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Abstract
Accurate, efficient and stable prediction of thermal displacements generated during spindle machining is essential for 
improving machining quality, increasing economic efficiency and ensuring production safety. Aiming at the existing thermal 
displacement prediction models with low precision and poor robustness, this paper put forward a prediction model based on 
the Bald Eagle Search (BES) algorithm optimized Least Squares Support Vector Machine (LSSVM). Firstly, the experimental 
platform was built to carry out the spindle thermal deformation experiment and collect the experimental data. Then use 
K-means clustering method to classify the temperature measurement points, and combine with gray correlation analysis to 
calculate the size of the correlation between each point and thermal displacement, comprehensive analysis of the classification 
results and the size of the correlation, from the 10 points preferred 4 points. After that, the BES algorithm, which has strong 
searching ability in the global range, is chosen to optimize the internal parameters of LSSVM, and the prediction model based 
on BES-LSSVM is constructed by learning the nonlinear correlation characteristics between the spindle temperature and 
axial thermal displacement. Finally, it is compared with the prediction model using BES algorithm to optimize support vector 
machine and the prediction model using sparrow search algorithm to optimize LSSVM respectively. The comparison reveals 
that the predictions output from the BES-LSSVM model have better accuracy and stability. The results of the study can 
provide a certain knowledge base and technical support for the effective prediction of spindle thermal displacement changes.

Keywords  High-speed electric spindle · Thermal displacement · Temperature measurement points · Bald eagle search 
algorithm · Prediction model

Abbreviations
BES	� Bald eagle search
LSSVM	� Least squares support vector machine
SSA	� Sparrow search algorithm
SVM	� Support vector machine
CNC	� Computer numerical control
GPR	� Gaussian process regression
ISPO	� Intelligent Single Particle Optimizer
GA	� Genetic algorithm
BP	� Back propagation
BAS	� Beetle antennae search
RMSE	� Root mean square error
MAE	� Mean absolute error

1  Introduction

With the continuous improvement of production require-
ments, production and processing are constantly in need 
of new machining technology to improve processing 
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efficiency and reduce production costs [1]. CNC machine 
tools are the main equipment in the industrial manufac-
turing process [2] and play an important role in precision 
manufacturing [3]. Electric spindle is a new technology 
product in the field of CNC machine tools, which crea-
tively combines the machine tool spindle and high-speed 
motor into one, and then enhance the machining condi-
tion, which helps to improve productivity and machining 
quality [4]. Conventional spindles generally use pulley 
drives [5] and gear drives, which complicate the struc-
ture of the drive system of CNC machine tools. Compared 
with the traditional spindle, the electric spindle built-in 
motor, eliminating the transmission mechanism and has 
the advantages of low noise, low vibration, to avoid exces-
sive noise on the working environment which causes seri-
ous impact [6], and also can realize the rapid start and 
quasi-stop.

In actual machining, the speed and power of high-speed 
electric spindle application is very large, the maximum 
speed can reach 180,000rpm, and the corresponding motor 
power can reach 1KW, for example, ISA’s A/C double-
axis rotary milling head, the spindle rated torque is more 
than 3,000N•m, and the maximal clamping torque is up 
to 15,000N•m [7], so that there will be a not-insignificant 
amount of heat generated inside the electric spindle. In 
the structural design of the spindle, in order to reduce the 
volume, its internal parts and components of the compact 
structure, high degree of centralization, and good sealing, 
which also leads to the actual machining of the spindle 
in the heat dissipation is more difficult. Due to the high 
amount of heat generation and the difficulty in dissipating 
heat, the spindle is therefore thermally displaced, leading 
to an increase in thermal error. According to relevant 
statistics, among all sources of errors in machine tools, 
geometric and thermal errors have the largest proportion, 
with thermal errors taking up more than 40% of the total 
error [8, 9].

As production technology continues to advance, both 
the speed and power required by machine tools continue 
to increase [10], which also leads to an increase in the 
amount of thermal displacement of the spindle. In an effort 
to minimize thermal displacements and improve product 
accuracy, thermal error compensation technology can be 
applied, which compensates for errors by continuously 
correcting the position of the spindle during operation. 
When using this technology, first of all, according to 
the characteristics of heat generation when the spindle 
is working, the temperature measuring equipment is 
arranged in a suitable position on the spindle. During 
the experiments, data acquisition equipment was utilized 
for experimental data collection. Then the optimization 
of temperature measurement points is carried out and 
suitable temperature measurement points are selected. 

The optimized experimental data is used to build a 
prediction model, and the compensation value calculated 
by the prediction model is input to the CNC system for 
compensation.

When collecting temperature data, increasing the number 
of temperature measurement points can provide a more 
comprehensive description of the temperature change of the 
spindle system during operation, but at the same time, each 
temperature measurement point also carries some errors. If 
the prediction model uses temperature data from too many 
temperature measurement points, it may lead to redundancy 
in the input data, which not only reduces the computational 
speed of the model, but also affects the prediction effect 
of the model, so the appropriate temperature measurement 
points need to be selected. Many scholars have carried out 
in-depth studies on optimizing the spindle temperature 
measurement points, providing many valuable references. 
Lee et al. [11] proposed an evaluation method to extract the 
temperature measurement points that have a large influence 
on thermal deformation by independent component analysis. 
Wang et al. [12] used a hidden variable modeling approach 
as an alternative to existing modeling methods and used this 
algorithm to propose a method for determining the optimal 
number of temperature measurement points. Han et al. [13] 
proposed a fuzzy clustering model and used the proposed 
model to classify the input data and the validity criteria were 
based on cluster analysis. Li et al. [14] used the optimal 
approximation law to improve the binary grasshopper 
optimization algorithm to select suitable temperature 
measurement points, which improved the model prediction 
accuracy compared to the fuzzy C-mean clustering method. 
Liao et al. [15] used the pearson correlation coefficient 
method to select three crucial temperature measurement 
points from 15 measurement points. The above measurement 
point optimization method provides a reference for the 
screening of temperature measurement points in this paper, 
and a simple and accurate method can be used to select 
temperature measurement points with higher correlation 
with spindle thermal displacement.

Establishing an efficient, stable and accurate prediction 
model is the most critical step in the thermal error com-
pensation technology, and the accuracy and stability of the 
prediction model determine the final effect of the compensa-
tion work. Currently, the empirical thermal error modeling 
method is mainly used to build prediction models. Using 
the actual measured experimental data and comprehen-
sively analyzing the mathematical relationship that exists 
between the input data and the output data in the data, a 
prediction model is then established. Currently, the main 
models that are used more and with better accuracy are least 
squares, regression analysis model, gray model, neural net-
work model and so on. Ramesh et al. [16] devised an SVM-
Bayesian error model. The model first utilizes a Bayesian 
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model to classify the measured experimental data and then 
an SVM model to reflect the potential relationship that exists 
between the measured spindle temperature and the thermal 
error. Zhang et al. [17] proposed a new gray neural network 
prediction model by combining gray system theory and neu-
ral network, which can better combine the advantages of the 
two. Wei et al. [18] introduced a new prediction model on 
the basis of gaussian process regression (GPR). Shi et al. 
[19] and others proposed a prediction model on the basis of 
Bayesian neural network to greatly reduce the thermal error 
of the feed system, while experimental validation yielded 
that the model can show its excellent prediction perfor-
mance under different operating conditions. Li et al. [20] 
used the ISPO algorithm to optimize the parameters of the 
BP neural network and thus build a prediction model, which 
is better compared to the traditional genetic algorithm (GA). 
Abdulshahed et al. [21] utilized the adaptive neuro fuzzy 
inference system to develop the prediction model with good 
prediction performance. Li et al. [22] chose the BAS algo-
rithm to perform optimization of the internal parameters of 
the BP neural network, and then established the prediction 
method of BAS-BP, and compared the prediction effect of 
this method with that of the BP method and the GA-BP 
method, and concluded that the prediction effect of BAS-BP 
is better. Abdulshahed et al. [23] combined the advantages 
of artificial neural networks and gray system models to pro-
pose a modeling approach based on gray system theory and 
the learning ability of artificial neural networks in a single 
system. Through reading numerous references in related 
fields, it is found that there are more scholars researching 
on prediction models and the proposed models also have 
better prediction performance, but generally require more 
sample data. To ameliorate this problem, this paper pro-
poses an LSSVM model, which retains the advantage that 
SVM can handle the small sample data problem well, while 
also reducing the computational complexity. In order to 

further improve the prediction performance of the models, 
some scholars combine the models with bionic optimization 
algorithms, and then build prediction models, which can be 
used for optimization in dynamic and uncertain environ-
ments, providing diversity options for the establishment of 
prediction models. Considering that the BES algorithm has 
better searching ability in the global range, the BES algo-
rithm is chosen to optimize the internal parameters of the 
LSSVM model and establish the BES-LSSVM prediction 
model. After outputting the predicted values using the pre-
diction model, the compensation work, i.e., the process of 
adjusting the position between the tool and the workpiece, 
can be started [24]. Compensation work can be embarked 
upon at every stage of machine tool design or manufacture, 
even if the structure has already been determined, with the 
advantages of efficiency and economy [25]. Currently, the 
commonly used spindle compensation method is mainly the 
origin offset compensation method [26], and the working 
principle is shown in Fig. 1.

In summary, in order to realize the accurate compensation 
of spindle working position, it is necessary to choose the 
appropriate optimization algorithm and model, and then 
establish the spindle thermal displacement prediction model, 
which accurately and stably outputs the predicted value of 
spindle thermal displacement.

The research process of this paper is shown in Fig. 2. 
Firstly, the thermal deformation experiment is carried out 
by building an experimental platform, and the experimen-
tal data are collected under different working conditions 
of the spindle. Then the K-means clustering method is 
used to classify the temperature measurement points on 
the main axis, and the gray correlation method is used to 
screen out four temperature measurement points with large 
correlation with thermal displacement, so as to reduce the 
influence of multiple colinearity between temperature data 
on the performance of the prediction model. The LSSVM 

Fig. 1   Principal diagram of 
origin offset compensation
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model has a fast learning speed and can better adapt to the 
sample data under different experimental working condi-
tions. Meanwhile, the BES algorithm has a strong abil-
ity to search in the global range, which can effectively 
target all kinds of numerical optimization problems, and 
can improve the prediction precision and smoothness of 
the LSSVM model, therefore, the BES-LSSVM predic-
tion model is proposed, and the optimized experimental 
data are used to train the model. Finally, the BES-LSSVM 
model are compared with the BES-SVM and SSA-LSSVM 
models, respectively. The comparison results revealed that 
the BES-LSSVM prediction model predicted better results 
compared to the other two models. The results of the above 
research can provide a certain theoretical basis and techni-
cal support for the accurate prediction of spindle thermal 
displacement changes, which is of great significance in 
promoting the accurate operation of the electric spindle 
system and the precision work of machine tools.

2 � Experimental Study of Heat Deformation

2.1 � Heat Deformation Experimental Design

In order to fully describe the temperature changes during 
high-speed rotation of the electric spindle, 10 temperature 
measurement points, code-named T1, T2, …, T10, were 
arranged in the spindle system during the thermal defor-
mation experiments. When the high-speed electric spindle 
works, its internal stator, rotor, front and rear bearings 
generate heat more seriously, which makes the axial tem-
perature of the spindle system varies greatly, so in order 
to improve the accuracy of the measured temperature data, 
the temperature sensors are arranged along the axial direc-
tion of the spindle. The location of the measurement points 
is illustrated in Fig. 3, in which the temperature sensors 
code named T1 and T2 are arranged at the front end face of 
the spindle, the rest of the temperature sensors code named 
T3, T4, T6, T7, T8, and T9 are fixed at the spindle shell in 
turn, and the temperature sensors code named T5 and T10 
are arranged inside the spindle near the front bearing and 
the back bearing, respectively.

At the same time, arrangement of the displacement 
sensor is carried out to collect thermal displacement data. 

Fig. 2   The research process of this paper
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The magnetic suction base is used to fix the sensor bracket 
on the experimental platform, and then the position of the 
eddy current probe on the bracket is adjusted to align the 
eddy current probe to the center of the front end of the 
spindle and adjust the distance between the probe and the 
front end face of the spindle. Although the spindle generates 
two radial thermal displacements and one axial thermal 
displacement during the working works, the two radial 
thermal displacements are negligible because they are much 
smaller than the axial thermal displacements [13]. Therefore, 
the size of the change in axial thermal displacement in this 
thermal deformation experiment can be approximated as the 
thermal error generated by the spindle.

2.2 � Establishment of Heat Deformation 
Experimental Platform

Firstly, the temperature sensor arrangement was carried 
out. The temperature sensors were fixed on the front end 
face of the spindle, at the front and back bearings inside 
the spindle system, as well as on the surface housing 
of the electrical spindle, respectively. The model of the 
temperature sensor used this time is PT100, which is the 
contact temperature sensor with good reproducibility 
and stability, and its temperature measurement range is 
from − 200 to 850 °C with an accuracy of ± 0.3 °C and a 
resolution of 0.1 °C. The temperature sensors are connected 
to the DH5922-1 temperature data collector and then the 
temperature data collector is connected to the computer 
through the conversion cable. Then, the collection software 
on the computer matched with the temperature data collector 
is used to save the collected temperature data.

After that, the arrangement of the displacement sensor is 
carried out, and the position of the probe of the eddy current 
displacement sensor is constantly adjusted to make it aligned 
with the center of the front end of the spindle and keep it at 
a certain distance. The model of eddy current displacement 
sensor used this time is AEC-5503, which is a non-contact 
displacement sensor with an accuracy of 1 μm, a resolution 
of 0.3 μm, and a measurement range of 0 ~ 300 μm, which 

has the advantages of high detection accuracy, wide range 
of applicable occasions, and strong anti-jamming ability. 
The eddy current displacement sensor is powered by the 
switching power supply and outputs the voltage signal to the 
PCI-1710 thermal displacement data collector. The thermal 
displacement data collector is connected to the computer 
through the conversion cable. Finally, the collection software 
on the computer matched with the thermal displacement data 
collector is used to save the collected thermal displacement 
data. The experimental platform is constructed as shown in 
Fig. 4.

2.3 � Heat Deformation Experiment Working 
Condition Setting

This thermal deformation experiment was carried out on a 
certain model of electric spindle produced by a domestic 
enterprise, which has a rated speed of 10,000 rpm and a 
maximum speed of 14,000 rpm. During the experiments, 
constant temperature air conditioning was utilized to keep 
the temperature of the laboratory at about 22 °C, while 
industrial water cooling systems were used to cool the stator 
and bearings of the electric spindle to dissipate heat. The 
spindle is at rest for 24 h prior to the test to bring the spindle 
temperature in line with the room temperature.

This experiment was carried out at three different spindle 
speeds respectively, in each test, the spindle speed starts 
from 0, reaches a certain speed and continues to rotate for 
a period of time, and then continues to increase the speed 
until it reaches the speed of the final experiment, so that the 
temperature and axial thermal displacement data measured 
during the idling of the spindle are more in line with the 
actual machining situation. The final rotational speeds set 
for this heat distortion experiment were 2000 rpm, 4000 rpm 
and 6000 rpm, respectively, and were run continuously for 
180 min. The required experimental data were collected in 
real time, with an interval of 1 min each time, and measured 
samples of experimental data, for a total of 180 samples of 
data.

3 � Analysis of Experimental Results

3.1 � Analyze Temperature Data Collection Results

During the experiment, 180 temperature data were collected 
at each set of rotational speeds, respectively. The tempera-
ture change curves of each temperature measurement point 
on the spindle at different rotational speeds are displayed 
in Fig. 5.

Analyzing the graphs of temperature rise under differ-
ent rotational speeds, it is evident that after the spindle has 

Fig. 3   Arrangement of temperature measurement points
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been working under the final rotational speed for a period of 
time, the temperatures at different measurement points are 
on an upward trend. The refrigerating characteristic of the 
industrial water cooler is that when the temperature of the 
cooling water does not exceed a certain value, the refrigera-
tion machine in the water cooler does not work and does 
not cool the cooling water. When more heat is absorbed the 
temperature of the cooling water starts to rise, and when it 
exceeds a certain value, the chiller starts to work to cool 
down the cooling water. As the temperature of the cooling 
water fluctuates, the cooling effect to the spindle also fluc-
tuates, thus leading to certain fluctuations in the measured 
temperature data. Moreover, when the spindle system is in 
operation, the state of heat generation is different at different 
locations, so the speed of temperature change measured at 
the temperature measurement points at different locations is 
also somewhat different. As can be seen from Fig. 6, when 
the spindle rotates at high speed, the temperature rise at the 
front and back bearings inside the spindle system is large, 
while the spindle shell is cooled by the cooling effect of the 
stator cooling water jacket, resulting in a smaller tempera-
ture rise measured at the temperature measurement point 
on the spindle shell. At the same time, the temperature rise 
of the front bearing and the rear bearing inside the spindle 
system are different, the temperature rise of the front bearing 
is smaller, which is mainly due to the design of circulating 

cooling waterway inside the spindle, the cooling water is 
injected from the front end of the spindle and outflowed 
from the rear end, which has a more significant cooling 
effect on the front bearing.

3.2 � Axial Thermal Displacement Data Acquisition 
Results and Analysis

When spindle temperature data collection was performed, 
the measurement of spindle thermal displacement data 
was also conducted. The spindle will produce two radial 
thermal displacements and one axial thermal displacement 
in the working engineering, but since the two radial 
thermal displacements are far shorter than the axial thermal 
displacement, this paper focuses on the axial thermal 
displacement of the spindle, and the change curve of the 
axial thermal displacement is shown in Fig. 6.

Analysis of Fig. 6 revealed that at the beginning of the 
experiment, the curve rose faster, and gradually stabilized 
after a period of time, and the trend of change was almost 
identical to that of the temperature curve. Combined with 
the temperature and thermal displacement trend can be 
obtained, the electric spindle in the working process, with 
the temperature rise, caused by the spindle axial thermal 
displacement increase.

Fig. 4   Construction of heat deformation experiment
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4 � Optimization of Temperature 
Measurement Points

Too much temperature data will bring more errors and 
reduce the calculation speed of the model, so it is necessary 
to optimize the spindle temperature measurement points 
and select representative temperature measurement points. 
The K-means clustering algorithm is simple and efficient, 
and maintains scalability and high efficiency when dealing 
with datasets. The gray correlation analysis algorithm, 
on the other hand, is less computationally intensive and 
the quantitative results are generally the same as those 
of qualitative analysis. In this paper, the advantages of 
these two algorithms are utilized to pick the appropriate 
measurement points.

4.1 � K‑means Clustering

Cluster analysis is a method for generating effective 
groupings of data of different nature [27]. K-means is a 
classical and practical unsupervised algorithm that can 
realize the division of the unlabeled data and ensure that the 
data has a fixed class. The main steps are as described below:

The class cluster m of the dataset is first proposed.
Then m data points in the dataset are randomly designated 

as the center point ci (i = 1, 2, …, k) of the initial clustering 
of the m class clusters, where each of the center points also 
has the n-dimensional attribute, i.e., cij (j = 1, 2, …, n).

The distances of the remaining data points except the 
center point from the m center points are calculated, and 
based on the calculation results, the remaining data points 
are assigned to the category to which the nearest center point 
belongs, which ultimately results in the formation of m class 

Fig. 5   Temperature variation curve at different rotational speeds

Fig. 6   Axial thermal displacement variation curve at different rota-
tional speeds
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clusters ci. This distance is calculated using the Euclidean 
distance formula, which is expressed as:

In the formula, dpi is the Euclidean distance, Xp is the 
pth element within the class cluster, Ci is the class cluster 
to which Xp belongs, Xpj is the pth dimensional coordinate 
of the jth point, and Cij is the ith center of mass of the jth 
class cluster.

The center points of the previous class clusters were 
randomly specified, so it is necessary to recalculate the 
n-dimensional mean value of all data points in Ci in each 
newly obtained class cluster, and assign the result of the 
calculation to the new center point. Repeat the above steps 
until the clustering objective function converges. Where the 
objective function is shown in Equation (2):

In the formula, S is the clustering objective function 
and d is the Euclidean distance between two points in the 
Euclidean space.

From the above, it can be seen that the K-means clustering 
algorithm in the application, first of all, the number of clusters 
m should be determined, and then randomly initialized and so 

(1)dpi
(
Xp,Ci

)
=

√√√√ d∑
j=1

(
Xpj − Cij

)2

(2)S =

k∑
i=1

∑
X∈Ci

d
(
X,Ci

)2

on m clustering centers, if the initial clustering center is not 
selected appropriately, it will make the clustering results are 
not stable, so it is necessary to run the K-means clustering 
algorithm for many times, and the clustering outcomes are 
displayed in Table 1.

4.2 � Gray Correlation Analysis

Although the spindle temperature measurement points can 
be classified using the cluster analysis method, it is not able 
to determine the correlation degree between the temperature 
measurement points at different locations on the spindle 
and the axial thermal displacement, so the key temperature 
measurement points are selected by combining the gray 
correlation analysis method with K-means clustering. The 
basic working concept of grey correlation analysis is to first 
normalize the data series under different factors and then 
output the value of correlation between the series. Compared 
to other correlation methods, gray correlation analysis can get 
results with higher prediction accuracy by using less data. The 
gray correlation equation is:

In the formula, α is the discrimination coefficient, S is the 
gray correlation coefficient, Yi is the variable subsequence, and 
the smaller the correlation degree of S(W,Yi), the smaller the 
effect on axial thermal displacement.

Taking the measured axial thermal displacement as the 
parent sequence (W) and the results of 10 sets of temperature 
data measured at 10 points as the subsequence (Yi), the gray 
correlation between the axial thermal displacement and the 10 
sets of temperature data measured at each temperature meas-
urement point was calculated. Combine the above categoriza-
tion results to select the appropriate temperature measurement 
point. The calculated correlation degree values are shown in 
Table 2 and the correlation degree bar graph is shown in Fig. 7.

Analyzing Fig. 7 shows that the temperature measure-
ment points arranged at the front and back bearings inside 
the spindle system have highest correlation degree and 

(3)�min = min
i

min
k

||W(k) − Yi(k)
||

(4)�max = max
i

max
k

||W(k) − Yi(k)
||

(5)S(W, Yi) =
1

n

n∑
i=1

�min + ��max

||W(k) − Yi(k)
|| + ��max

Table 1   K-means clustering results

Rotation speed Classification Measurement point

2000 rpm Category1 T5
Category2 T10
Category3 T4, T6, T7, T8
Category4 T1, T2, T3, T9

4000 rpm Category1 T5
Category2 T10
Category3 T4, T6, T7, T8
Category4 T1, T2, T3, T9

6000 rpm Category1 T5
Category2 T10
Category3 T4, T6, T7, T8
Category4 T1, T2, T3, T9

Table 2   Correlation degree 
values

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

2000 rpm 0.6940 0.6923 0.6945 0.6881 0.7172 0.6892 0.6870 0.6873 0.6932 0.7448
4000 rpm 0.6946 0.6950 0.6934 0.6905 0.7095 0.6921 0.6926 0.6903 0.6915 0.7507
6000 rpm 0.6866 0.6821 0.6795 0.6843 0.7091 0.6849 0.6924 0.6861 0.6806 0.7570
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are higher than the other temperature measurement points. 
The results of correlation degree ranking are shown in 
Table 3. Combining the results of K-means clustering 
and correlation degree analysis, the temperature data of 
temperature measurement points T1, T5, T7, and T10 are 
selected as the input data of the model.

5 � Data and Methodology

The Bald Eagle Search Algorithm (BES) was proposed by 
Malasian scholars Alsattar et al. [28]. It is an optimization 
algorithm that has been developed inspired by some of the 
behavioral patterns that arise during bald eagle hunting. The 
algorithm has a strong ability to search for prey in the global 
range and can highly efficiently handle numerous numerical 
optimization tasks. In this paper, the BES algorithm is used 
to optimize the internal important parameters of the LSSVM 

model to improve the prediction effect of the LSSVM model 
on the thermal displacement of the spindle.

5.1 � Least Squares Support Vector Machine (LSSVM) 
Model

The LSSVM model is an improvement on the SVM model. 
The model learns faster and also adapts better to the 
sample data, thus avoiding the problem of long training 
time. The steps are as follows.

First select the training samples:

In the formula, xp is the pth input vector, yp is the pth 
output vector, n is the sample space dimension, and N is 
the sample size.

The LSSVM model is denoted by the following formula:

In the formula, ω is the weight vector, c the offset value, 
and φ(x) is the model mapping function.

Then the minimization problem of the desired function 
can be expressed as follows:

In the formula, ep is the slack variable, γ is the penalty 
factor, and J denotes the value of deviation.

This can be obtained by introducing the Lagrange 
multiplier λp again:

Equation (9) is transformed by the KKT (Karush Kuhn 
Tucker) condition:

The elimination of ω and ep by association and 
deduction yields:

(6)S =
{(

xp, yp
) |||xp ∈ Rn, yp ∈ Rn

}
, p = 1, 2, ...N

(7)y(x) = �T�(xp) + c

(8)

⎧⎪⎨⎪⎩

min J(�, e) =
1

2
�T� +

1

2
�

N�
p=1

e2
p

s.t.yp = �T�(xp) + c + ep

(9)L = J(�, e) −

N∑
p=1

�p
[
�T�(xp) + c + ep − yp

]

(10)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�L

��
= 0 ⇒

N�
p=1

�p�(xp) = �

�L

�c
= 0 ⇒

N�
p=1

�p = 0

�L

�ep
= 0 ⇒ �p = �ep, p = 1, 2, ...,N

�L

��p
= 0 ⇒ �T�(xp) + b + ep − yp = 0

Fig. 7   Bar chart of correlation degree

Table 3   Gray correlation degree ranking

Rotation speed Sorting results

2000 rpm T10 > T5 > T3 > T1 > T9 > T2 > T6 > T4 > T8 > T7
4000 rpm T10 > T5 > T2 > T1 > T3 > T7 > T6 > T9 > T4 > T8
6000 rpm T10 > T5 > T7 > T1 > T8 > T6 > T4 > T2 > T9 > T3
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where λ = (λ1, λ2, … λN)T, y = (y1, y2, … yN)T, and Z = (11, 
12, … 1N)T.

According to Mercer conditions:

In the formula p = 1, 2, …, N, k = 1, 2, … N.
Solution of γ and c by solving the system of equations 

yields the regression function of the LSSVM as:

where H(xp,xk) is the kernel function for the low-dimensional 
to high-dimensional mapping.

In this paper, radial basis kernel function (RBF) 
is used as the kernel function of the model, which 
has the characteristics of simple structure and strong 
generalization ability, and is described by the formula:

where σ represents the width parameter of the kernel 
function, which can effectively reflect the distributional 
characteristics of the predicted data.

The penalty factor γ mentioned in Equation (8) reflects 
the model’s ability to adapt to the sample data. From 
the above analysis, it can be obtained that σ and γ are 
two important parameters affecting the model prediction 
performance, so intelligent algorithms can be chosen to 
perform optimization of these two parameters in order to 
improve the model prediction performance.

5.2 � Bald Eagle Search (BES) Algorithm

The BES algorithm is divided into 3 main phases, which 
are determining the space in which to search for the 
prey, searching for the prey in the determined space, and 
swooping to capture the prey after determining the target.

(1)	 Determine the space to search for prey: Bald eagles 
determine the optimal hunting zone within the search 
area according to the amount of food, change the 
position according to the observation, and finally 
perform the hunting operation in the selected space. 
Expressed in a mathematical formula as:

(11)
(

0 ZT

Z H + �−1Z

)(
c

�

)
=

(
0

y

)

(12)Hpk = �(xp) × �(xk) = H(xp, xk)

(13)y(x) =

N∑
p=1

�pH(xp, xk) + c

(14)H(xp, xk) = exp

⎛⎜⎜⎜⎝

−
���xp − xk

���
2

2�2

⎞⎟⎟⎟⎠

In the formula, Pk,new denotes the updated position of 
the kth bald eagle while searching the capture space, Pbest 
denotes the currently determined optimal search position, 
β denotes the parameter controlling the change of the bald 
eagle’s position during the search process, D represents 
a random number in the interval (0,1), Pmean denotes the 
average distribution position of the bald eagle while 
searching the capture space, and Pk denotes the position of 
the kth bald eagle during the search of the capture space.

(2)	 Searching for prey in the space determined in the 
first stage: The bald eagle uses spiral flight to find the 
best position to swoop down and capture prey in the 
determined hunting space. At the same time the bald 
eagle adjusts the search speed by controlling the spiral 
trajectory of the flight. The spiral flight trajectory is 
expressed using polar coordinate equations as:

In the formula, x(k) and y(k) denote the position of the 
condor during flight, θ(k) and r(k) denote the polar angle and 
polar diameter of the polar coordinate equation, and b and R 
denote the parameters controlling the trajectory equation of 
the condor during flight.

The formula for updating the position of a bald eagle in 
spiral flight is expressed as:

Pk+1 in the formula denotes the next position of the kth 
bald eagle in spiral flight.

(3)	 Swooping to capture prey after determining position: 
Bald eagles swoop down to capture prey from the 
optimal swooping capture position. Other bald eagles 
individuals in the population also begin to move toward 
the target prey and swoop down to capture it. The 

(15)pk,new = pbest + � × D(pmean − pk)

(16)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xr(k) = r(k) × sin(�(k))

yr(k) = r(k) × cos(�(k))

x(k) =
xr(k)

max(�xr�)
y(k) =

yr(k)

max(�yr�)
�(k) = b × � × D

r(k) = �(k) + R × D

(17)

⎧⎪⎨⎪⎩

Pk,new = Pk + X(k) + Y(k)

X(k) = x(k) × (Pk − Pmean)

Y(k) = y(k) × (Pk − Pk+1)
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subduction equation is also described by using polar 
coordinates:

The formula that describes the position of a bald eagle 
during a downward swoop is:

In the formula, t1 and t2 denote the intensity 
coefficients of the bald eagle moving towards the center 
position in the space and the best position in the space, 
respectively, and the magnitude of their values ranges 
from (1,2).

5.3 � BES‑LSSVM Prediction Model

The theoretical analysis of the LSSVM model shows 
that the internal parameters γ and σ in this model have a 
large impact on the predictive performance of the model. 
In order to accurately, efficiently and stably predict the 
thermal displacement changes during spindle operation, 
the BES algorithm is used to perform parameter 
optimization. The main steps are shown below:

Step 1: Initialize the parameters of the BES algorithm, 
set the number of populations and the number of 
iterations.

Step 2: Randomly form the initial population and 
calculate the initial bald eagle individual fitness values.

Step 3: Determine the space in which to search for prey 
and perform location updates.

Step 4: Search for space prey for location updates.
Step 5: Swoop to capture prey for position update.
Step 6: Update the optimal individual position and 

determine whether the output requirements are met. If 
yes, output the best parameters and substitute them into 
the prediction model for calculation.

The workflow of the BES-LSSVM prediction model 
is shown in Fig. 8.

(18)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xr(k) = r(k) × sinh(�(k))

yr(k) = r(k) × cosh(�(k))

x1(k) =
xr(k)

max(�xr�)
y1(k) =

yr(i)

max(�yr�)
�(k) = b × � × D

r(k) = �(k)

(19)

⎧⎪⎨⎪⎩

Pk,new = D × Pbest + X1(k) + Y1(k)

X1(k) = x1(k) × (Pk − t1Pmean)

Y1(k) = y1(k) × (Pk − t2Pbest)

6 � Results and Discussion

In order to verify that the proposed BES-LSSVM model has 
superior prediction capabilities, the prediction results output 
from this model are compared with other models (BES-SVM 
and BES-SVM). Accuracy (η), goodness of fit (R2), root mean 
square error (RMSE), and mean absolute error (MAE) were 
chosen as evaluation metrics for the three models. η denotes 
the prediction preciseness of the model, and the more its value 
converges to 1, the more precise the prediction result of the 
model is. R2 denotes the goodness of fit of the prediction 
model, ranging between (0,1), the larger R2 indicates a higher 
degree of model fit. The formula is as follows:

RMSE represents the root mean square error of the 
prediction model and the range of values is [0, + ∞), the output 
RMSE value is smaller, the model’s prediction performance is 
more excellent. The formula is as follows:

(20)R2 = 1 −

M∑
p=1

(k̂p − kp)
2

M∑
p=1

(kp − k)2

(21)
RMSE =

������

�
M∑
p=1

[kp − k̂p]
2

�

M

Fig. 8   Flowchart of the BES-LSSVM prediction model
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MAE represents the mean absolute error of the model and 
takes the same range of values as RMSE, the output MAE 
value is smaller, then the model’s prediction performance is 
better. The calculation formula is as follows:

where M is the sample number,  is the model predicted 
value, kp is the actual value of thermal displacement, and is 
the average value of thermal displacement.

In order to continuously train the established prediction 
model to improve the prediction performance, this time, the 
experimental data of 4000 rpm is divided into the training 
set, and the data of 2000 rpm and 6000 rpm are divided 
into the validation data set to train the BES-SVM model, 
the SSA-LSSVM model and the BES-LSSVM model, 

(22)
MAE =

�
M∑
p=1

���kp − k̂p
���
�

M

respectively. The data sets all take the four sets of tempera-
ture data measured at the temperature measurement points 
T1, T5, T7, and T10 as inputs and the measured axial ther-
mal displacements at the corresponding rotational speeds as 
outputs. Comparative evaluation of three prediction models 
at different rotational speeds are illustrated in Figs. 9 and 
10, respectively. Maximum and minimum of residual values 
of each prediction model at different rotational speeds are 
displayed in Tables 4 and 5. Evaluation results of three mod-
els at different rotational speeds and changes in evaluation 
results are presented in Tables 6, 7 and 8.

It can be seen from (a) of Figs. 9 and 10 that the forecast 
value curves of the BES-LSSVM model are more similar to 
the true value curves as compared to the BES-SVM predic-
tion model. It can be concluded that that the LSSVM model 
can better predict the thermal displacement variation dur-
ing spindle operation. As can be seen from (b) of Figs. 9 
and 10, the prediction curves of the BES-LSSVM model are 

Fig. 9   Comparative evaluation of three prediction models at 2000 rpm
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Fig. 10   Comparative evaluation of three prediction models at 6000 rpm

Table 4   Maximum and minimum of residual values of each predic-
tion model at 2000 rpm

BES-SVM SSA-LSSVM BES-LSSVM

Minimum − 7.352 − 5.977 − 4.242
Maximum 8.700 6.690 3.283

Table 5   Maximum and minimum of residual values of each predic-
tion model at 6000 rpm

BES-SVM SSA-LSSVM BES-LSSVM

Minimum − 7.813 − 7.269 − 6.017
Maximum 5.619 8.308 5.611

Table 6   Evaluation results of the model at 2000 rpm

Evaluation results

η R2 RMSE MAE

BES-LSSVM 0.9419 0.9446 1.3712 1.0370
BES-SVM 0.8787 0.7862 2.6903 2.0462
SSA-LSSVM 0.8848 0.8217 2.4568 1.9439

Table 7   Evaluation results of the model at 6000 rpm

Evaluation results

η R2 RMSE MAE

BES-LSSVM 0.9412 0.9508 2.3510 1.8694
BES-SVM 0.9271 0.9329 2.7470 2.2566
SSA-LSSVM 0.8918 0.8825 3.6343 3.1894
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also more similar to the true value curves compared to the 
SSA-LSSVM prediction model. As can be concluded that 
the selection of the BES algorithm to improve the internal 
factors of the LSSVM model can largely enhance the predic-
tion effect of the LSSVM model. It can be confirmed that the 
spindle thermal displacement can be effectively predicted by 
establishing the BES-LSSVM prediction model.

The residual of the model indicates the difference between 
the prediction values and the real values, the smaller the 
residual, the nearest the predicted value curve of the model 
is to the real value curve, and the better the prediction effect 
of the model is. As can be seen from (c) of Figs. 9 and 
10, the residual distributions of three prediction models are 
relatively uniform, but the residuals of the BES-LSSVM 
prediction model fluctuate less, while the residuals of the 
BES-SVM and SSA-LSSVM prediction models fluctuate up 
and down more. Combining the maximum and minimum 
of residual values in Tables 4 and 5, it can be seen that the 
BES-LSSVM prediction model has the smallest range of 
residuals at different operating speeds of the spindle, and 
both the maximum residual value and the minimum residual 
value are also the smallest. It can be concluded that that 
the BES-LSSVM prediction model has better prediction 
performance under different working conditions of the 
spindle.

Although the predictive effect of the model can be 
visualized from the predictive value curve and the range 
of fluctuation of the residuals of the model, in order to 
better verify the predictive performance of the model, it 
is also necessary to analyze evaluation results of models. 
By analyzing Table 6, Table 7, and Table 8, it can be seen 
that the BES-LSSVM model has a large improvement in 
η and R2 relative to the BES-SVM and SSA-LSSVM 
models, indicating that the BES-LSSVM model has a better 
prediction accuracy and fitting effect. Also, the BES-LSSVM 
model has smaller values of RMSE and MAE relative to 
the BES-SVM and SSA-LSSVM models, indicating better 
robustness of the BES-LSSVM model. In a comprehensive 
analysis, compared to the other two prediction models, the 
BES-LSSVM model has much better prediction precision 
and robustness, and thus better prediction performance. By 
collecting experimental data at different rotational speeds 

of the spindle and using the optimized experimental data 
to train and test the established prediction model, which 
also makes the prediction model have a good generalization 
performance and adapt well to new sample data. It is 
obtained that the BES-LSSVM model is suitable to be used 
for the prediction of spindle thermal displacement, and it is 
hoped that it can be effectively applied in the field of spindle 
thermal displacement prediction in the future.

7 � Conclusions

In this paper, the experimental data of spindles at three 
different rotational speeds are collected through thermal 
deformation experiments; then optimizes the experimental 
data; establishes the BES-LSSVM spindle prediction model 
based on the optimized experimental data; and compares 
it with the BES-SVM and SSA-LSSVM prediction 
models respectively to come up with the following main 
conclusions:

(1)	 The K-means clustering method was used to classify the 
10 temperature measurement points on the main axis; 
then the gray correlation method was used to calculate 
the magnitude of the correlation degree between each 
point and thermal displacement. Combining these two 
methods, four representative points were selected. It 
can effectively avoid the covariance phenomenon of 
temperature data, and at the same time, simplify the 
model and improve the computational efficiency of the 
model.

(2)	 The parameters inside the LSSVM model affect the 
prediction performance of the model, to improve the 
prediction effect of the LSSVM model on the thermal 
displacement of the spindle, BES algorithm is chosen 
to seek the optimization of the internal parameters of 
the LSSVM model and output the optimal parameters 
to establish the BES-LSSVM thermal displacement 
prediction model of the spindle. According to the 
different experimental working conditions, the 
optimized experimental data are classified into two 
sets: training set and test set, and the BES-LSSVM 
model is trained, which can enhance the prediction 
capability of the model.

(3)	 To verify that the BES-LSSVM model has better 
prediction capability, the BES-LSSVM model are 
compared with the BES-SVM model and the SSA-
LSSVM model, respectively. The results show that the 
BES-LSSVM model has a smaller range of residuals 
and residual fluctuations, as well as higher η and R2 
and smaller RMSE and MAE. In summary, the BES-
LSSVM model has better prediction capability, higher 
accuracy and robustness of the output results, and has 

Table 8   Changes in evaluation results of BES-LSSVM model relative 
to BES-SVM and SSA-LSSVM models

2000 rpm 6000 rpm

BES-SVM SSA-LSSVM BES-SVM SSA-LSSVM

η ↑6.32% ↑5.71% ↑1.41% ↑4.94%
R2 ↑0.1584 ↑0.1229 ↑0.0179 ↑0.0683
RMSE ↓1.3191 ↓1.0856 ↓0.3960 ↓1.2833
MAE ↓1.0092 ↓0.9069 ↓0.3872 ↓1.3200
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better adaptability to different sample data with strong 
generalization ability.

The BES-LSSVM prediction model introduced in 
this paper has better prediction accuracy and robustness, 
and is able to accurately and stably predict the thermal 
displacement changes during spindle rotation for subsequent 
accurate compensation. The results of the study can provide 
some reference for the development of spindle thermal 
displacement prediction modeling techniques. Due to the 
limitation of experimental conditions and experimental time, 
this thermal deformation experiment is only carried out in 
the spindle at low and medium rotational speeds to collect 
experimental data, and then train and test the BES-LSSVM 
model. In the subsequent study, the prediction results of 
the BES-LSSVM model for thermal displacement at high 
spindle speed condition will be verified to demonstrate its 
general applicability. At the same time, in order to make 
the measured experimental data as close as possible to the 
actual machining conditions, the study will be based on the 
original heat deformation experiments, adding part of the 
cutting experiments, which will be favorable to promote the 
promotion and application of the BES-LSSVM prediction 
model in the actual machining process.
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