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Abstract
In this study, we analyzed the ontogenetic trajectories of shell morphology in some Cretaceous tetragonitid ammonoid 
specimens (Tetragonitidae) collected from the Tomamae, Mikasa, and Hamanaka areas of Hokkaido, Japan. In all examined 
species, the ontogenetic trajectories of septal spacing between successive chambers had similar characteristics during their 
early ontogeny: two cycles, each comprising an increase and subsequent decrease in septal spacing until ~ 30th septum. The 
trends of whorl expansion rate changed at 5–7 or ~ 10 mm in the Gaudryceratinae and ~ 3 mm shell diameter in the Tetrago-
nitinae. Based on these observations, we propose that the planktic phases of Gaudryceratinae and Tetragonitinae ended at 
those shell diameters. These different shell diameters at the end of the planktic phase suggest slightly differing strategies 
within the family Tetragonitidae.
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Introduction

Marine mollusks have many modes of life through ontogeny. 
Some gastropods, such as heteropods, stay planktic through-
out their lives (Beesley et al. 1998). However, some cephalo-
pods (e.g., many octobrachians) are benthic (non-planktic), 
even during post-embryonic stages (Wani 2011; De Baets 
et al. 2015). The planktic phase in marine mollusks, such as 
the larval phase in gastropods and bivalves, plays an impor-
tant role in their geographical dispersal and thus diversifica-
tion (Jackson 1974; Scheltema 1977; Hansen 1980; Jablon-
ski and Lutz 1983; Levin 2006; Nützel 2014; Fukumori and 
Kano 2014). This is because the geographic distribution of 
marine organism expands as they are transported by currents 
during their planktic phase. Even in modern squids with 
excellent swimming abilities, the planktic phase during the 
embryonic (i.e., floating egg masses) and/or post-embryonic 

stages is a major factor influencing their geographical dis-
tribution (Boyle and Boletzky 1996; Villanueva et al. 2016; 
Roura et al. 2019). Understanding the planktic phase is thus 
highly relevant for studying the diversification and specia-
tion of ammonoids because they likely had poorer swimming 
abilities than modern squids (Naglik et al. 2015b; Peterman 
et al. 2019, 2020a; Peterman and Ritterbush 2022).

It appears like most if not all ammonoid hatchlings were 
planktic (Kulicki 1974, 1979, 1996; Drushchits et al. 1977; 
Tanabe et al. 1980, 2001, 2003; Landman 1985; Tanabe and 
Ohtsuka 1985; Shigeta 1993; Landman et al. 1996; West-
ermann 1996; Rouget and Neige 2001; Mapes and Nützel 
2009; Tajika and Wani 2011; De Baets et al. 2012, 2013, 
2015; Ritterbush et al. 2014; Lemanis et al. 2015). However, 
several Jurassic and Cretaceous ammonoids have been inter-
preted as having been demersal during their post-embry-
onic or adult stages based on oxygen isotopic examinations 
(Moriya et al. 2003; Lécuyer and Bucher 2006; Lukeneder 
et al. 2010; Moriya 2015a, b; Sessa et al. 2015; Linzmeier 
et al. 2018; Hoffmann et al. 2019; Machalski et al. 2021). 
Among those lineages, we focused on the family Tetrago-
nitidae (Lytoceratoidea) for this study. The family Tetrago-
nitidae, which comprises two subfamilies (Gaudryceratinae 
and Tetragonitinae), evolved from Lytoceratidae during the 
Barremian and persisted until the Maastrichtian (Wright 
1996; Maeda et al. 2005; Hoffmann 2010, 2015; Landman 
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et al. 2015). Many studies have reported the evolutionary 
and morphological stability of Lytoceratina relative to other 
ammonoid suborders (Arkell et al. 1957; Ward and Signor 
1983; Page 1996; Hoffmann 2010, 2015; Neige et al. 2013; 
Yacobucci 2015), which is likely linked with their environ-
mentally more stable open ocean habitats (House 1989; Tan-
abe et al. 2013). We examined the ontogenetic trajectories 
of shell morphology (septal spacing and outer shell shape) 
to assess their ecological characteristics.

The ontogenetic trajectories of septal spacing enable 
us to understand details of chamber formation throughout 
the development of these cephalopods. These trajectories 
(Kulicki 1974; Lehmann 1976; Bucher and Guex 1990; 
Bucher 1997; Dommergues 1988; Landman and Waage 
1993; Mignot 1993; Bucher et al. 1996; Polizzotto et al. 
2007; Kraft et al. 2008; Paul 2011; Arai and Wani 2012; Zell 
and Stinnesbeck 2016; Iwasaki et al. 2020; Beck et al. 2021; 
Kawakami et al. 2022; Takai et al. 2022) have mostly been 
analyzed using two-dimensional measurements (rotational 
angles or linear distance between two successive septa) 
(Naglik et al. 2015a; Tajika et al. 2020). The ontogenetic tra-
jectories of septal spacing change at the transitions between 
ontogenetic stages (embryonic, neanic, juvenile, and mature 
stages) (e.g., Westermann 1958; Bucher et al. 1996; Klug 
2001; Kraft et al. 2008). Shell morphology changes covari-
ably at such transitions (e.g., whorl expansion rate; WER) 
(Linzmeier et al. 2018; Kawakami et al. 2022).

Therefore, in this study, we examined the ontogenetic 
trajectories of shell morphology (septal spacing and WER). 
Based on these examinations, we aimed (1) to elucidate 
whether the ontogenetic trajectories of septal spacing and 
shell morphology had similar characteristics in Gaudryc-
eratinae and Tetragonitinae and (2) to discuss implications 
for the paleoecology and evolutionary trends of tetragonitid 
ammonoids.

Material

All specimens used in this study were collected from cal-
careous concretions found in the Tomamae (subdivided into 
Haboro and Kotanbetsu), Mikasa, and Hamanaka areas of 
Hokkaido, Japan (Fig. 1). None of the specimens exhibited 
irregular shell growth (e.g., injuries) and they are all pre-
served without diagenetic shell deformations (Fig. 2). We 
analyzed 40 specimens of Gaudryceratinae and Tetragoni-
tinae (see Hoffmann 2015 for the definition of higher taxon-
omy). Seven specimens belonged to two species of Late Cre-
taceous Gaudryceratinae: (1) Gaudryceras denseplicatum 
(four specimens; two specimens each were collected from 
calcareous concretions embedded in outcrops of Cretaceous 
strata in the Mikasa and Tomamae areas) and (2) Gaud-
ryceras hamanakense (three specimens were collected as 

float from an outcrop of Cretaceous strata in the Hamanaka 
area). The other 33 specimens belonged to three species of 
Late Cretaceous Tetragonitinae: (1) Tetragonites glabrus 
[20 specimens; 18 specimens from the Tomamae area (15 
were collected from calcareous concretions embedded in the 
outcrops of Cretaceous strata, and three were collected as 
float) and two specimens from the Mikasa area (all were col-
lected calcareous concretions embedded in the outcrops of 
Cretaceous strata)], (2) Tetragonites popetensis [eight speci-
mens from the Tomamae area (seven were collected from 
calcareous concretions embedded in outcrops of Cretaceous 
strata, and one was collected as float)], and (3) Tetragonites 
minimus (five specimens were collected from calcareous 
concretions embedded in outcrops of Cretaceous strata in 
the Tomamae area).

Figures and other specimens examined in this study were 
deposited at the Mikasa City Museum, Hokkaido.

Geological setting

Tomamae area

Calcareous concretions, such as G. denseplicatum, T. gla-
brus, and T. popetensis, were collected from the Haborogawa 
Formation (Yezo Group) in the Migino-sawa, Katagiri-sawa, 
Pissiri-sawa, Nakafutamata, and Detofutamata Rivers in the 
Haboro area, and the Horotate-sawa and Kotanbetsu Riv-
ers in the Kotanbetsu area (Fig. 1) (Toshimitsu 1985, 1988; 
Wani and Hirano 2000; Takashima et al. 2004; Ikeda and 
Wani 2012). The depositional environments reflect an outer 
shelf and a storm-dominated inner shelf–shoreface for the 
lower and upper parts of the Haborogawa Formation, respec-
tively (Toshimitsu 1985, 1988; Wani 2003; Takashima et al. 
2004). According to the co-occurring index inoceramids, the 
geological age of the examined specimens can be considered 
Santonian to earliest Campanian (Toshimitsu 1985, 1988; 
Wani and Hirano 2000; Okamoto et al. 2003; Wani 2003; 
Takashima et al. 2004; Ikeda and Wani 2012; Kawabe and 
Okamoto 2012).

Mikasa area

Calcareous concretions, including some specimens of G. 
denseplicatum and T. glabrus, were collected from the 
Kashima Formation (Yezo Group) located at Ashiyachi-sawa 
in the Mikasa area (Fig. 1) (Takashima et al. 2004; Futakami 
et al. 2008). The depositional environment of the Kashima 
Formation reflects an outer shelf–continental slope, and the 
geological age of the examined specimens from this area can 
be considered Santonian based on the co-occurring index 
inoceramids (Futakami et al. 2008).
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Hamanaka area

All the specimens of G. hamanakense were collected as 
float from the Akkeshi Formation (Nemuro Group) located 
at Ponporoto in the Hamanaka area (Fig. 1), which is the 
type locality of G. hamanakense (Matsumoto and Yoshida 
1979; Naruse et al. 2000). The depositional environments 
of the Akkeshi Formation are channel-levee complexes at 
the foot of the slope environment (Naruse 2003). Accord-
ing to the index fossils, the geological age of the examined 
specimens can be considered Maastrichtian (Matsumoto 
and Yoshida 1979; Naruse et al. 2000).

Methods

Each specimen was polished along its median plane 
(plane of symmetry) using silicon carbide powder. The 
septal spacing between successive septa was defined as 
the rotational angle between two successive septa (i.e., 
N and N-1 septal numbers) at the positions where the 
septum meets the siphuncle (Fig. 3) and was measured 
using a digital optical microscope (Keyence VHX-900; 
magnification × 25– × 175; error < 0.01°). The intraspecific 
variability of septal spacing and irregular septal spacing, 
especially in the early ontogenetic stage, was appropriately 

Fig. 1   Topographic maps of the Tomamae, Mikasa, and Hamanaka 
areas in Hokkaido, Japan. For geological information, see Toshimitsu 
(1985, 1988), Wani and Hirano (2000), Okamoto et al. (2003), Wani 
(2003), Takashima et al. (2004), Ikeda and Wani (2012), Kawabe and 

Okamoto (2012) for the Tomamae area; Takashima et al. (2004) and 
Futakami et al. (2008) for the Mikasa area; and Naruse et al. (2000) 
and Naruse (2003) for the Hamanaka area
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examined in this study. The center of rotation was defined 
as the center of the maximum diameter of the initial cham-
ber through the base of the caecum (Fig. 3). The meas-
ured septal spacings are shown in the graphs of the septal 
spacing between two successive septa (N and N-1) against 
the septal number (N) and phragmocone diameter through 
ontogeny (Figs. 4 and 5).

The WER, which is one of the major parameters of 
ammonoid conchs was measured as a representative param-
eter of conch shape, following Klug et al. (2015a). In each 
specimen, the WER of every demi-whorl on the median 
plane was measured, and the ontogenetic trajectories of each 
WER were recorded.

Ammonitella diameters were measured using an opti-
cal microscope with a digital measurement tool (Keyence 
VHX-900; magnification × 25– × 175; error < 0.01 mm). 
In this study, the ammonitella diameter was defined as the 
maximum diameter of the ammonitella from the primary 
constriction (Fig. 3).

Determination of the transition in modes of life

Isotopic analyses of pristine aragonitic shells provide 
interesting information on the modes of life of ammo-
noids (Moriya et  al. 2003; Lécuyer and Bucher 2006; 
Moriya 2015a, b; Sessa et al. 2015; Linzmeier et al. 2018; 

A

B

C

D 10 mmE

Fig. 2   Photographs of the examined species of Tetragonitidae; A 
Gaudryceras denseplicatum, MCM-W1983, Santonian, Kotanbetsu 
area; B Gaudryceras hamanakense, MCM-W1987, Maastrichtian, 
Hamanaka area; C Tetragonites glabrus, MCM-W1991, Santonian, 

Nakafutamata River, Haboro area; D Tetragonites popetensis, MCM-
W2010, Campanian, Katagiri-sawa Creek, Haboro area; E Tetrago-
nites minimus, MCM-W2019, Santonian, Pisshiri-sawa Creek, Hab-
oro area. Scale bar represents 10 mm
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Hoffmann et al. 2019). Oxygen isotopes recording changes 
in water temperature should be examined. However, the 
shell materials of the specimens examined in this study 
were recrystallized into calcite; thus, the primary isotopic 
signal was lost.

Another decisive piece of information for determining the 
modes of life of ammonoids comes from the calculation of 
ammonoid buoyancy (Hoffmann et al. 2015). Shigeta (1993) 
examined and theoretically calculated the buoyancy of the 
same tetragonitid species that we used here. Therefore, we 
compared the calculated buoyancy of tetragonitid ammo-
noids in Shigeta (1993). However, there are some issues with 
these older buoyancy calculations (Hoffmann et al. 2015). If 
the ammonoid had negative buoyancy, they could actively 
swim to counteract their negative buoyancy (Lemanis et al. 
2015). Furthermore, the density calculation depends on the 
values used for the soft part density and the amount of cham-
ber liquid (Naglik et al. 2015a, b; Tajika et al. 2015; Peter-
man et al. 2019, 2020a). Moreover, buoyancy calculations 
are sensitive to differences in body chamber ratio (Naglik 
et al. 2015a, b; Tajika et al. 2015; Peterman et al. 2020b).

Therefore, we estimated the transition in modes of life 
from the covariation of ontogenetic changes in the septal 
spacing and outer shell shape. The changes in mode of life 
belonged to the major events in the ammonoid lifecycle. 
Therefore, both septal spacing and shell shape covari-
ably change at these ontogenetic stages because the ani-
mal needed to maintain neutral buoyancy, at least to some 
degree. Similar covariations between the changes in shell 
shape and modes of life are thought to exist in other extinct 
mollusks (Tanabe 1973; Hayami and Hosoda 1988).

Results

Gaudryceratinae

Septal spacing

The ontogenetic trajectories of septal spacing followed a 
similar trend between the two examined Gaudryceratinae 
species (Fig. 4; Supplementary files 1–2). There were two 
cycles until the 27th–30th septum; each cycle comprised 
an increase and subsequent decrease in septal spacing. The 
ends of the first and second cycles were near the 12th–17th 
and 27th–30th septum, respectively (Table 1). The ampli-
tudes of the first cycle were larger than those of the second 
cycle.

Different characteristics were found in the examined 
species. After the second cycle, no additional cycle was 
documented in G. denseplicatum (Fig. 4A–C). However, 
a distinct third cycle occurred after the second cycle in G. 
hamanakense (Fig. 4E–G). It was difficult to adequately 
recognize the end of the third cycle because it gradually 
transitioned into a flattening curve. We approximated the 
end of the third cycle in G. hamanakense as the point, at 
which the slope of the trajectories became gentler (the 
45th septum).

The septal spacings of the three ontogenetic stages (dur-
ing the first and second cycles, and afterwards) showed 
significant differences (ANOVA, p < 0.01), indicating 
that these cycles are not artifacts, but a biologically real 
phenomenon.

WER

The ontogenetic trajectories of the WER followed a similar 
trend between the two examined Gaudryceratinae species 
(Fig. 4; Supplementary files 1–2). The WER values first 
decreased and subsequently increased.

Different characteristics were documented in the posi-
tions transitioning from a decrease to an increase at around 
5–7 and 10–15 mm shell diameters of G. denseplicatum 
and G. hamanakense, respectively. At these shell diam-
eters, the WER values were ~ 1.8 in G. denseplicatum 
and ~ 1.5 in G. hamanakense.

Tetragonitinae

Septal spacing

The ontogenetic trajectories of septal spacing followed a 
similar trend among the three examined Tetragonitinae 

primary
constriction

septal
spacing 0

ammonitella

diameter

Fig. 3   Measurement of shell morphology exhibiting septal spacing, 
the base of measurement through proseptum (0), and ammonitella 
diameter (the maximum diameter through the primary constriction)
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species (Fig. 5; Supplementary files 3–5). There were two 
cycles until 25th–35th septum. The ends of the first and 
second cycles were near the 12th–15th and 25th–35th sep-
tum, respectively (Table 1). The amplitudes of the first 
cycle were larger than those of the second cycle. The sep-
tal spacing after the second cycle was nearly constant, 
between 20 and 30 degrees.

Different characteristics were discovered only in T. mini-
mus. After the 57th to 67th septum (phragmocone diameters 
of 8.7–12.2 mm), the septal spacings of the three specimens 
decreased sharply (Fig. 5I–K).

The septal spacings of the three ontogenetic stages (dur-
ing the first and second cycles, and afterwards) showed sig-
nificant differences (ANOVA, p < 0.05), indicating that these 
cycles are not artifacts, but a biologically real phenomenon.

WER

The ontogenetic trajectories of the WER followed a simi-
lar trend among the three examined Tetragonitinae species 
(Fig. 5; Supplementary files 3–5). The WER values first 
decreased and subsequently increased afterward, although 
this trend was unclear in the two species of T. minimus.

Different values were measured in the developmental 
positions transitioning from a decrease to an increase of 3–4 
and ~ 2 mm in the shell diameters of T. glabrus and T. pop-
etensis, and T. minimus. At these shell diameters, the WER 
values were 1.8–2.0 in T. glabrus, 1.7–1.9 in T. popetensis, 
and 1.8–1.9 in minimus.

Discussion

Stable ontogenetic trajectories of shell morphology 
during the earliest ontogeny within tetragonitids

Our results demonstrated that the ontogenetic trajectory 
patterns of septal spacing during the earliest ontogeny 
(until ~ 30th septum) had similar characteristics in the exam-
ined tetragonitid species. All examined species had at least 
two cycles of septal spacing during the earliest ontogeny 
(Figs. 4 and 5). This result is concordant with that of G. 
tenuiliratum, which is a common tetragonitid species found 

in Hokkaido (Kawakami et al. 2022). The exception was 
G. hamanakense, which formed a distinct additional cycle 
(i.e., the third cycle) (Fig. 4E–G). Furthermore, the septal 
numbers at the ends of the first and second cycles were iden-
tical (~ 15th and ~ 30th septum) in all examined species and 
in G. tenuiliratum (Kawakami et al. 2022). The phragmo-
cone diameters at the ends of the first and second cycles 
were measured at 1.2–2.2 and 2.6–5.9 mm, which were also 
identical in the examined tetragonitid species (Figs. 4 and 
5; Table 1). These data suggest that the ontogenetic trajec-
tory patterns of septal spacing during the earliest ontogeny 
(until ~ 30th septum) were stable in the Late Cretaceous 
tetragonitids, although we did not examine all species. At 
least two cycles during the earliest ontogeny in tetragonitids 
contrast with one cycle during the earliest ontogeny in mod-
ern and fossil nautiloids (Landman et al. 1983; Wani and 
Ayyasami 2009; Wani and Mapes 2010; Tajika et al. 2021, 
2022) as well as Cretaceous desmoceratids (Takai et al. 
2022).

Furthermore, considering the data from this study and 
those from Kawakami et al. (2022), the ontogenetic trajec-
tories of the WER revealed similar characteristics within 
the family Tetragonitidae. In all examined species, the WER 
values first decreased and subsequently increased (Figs. 4 
and 5). However, the ontogenetic stages transitioning from 
a decrease to an increase were different in Gaudrycerati-
nae (5–7 or 10–15 mm shell diameters) and Tetragonitinae 
(~ 3 mm shell diameters) (Figs. 4 and 5).

The sharply decreasing trend of septal spacing in the 
later ontogenetic stages in some specimens of T. minimus 
(Fig. 5I–K) is different to those of the other examined spe-
cies. These are thought to be terminal septal crowding 
(Klug et al. 2015b). The mature phragmocone diameter of 
T. minimus during the Santonian and Campanian is usually 
10–19 mm (Shigeta 1989; Aiba 2022), which is consistent 
with our results.

Implications for early life history

Although most ammonoid hatchlings are thought to have 
been planktic, adult tetragonitid ammonoids in Hokkaido 
have been reconstructed as demersal using oxygen iso-
topic examinations (Moriya et al. 2003; Moriya 2015a, 
b). However, Moriya et al. (2003) did not provide isotopic 
data of the embryonic and juvenile stages (Moriya 2015a). 
If the tetragonitid species examined in this study were 
planktic for a some time after hatching and later became 
demersal at a certain ontogenetic stage, then how large 
was the shell diameter at this stage? As the phragmocone 
diameters measured in this study did not include the body 
chamber, shell diameters, including body chambers, can 
only be estimated. However, it is difficult to accurately 
recognize the precise body chamber length at a certain 

Fig. 4   Graphs of septal spacing (rotational angles) and whorl expan-
sion rate (WER) through ontogeny; A all specimens of Gaudryceras 
denseplicatum; B average ontogenetic trajectories of septal spac-
ing with error bars (standard deviations) in G. denseplicatum; C all 
specimens vs. phragmocone diameter of G. denseplicatum; D WER 
vs. shell diameter of G. denseplicatum; E all specimens of Gaudryc-
eras hamanakense; F average ontogenetic trajectories of septal spac-
ing with error bars (standard deviations) in G. hamanakense; G all 
specimens vs. phragmocone diameter of G. hamanakense; H WER 
vs. shell diameter of G. hamanakense 

◂
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ontogenetic stage, except for the hatching (i.e., ammoni-
tella) and mature stages. Arai and Wani (2012) estimated 
shell diameters by postulating that the body chamber 
length during the early post-embryonic stage was approxi-
mated to an ammonitella angle between the nepionic con-
striction and proseptum. We adopted this only moderately 
accurate method to estimate the shell diameters, including 
body chamber length. In Gaudryceratinae, the estimated 
shell diameters were 2.4–3.6, 4.4–6.0, and ~ 10 mm at the 
ends of the first, second, and third cycles (Table 1). In 
Tetragonitinae, the estimated shell diameters were 2.1–3.9 
and 4.1–12.0 mm at the ends of the first and second cycles 
(Table 1). Desmoceratinae had a single cycle of septal 
spacing during the earliest ontogeny, at the end of which 
their mode of life changed, possibly from planktic to 
demersal (Takai et al. 2022). The examined tetragonitid 
specimens could have changed modes of life at the end of 
either the first, the second, or the third cycles.

Moreover, we examined the WER as a representative 
parameter of shell shape. The results demonstrated that 
the WER trends changed in Gaudryceratinae and Tetrago-
nitinae when the shell was measured at 5–7 or 10–15 mm 
and ~ 3 mm diameter (Figs. 4D and H, 5D, H, and L). These 
shell diameters approximately fit the end of the second or 
third cycle in Gaudryceratinae and the first cycle in Tetrago-
nitinae. Based on similar considerations, Kawakami et al. 
(2022) proposed that G. tenuiliratum changed its mode of 
life, possibly from planktic to demersal at 5–7 mm shell 
diameter (i.e., at the end of the second cycle). Lukeneder and 
Lukeneder (2014) distinguished embryonic, neanic, juve-
nile, and mature stages based on biometric analyses of the 
WER in Carnian (Late Triassic) ammonoids. Their analyses 
revealed that high WER values occurred in the embryonic to 
early juvenile stages; however, the WER values decreased 
drastically in older juveniles and increased markedly there-
after. Similar WER trends have been documented for some 
Devonian ammonoids (Klug 2001). This morphological 
change was hypothesized to mirror the ammonoid trend of 
change from planktic to nektic modes of life (Lukeneder and 
Lukeneder 2014; Lukeneder 2015), and the WER trajectory 
seen in Carnian (Late Triassic) ammonoids was comparable 
to that found in this study (Figs. 4D and H, 5D, H, and L).

Klug and Korn (2004) examined the shell morphology 
of several Paleozoic ammonoids and hypothesized that an 
increase in WER allowed an increase in maneuverability 
and maximum horizontal swimming speed. They reasoned 
that this happened because the horizontal alignment of the 
hyponome relative to the centers of gravity was achieved by 
increasing the WER, thereby improving swimming abilities. 
The ideal thrust angles between different planispiral conchs 
were demonstrated to be similar (Peterman and Ritterbush 
2022). When this hypothesis is applied to Late Cretaceous 
ammonoids, the increase in WER after 5–7 or 10–15 mm 

diameter in Gaudryceratinae and ~ 3 mm diameter in Tetrag-
onitinae might also be reasonably related to adaptation to a 
nektic mode of life.

Furthermore, Shigeta (1993) theoretically calculated the 
buoyancy of living Tetragonites glabrus and suggested that 
their mode of life changed at shell diameters of 2.0–4.0 mm. 
When comparing this estimate with the ontogenetic tra-
jectories of septal spacing in T. glabrus (Fig. 3D–F), we 
found that these shell diameters were comparable with the 
reconstructed shell diameters at the end of the first cycle 
(2.1–3.9 mm; Table 1).

Based on these considerations, we propose that (1) the 
planktic phase of G. denseplicatum ended at 5–7 mm shell 
diameter (i.e., at the end of the second cycle), (2) that of 
G. hamanakense ended at ~ 10 mm shell diameter (i.e., at 
the end of the third cycle), and (3) those of T. glabrus, T. 
popetensis, and possibly T. minimus ended at ~ 3 mm shell 
diameter (i.e., at the end of the first cycle) (Figs. 4 and 5; 
Table 1). These supposed shell diameters exhibit significant 
differences between the three groups (ANOVA, p < 0.01).

Linzmeier et al. (2018) analyzed oxygen isotopes of Late 
Cretaceous scaphitid specimens from the Fox Hills Forma-
tion in South Dakota, USA, and revealed that scaphitids 
lived in shallow water immediately after hatching and then 
transitioned to a more demersal mode of life after 270°–360° 
growth from the nepionic constriction. At this stage, sca-
phitid shell morphology covariably changed (Landman 
1987; Linzmeier et al. 2018). Therefore, the covariation 
between changes in shell morphology and modes of life are 
concordant with the tetragonitid species examined in this 
study.

Different evolutionary trends in tetragonitid 
phylogeny

Although the ontogenetic trajectory patterns of septal spac-
ing during the earliest ontogeny (until ~ 30th septum) in 
the examined tetragonitid species had similar characteris-
tics, shell diameters at the end of the planktic phase were 
expected to be larger among Gaudryceratinae and smaller 
among Tetragonitinae. These differences have been dis-
cussed in greater detail from a phylogenetic perspective in 
the following paragraphs.

The subfamily Gaudryceratinae appeared in the Bar-
remian and the subfamily Tetragonitinae was derived from 
Eogaudryceras (Gaudryceratinae) in the Aptian (Fig. 6A) 
(Murphy 1967; Kennedy and Klinger 1977; Hoffmann 2010, 
2015). Although not all globally collected species of Gaud-
ryceratinae and Tetragonitinae have been examined, the cur-
rently available data leads to two possible scenarios. The first 
scenario assumes that the timings at the end of the planktic 
phase in Gaudryceratinae did not change from the Aptian to 
the Santonian–Campanian (Fig. 6B). If the root species of 
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Tetragonitinae evolved from Gaudryceratinae, wherein the 
planktic phase ended at the end of the second cycle, the root 
species of Tetragonitinae possibly had a similar relationship 
between septal spacing and the ending time of the planktic 
phase. If these hypotheses are correct, the shell diameters 
at the end of the planktic phase of Tetragonitinae became 
smaller toward the Santonian–Campanian.

The second scenario assumes that the shell diameters at 
the end of the planktic phase in Gaudryceratinae increased 
in a stepwise fashion from the Aptian toward the Maas-
trichtian (Fig. 6C), which is based on the observation that 
the shell diameters at the end of the planktic phase for G. 
hamanakense in the Maastrichtian were larger than those 
of the other Gaudryceratinae species during the Santo-
nian–Campanian. If Eogaudryceras ended their planktic 
phase at the end of the first cycle during the Aptian, the 
root species of Tetragonitinae might possibly have a similar 
relationship. Thus, the timings at the end of the planktic 
phase were constant within the Tetragonitinae lineage from 
the Aptian to the Maastrichtian. However, the timings at the 
end of the planktic phase in Gaudryceratinae were delayed 
in a stepwise fashion: from the end of the first cycle during 
the Aptian, through the end of the second cycle during the 
Santonian–Campanian, and toward the end of the third cycle 
during the Maastrichtian (Fig. 6C).

The evolutionary trends (for the definition, see McKinney 
1990) of transitions at the end of the planktic phase differed 
between Gaudryceratinae and Tetragonitinae in each sce-
nario. The timings at the end of the planktic phase exhibited 
a delay in the stepwise evolution of the Gaudryceratinae 
lineage in every scenario. In contrast, representatives of the 
Tetragonitinae lineage were accelerated (in the first scenario; 
Fig. 6B) or remained constant (in the second scenario; Fig. 6 
C). These different evolutionary trends highlight the slightly 
differing strategies within the family Tetragonitidae.

Comparison with other Cretaceous ammonoids

We examined ontogenetic trajectories of septal spacing of 
some Late Cretaceous Tetragonitidae (Lytoceratoidea). To 
date, this kind of ontogenetic trajectory pattern has not been 
found in other Cretaceous ammonoids (Arai and Wani 2012; 
Iwasaki et al. 2020; Takai et al. 2022), which likely is char-
acteristic for this family.
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The hatchling sizes (ammonitella diameters) of Tetrago-
nitidae tend to be larger than those of other Cretaceous 
ammonoids (Landman 1987; Landman et al. 1996; Tan-
abe et al. 2003; Tajika and Wani 2011; De Baets et al. 
2015; Iwasaki et al. 2020; Kawakami et al. 2022; Takai 
et al. 2022). Furthermore, shell sizes at the end of the 
planktic phase in Desmoceratoidea were 1.1–2.4 mm and 
2.0–2.5 mm in Phylloceratoidea (Shigeta 1993; Arai and 
Wani 2012; Takai et al. 2022). Correspondingly, the shell 
sizes at the end of the planktic phase were estimated to 
be ~ 3 in Tetragonitinae and 5–7 or ~ 10 mm in Gaud-
ryceratinae including body chamber length (Table 1). 
Our results confirm that Cretaceous Tetragonitidae had 
larger hatchling sizes and shell diameters at the end of 
the planktic phase than compared with other Cretaceous 
ammonoids.

Identifying the absolute growth rate of ammonoids is 
challenging, thereby critically hampering comparisons 
between different taxa. However, assuming that the growth 
rates during the early growth stages of the Late Cretaceous 
ammonoids were comparable irrespective of taxonomy, 
the larger shell diameters of Tetragonitidae species might 
indicate that they experienced a longer duration of planktic 
dispersal than other ammonoids (see Jablonski and Lutz 
1983; Levin 2006; Fukumori and Kano 2014 for modern 
invertebrates). A longer duration of planktic dispersal 
would accordingly explain the wider geographic range of 
many tetragonitid ammonoids (Wright 1996; Hoffmann 
2010, 2015), which would have caused a greater genetic 
exchange within the geographical range and, therefore, a 
lower speciation rate. This might explain the compara-
tively slower evolutionary rate of Tetragonitidae compared 
that of other ammonoids (Arkell et al. 1957; Ward and 
Signor 1983; Page 1996; Neige et al. 2013; Yacobucci 
2015; Kawakami et al. 2022). However, phylloceratid and 
desmoceratid ammonoids had smaller shell diameters 
at the end of the planktic phase (Shigeta 1993; Arai and 
Wani 2012; Takai et al. 2022). Similar to Lytoceratoidea, 
the suborder Phylloceratina and superfamily Desmocer-
atoidea are known to show some evolutionary stability 
(Arkell et al. 1957; Ward and Signor 1983; Page 1996; 
Tanabe et al. 2003; Neige et al. 2013; Yacobucci 2015). 
Consequently, the supposed mode of life associated with 
the evolutionary and morphological stability of Lytocera-
toidea (Page 1996; Yacobucci 2015) remains debatable.

Supplementary Information  The online version contains supplemen-
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