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Abstract
Fused deposition modeling (FDM) 3D printing with polymeric materials has the advantage of producing products of vari-
ous shapes; however, it has limitations in the mechanical properties of the output. Therefore, post-processing processes 
must be applied to the output, and research must be conducted to improve the mechanical properties. The first objective 
of this study was to compare the mechanical properties of FDM 3D printed parts made of polylactic acid (PLA) with and 
without ultrasonic post-processing. The mechanical properties of the PLA prints were compared using tensile tests before 
and after ultrasonic treatment, and the mechanical properties of the PLA prints were compared with ultrasonic treatment 
at the glass transition temperature. Consequently, the tensile strength of the ultrasonically treated PLA output improved by 
approximately 38.8%. The second objective of this study was to apply a machine learning algorithm based on convolutional 
neural networks to extract the image pattern observed in the output before and after ultrasonic treatment and to predict the 
mechanical properties. A machine learning algorithm, consisting of feature extraction and classification, was applied to 
develop a pretrained model to detect whether the output was sonicated and to predict the mechanical properties accordingly. 
Furthermore, the PLA output, whose reliability was verified by the pretrained model, was expected to be used as a structural 
material element in various industrial fields.

Keywords Polylactic acid (PLA) · Ultrasonic treatment · Tensile strength · Eco-friendly material · Convolutional neural 
networks (CNN)

1 Introduction

Various product manufacturing paradigms that pursue tech-
nological convergence have emerged in current industrial 
fields. Artificial intelligence (AI), big data, the Internet of 
Things (IoT), and 3D printing are gaining prominence as 
core technologies. In particular, 3D printing technology is 
used across industries, from prototyping to product develop-
ment, enabling customized product creation while improving 
the flexibility and productivity of the manufacturing process. 
Fused deposition modeling (FDM)-style 3D prints are pri-
marily made by the melt extrusion of amorphous materials 
at high temperatures. This has the limitation of a relatively 
low mechanical strength compared with other processing 
methods [1].

PLA is a long-chain polymer with the molecular structure 
as shown in Fig. 1. It behaves as a liquid when heated above 
its equilibrium melting temperature ( Tm ), and the molecu-
lar chains move actively. Between the equilibrium melting 
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temperature and the glass transition temperature ( Ta ), the 
molecules continuously vibrate and rearrange their posi-
tions, making the polymer flexible. When cooled below the 
glass transition temperature, the polymer becomes a glassy 
solid with little movement of the molecular chains [2].

The mechanical strength of PLA is strongly influenced by 
its degree of crystallization that changes the internal struc-
ture of the polymer as the temperature changes, resulting in 
a change in mechanical strength [2]. During the 3D printing 
manufacturing process, PLA heated above its equilibrium 
melting temperature is extruded through a nozzle and rapidly 
cooled, resulting in insufficient crystallization. As shown in 
Fig. 2, the output of FDM 3D printing, a laminated structure, 
has a limitation that the mechanical strength is relatively 
low compared with products fabricated using conventional 
manufacturing methods [3]. Various methods have been 
proposed to improve the mechanical properties of FDM 3D 
printed parts [4].

During FDM 3D printing, insufficiently crystallized PLA 
substrates can be recrystallized to modify the internal struc-
ture of the substrate and improve its mechanical strength. 

However, maintaining the state and shape of the PLA print 
is difficult when heated above the equilibrium melting tem-
perature; hence, a limit exists to the temperature increase. 
Therefore, the temperature to increase crystallinity is lim-
ited to the glass transition temperature. Ultrasonic treatment 
improves mechanical properties without changing chemical 
properties by changing the structure of the polymer chains 
via ultrasonic vibrations [5, 6].

The identification of mechanical properties by detect-
ing the presence of ultrasonic treatment was achieved by 
developing a custom pre-trained model through a CNN tech-
nique based on the image data of the PLA output. The CNN 
algorithm consisted of feature extraction and classification 
areas. The feature extraction area extracted the features of 
the image data by convolution, padding, and pooling. The 
image data were classified by the classification area that 
consisted of input, hidden, and output layers in a fully con-
nected structure. Figure 3 shows the structure of the CNN 
algorithm [7–12].

2  Materials and Methods

2.1  Fabrication of Tensile Specimens

The design specification of the tensile specimen used in this 
study was ASTM D638 type IV [13] with a thickness of 
4 mm, and it was designed using SolidWorks, a 3D shape 
modeling software. The 3D printer used to fabricate the ten-
sile specimens was CUBICON Style Plus with the FDM 
method; the filament material was PLA, which is mainly 
derived from cornstarch and sugarcane, and CUBICON 
PLA-i21 was used [14]. The printing direction of the tensile 
specimen was 0°, as shown in Fig. 4, and the 3D printing 
conditions are listed in Table 1 [15–17].

2.2  Ultrasonic Treatment of tensile Specimens

The 3D printed tensile specimens were subjected to ultra-
sonic treatment in a constant temperature water bath. The 
detailed ultrasonic treatment conditions are listed in Table 2. 
To allow the polymer chains of the PLA print to move, the 

Fig. 1  Structures of PLA

Fig. 2  3D printing of layered structures

Fig. 3  CNN algorithm for sur-
face image classification
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experimental temperature was set to the glass transition tem-
perature, and a differential scanning calorimeter (DSC) was 
used to measure the glass transition temperature [18].

2.3  Mechanical Properties Testing of 3D Printed 
PLA

The mechanical properties of the PLA printed materials 
were characterized by tensile testing. The tensile speci-
men was fixed in the tensile tester and subjected to an axial 
tensile force, as shown in Fig. 5. The crosshead moved at 
a speed of 1.2 mm/s, and the tensile tester measured the 
deformation of the tensile specimen and the axial load on 
the tensile specimen. To evaluate the mechanical properties 

of the PLA output, stress–strain curves were drawn and ana-
lyzed [14, 19].

To understand the effect of ultrasonic treatment on the 
mechanical properties of the tensile specimens, tensile tests 
were conducted before and after ultrasonic treatment, and 
scanning electron microscopy (SEM) was used to observe 
the fracture surface. DSC was used to analyze the changes 
in the molecular structure of the PLA prints before and after 
ultrasonic treatment.

2.4  Analyzing an Image Dataset

In this study, we analyze a dataset of images using machine 
learning to detect unique image patterns in PLA prints 
before and after sonication. The image dataset of PLA print 
uses surface images of tensile specimens, which are used to 
develop a model that can determine the ultrasonic treatment 
and predict the mechanical properties of PLA print [20].

The image dataset is processed using Ultralytics' 
YOLOv8 model within the Google Colab environment. The 
dataset is located at/content/drive/MyDrive/training_anneal-
ing_cls/images. To ensure uniform input dimensions, all 
images are resized to 640 × 640 pixels. This standardization 
is crucial as it allows the model to receive consistent inputs, 
facilitating uniform learning across varying original image 
sizes.

The CNN-based YOLOv8m cls.pt classification model is 
used to develop the model, and transfer learning with pre-
trained weights is used to efficiently perform the learning 
process. The training process uses the AdamW optimizer 
with a learning rate of 0.000714 and a momentum of 0.9, 
and data augmentation techniques include RandAugment 
and Erasing.

The epochs for training the model are 15, 17, 20, 25, and 
30 to determine the number of epochs with high accuracy, 

Fig. 4  Lamination paths based on the print direction

Table 1  Settings for 3D printing Factor Value

Filament diameter 1.75 mm
Nozzle size 0.4 mm
Wall thickness 0.2 mm
Bottom/top thickness 0.3 mm
Fill density 100%
Printing speed 60 mm/s
Printing temperature 210 ℃
Bed temperature 65 ℃

Table 2  Experimental settings 
for ultrasonic treatment

Factor Value

Ultrasonic power 300 W
Frequency 40 kHz
Bath temperature 65 ℃
Delay time 5 min

Fig. 5  Tensile experiment setup
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with a batch size of 16 during each epoch. The image dataset 
for the PLA print consists of 100 training image files, 40 
validation image files, and 6 test image files.

3  Properties Changes

3.1  Changes in Mechanical Properties

To determine the mechanical properties of the ultrasonically 
treated tensile specimens, tensile tests were conducted using 
a universal material testing machine. The PLA material ten-
sile specimens were divided into before and after ultrasonic 
treatment and subjected to tensile tests.

Figure  6 shows the results of the tensile test. A 
stress–strain curve was generated based on the load and dis-
placement data [14, 21, 22].

Table 3 presents a comparison of tensile test data after 
ultrasonic treatment.

The tensile strengths of the specimen before and 
after ultrasonic treatment were 16.18 ± 0.17  MPa and 
22.46 ± 0.88 MPa, respectively. The standard deviation 
ranged from ± 1.05 to ± 3.92%, and the tensile strength 
improvement rate was approximately 38.8%. The Young’s 
moduli of the tensile specimen before and after ultrasonic 
treatment were 376.05 ± 14.85 MPa and 476.57 ± 3.93 MPa, 
respectively. The standard deviation ranged from ± 0.82 
to ± 3.95%, and the Young's modulus improved by approxi-
mately 26.75%.

Figure 7 shows the DSC curves of PLA samples with 
and without ultrasonic treatment. The peak values of the 
DSC curves were almost the same before and after ultrasonic 
treatment. The glass transition temperature ( Ta ) and melting 
peak temperature were about 65 °C and 167°. Ultrasonic 
treatment accelerates the crystallization rate of PLA and 
increases the glass transition temperature ( Ta).[23]. How-
ever, the glass transition temperature ( Ta ) decreases with 
increasing crystallinity [24]. In this study, ultrasonic treat-
ment increased the crystallinity of PLA, but the glass transi-
tion temperature ( Ta ) changed little due to the accelerated 
crystallization rate caused by ultrasonic treatment, indicating 
that the increased crystallinity effect was balanced by the 
accelerated crystallinity rate.

The glass transition and melting peak temperatures were 
approximately 65 °C and 167 °C, respectively. Low exo-
thermic peak temperatures of around 88 °C and 89 °C were 
caused by incomplete crystallization [6]. As an amorphous 
material, the crystallinity of PLA printouts is affected by the 
printing conditions and environment, such as printing speed 
[25], and in our study, the crystallinity increased from 8.34% 
before sonication to 17.46% after sonication, indicating an 
increase in crystallinity. The crystallinity was calculated 
using the following formula: [(ΔHm − ΔHc)∕ΔHf ] × 100%, 

Fig. 6  Measured mechanical properties: a stress–strain curve, b elas-
tic modulus, c tensile stress data shown as mean ± standard deviation
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where ΔHm represents the melting enthalpy, ΔHc represents 
the crystallization enthalpy, and ΔHf  represents the melting 

enthalpy of completely crystalline PLA that has a value of 
93 J/g [6].

The mechanical property analysis by tensile testing and 
DSC indicated that the ultrasonic treatment of PLA material 
FDM 3D printed parts at the glass transition temperature 
resulted in internal molecular rearrangement and increased 
crystallinity, thereby improving the mechanical properties 
[26, 27].

3.2  Changes in the Layered Structure

The layered structure on the surface of the FDM 3D printed 
output indicated that the output without ultrasonic treat-
ment had a uniform arrangement shape without large gaps 
between the tissues, as shown in Fig. 8a, whereas the output 
with ultrasonic treatment, as shown in Fig. 8c, had a large 
gap between the tissues and an uneven arrangement shape.

As shown in Fig. 8b, the SEM image of the fracture sur-
face of the pristined PLA substrate showed uniform layer 
spacing, but after ultrasonic treatment, a non-uniform layer 
spacing morphology was observed in Fig. 8d. This change 
is attributed to the fact that the ultrasonic vibration above 
the glass transition temperature reduced the layer spacing in 
the cross-section of the PLA print, especially as the inter-
layer interfaces weakened as the surface stacking did not 
progress [6], and the volume decreased according to the 
volume-temperature relationship of long-chain polymers 
[2]. This resulted in larger gaps and non-uniform shape in 

Table 3  Ultrasonic treatment tensile test results

Mechanical properties Pristine Ultrasonic treatment

Tensile strength (MPa) 16.18 ± 0.17 22.46 ± 0.88
Elastic modulus (MPa) 376.05 ± 14.85 476.57 ± 3.93

Fig. 7  DSC curves of pristine and ultrasonically treated samples

Fig. 8  Cross sections and 
surfaces of tensile samples 
observed by SEM: a surface 
of the pristine sample, b cross 
section of the pristine sample, 
c surface of the ultrasonically 
treated sample, d cross section 
of the ultrasonically treated 
sample
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the image geometry of the surface. It can also be seen that 
the interfaces of the surface layers were weak from the initial 
stacking stage, so the enlargement of the gaps on the sur-
face does not have a significant mechanical property impact; 
rather, the narrowing of the interface gap, as observed in the 
cross-section, has a greater impact on the overall mechanical 
properties.

These structural changes led to the formation of unique 
image patterns of the PLA material FDM 3D printing 
printouts.

4  Development and Use of Custom 
Pre‑trained Models

As has been confirmed, the ultrasonic treatment of PLA 
material FDM 3D printing printouts is effective in improv-
ing their mechanical properties. Based on these results, this 
study predicted the mechanical strength of the printouts 
through machine learning using image patterns appearing 
in PLA printouts before and after ultrasonic treatment.

Figure 9 shows the surface images of a PLA print applied 
to machine learning. As shown in Fig. 9a, a parallel and 
uniform layered structure with small gaps between the struc-
tures existed before ultrasonic treatment, whereas the lay-
ered structure became irregular and the gaps between the 
structures expanded owing to ultrasonic treatment, as shown 
in Fig. 9b. From this, we could confirm the image pattern 
on the surface of the PLA print before and after ultrasonic 
treatment. Based on this, we developed a custom pretrained 
model by applying the image dataset of the PLA print to the 
CNN-based machine learning algorithm.

The number of training iterations on the entire image 
dataset, epoch, is one of the hyperparameters that affects 
the performance of a user-defined pre-trained model. In this 
study, we used several key parameters to predict the con-
dition before and after ultrasonic treatment. These include 
classify, which indicates the type of task; train, the training 
mode; yolov8m-cls.pt, the model filename; /content/ drive/ 
MyDrive/ training_annealing_cls/ images, the data path; 

number of epochs, 25; batch size, 16; and image size, 640. 
Using these parameters, a custom pre-training model was 
developed by applying convolutional neural network (CNN) 
techniques based on the image data to predict the PLA print 
before and after ultrasonic treatment.[7, 9, 28, 29].

Figure 10 shows a line graph of the results of training 
loss and validation loss according to the number of epochs 
in machine learning. As the number of epochs increased, 
the training loss and validation loss, that were decreas-
ing, tended to converge to zero after 15 epochs. Figure 11 
shows the accuracy according to the number of epochs and 
shows a directly proportional trend as the number of epochs 
increases, converging to 1.0, after seventeen epochs. Table 4 
compares the performance of the custom pre-trained model 
according to the number of epochs applied in machine learn-
ing. As the number of epochs increased, the detection rate 
of the custom pre-trained model for the test sample images 
increased; after 20 epochs, the test sample images were 
detected with a high detection rate of 0.9 or higher. Conse-
quently, the number of epochs was set to 25 to obtain accu-
rate results from machine learning, improve the efficiency 
of time expenditure, and prevent overfitting.

Figure 12 shows the prediction results of six test sample 
images using the machine learning model before and after 
ultrasonic treatment. The aim is to predict the mechanical 
properties that change with ultrasonic treatment, and the 
prediction accuracy before and after ultrasonic treatment as 
a function of the number of epochs is shown in Table 4. 
The results show that the highest accuracy is 0.95–1.00, or 
95–100%, when the number of epochs is 25.

Table 5 shows the prediction results of applying the cus-
tom pre-trained model to six test image data (Sample A 
through F) other than the image dataset applied to the train 
group and validation group.

The custom pre-trained model used to predict the results 
in Table 5 is a model with epoch 25 applied based on the 
image dataset associated with mechanical properties, which 
shows a classification accuracy of more than 95%.

Therefore, the custom pre-trained model in this study 
was able to extract image patterns related to mechanical 

Fig. 9  Surface of tensile 
specimens: a surface of the 
pristine sample, b surface of the 
ultrasonically treated sample
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properties with and without ultrasonic treatment, and con-
firmed that it is possible to predict the mechanical properties 
of PLA output with a classification accuracy of more than 
95% through the detection of ultrasonic treatment status.

5  Conclusions

In this study, ultrasonic treatment was performed to improve 
the mechanical properties of PLA printed by FDM method, 
and tensile tests were performed to quantitatively evalu-
ate the effect of ultrasonic treatment. It was found that the 
mechanical properties of the ultrasonically treated PLA 
printed material were improved by increasing the ten-
sile strength and elongation. To determine the changes in 

thermal properties, DCS analysis was performed before and 
after sonication, and the results showed that the glass tran-
sition temperature showed little change in the glass transi-
tion temperature due to the increase in crystallinity and the 
zero term of sonication, and the crystallinity increased after 
sonication, which contributed to the improvement in the 
mechanical properties of the PLA print.

A custom pre-trained model was developed by inputting 
the image dataset related to mechanical properties into a 
machine learning algorithm, and the unique image pattern 
extraction of PLA printed material images using the cus-
tom pre-trained model and the detection of the presence 
or absence of ultrasonic treatment were used to predict the 
low tensile strength before ultrasonic treatment and the 
improved high tensile strength after ultrasonic treatment. 
The approach of this study enables the evaluation and pre-
diction of 3D printing technologies that are suitable for low-
volume production of a wide variety of products. Recent 
FDM 3D printing technologies are gaining importance in 
manufacturing, and reliable performance evaluation and 

Fig. 10  Validation accuracy loss curve by the number of image clas-
sification training epochs a Loss curve of the training process, b Loss 
curve of the validation process

Fig. 11  Accuracy variation curve with the number of epochs for 
image classification machine learning

Table 4  Machine learning recognition rate according to the number 
of epochs

Number of epochs

15 17 20 25 30

Sample A 0.81 0.9 0.95 0.98 0.97
Sample B 0.71 0.85 0.91 0.95 0.94
Sample C 0.58 0.78 0.92 0.98 0.98
Sample D 0.88 0.96 0.97 1 1
Sample E 0.89 0.96 0.99 1 1
Sample F 0.88 0.94 0.98 1 1
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prediction is essential. The development of a custom pre-
trained model proposed in this study has been shown to 
improve the reliability of products by accurately distinguish-
ing between before and after ultrasonic treatment to evaluate 

the performance and predict the mechanical properties of 
PLA output. Therefore, it is expected to have a positive 
impact on various industries related to FDM 3D printing, 
along with the development of guidelines and standards for 

Fig. 12  Image analysis results using machine learning: a–c surface image data before ultrasonic treatment, d–f surface image data after ultra-
sonic treatment
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accurate and stable product production and the advancement 
of 3D printing technology.

Further research should be conducted to find the optimal 
conditions of time and temperature conditions in ultrasonic 
treatment, as well as follow-up studies on the mechanical 
properties that change under the influence of ultrasonic treat-
ment depending on the thickness of the output, which are 
expected to contribute to the advancement of 3D printing 
technology and the expansion of its application range.
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