(L), <, +,0).
Then the following conditions are equivalent
(HDA/JASS <A (2)ST =A.

Proof  Suppose that A/A < § < A, clearly by Theorem 6.2, S* = A. Thus we have
that (1) implies (2).

Now suppose that S* = A. Then we have that S < A and A2 = (S*)? =S+ S° +
ek ST 4 §2

Since A is IF irreflexive and transitive, A is GIFNM and so S! = 0 for [ > n
(because S < A).
Therefore, A> = S2+S3+---+S" andso S +A% = S +S2+ 83+ 45" =5+ = A.

) @ ) .
Thus, {5}, sijy) + (@") a,(-];) =(ajju, a;ijy) for all i and j, i.e., (s;ju, Sijv) = {Qiju> Qijy) —

ijy’

<a§,2‘;)ua,('12<3> = (A/A);; for all i and ;.
Hence we have that A/A < S < A and that (2) implies (1).

7. Conclusion

In this paper, we have proved that GIFMs form a lattice and also shown that this
lattice is distributive. But we have not studied whether this lattice is modular or not.
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Some properties of GIFMs are investigated, including the nilpotency of it. It can
be seen that all GIFMs are not nilpotent, but under certain condition some GIFMs
are nilpotent. we expect some other conditions may exist for nilpotency of GIFMs.
Convergence of GIFMs over lattice is a very important property for any type of fuzzy
matrices. At present, we are investigating this property for GIFMs.
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