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Abstract
For achieving high precision and effectiveness in five-axis computer numerical control (CNC) machine tools, the geo-
metrical accuracy of the rotary axes is a crucial performance criterion. Furthermore, recent advancements in commercial 
CNCs for machine tools have enabled the numerical compensation for all parameters of geometric errors within rotary axes. 
As a result, this paper initially delves into the evolution of ISO standards concerning the accuracy testing and error defini-
tion in machine tools. Subsequently, the classifications of the rotary axis’s geometric errors in five-axis machine tools are 
described in this paper. Moreover, this paper comprehensively reviews various measurement schemes aimed at identifying 
the geometric errors of rotary axes. These measurement schemes are categorized based on the measurement instruments 
or technologies employed. Finally, it is essential to emphasize that this paper offers an overview of diverse measurement 
theories and technologies pertaining to geometric errors in rotary axes. The primary aim is to contribute to the progression 
of geometric error measurement and compensation in five-axis machine tools.
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1  Introduction

In recent years, five-axis computer numerical control 
(CNC) machine tools have gained increasing popularity 
and are being applied with high efficiency in intelligent 
manufacturing fields [1, 2]. Compared to traditional three-
axis CNC machine tools, five-axis CNC machine tools fea-
ture two additional rotary axes [3, 4]. Therefore, five-axis 

CNC machine tools can provide heightened productivity, 
improved flexibility, and decreased fixture time [5, 6]. Addi-
tionally, ultra-precision five-axis CNC machine tools have 
been particularly utilized in high-value-added and competi-
tive industries, such as aerospace and medical engineering 
[7, 8]. It is evident that the machining accuracy of five-axis 
machine tools plays a pivotal role in modern manufacturing 
processes involving components with complex geometric 
structures and sculptured surfaces [9–11].
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However, the machining accuracy of five-axis machine 
tools is influenced by factors such as thermal errors 
[12–16], structural errors [17–20], motion control errors 
[21–25], and geometric errors [26–42]. In other words, 
the various error sources mentioned above contribute to 
discrepancies between the ideal and actual cutting loca-
tions, subsequently impacting the dimensional accuracy of 
manufactured parts [43–45]. Therefore, the international 
organization for standardization (ISO) has established a 
series of standards for machine tools and accuracy testing 
of these machines. Based on the applicable circumstances, 
these standards can be categorized into two groups: basic 
standards and machine-specific standards. Basic standards 
like the ISO 230 series are designed to be applicable to 
all types of machine tools universally. On the other hand, 
machine-specific standards like the ISO 10791 series are 
applications derived from the basic standards, tailored to 
a specific type of machine tool. Firstly, in the ISO 230 
series, ISO 230-1 specifies methods for testing the accu-
racy of three-axis machine tools operating either under 
no-load or quasi-static conditions [46–48]. The assessment 
of positioning accuracy and repeatability measurement for 
linear numerically controlled axes is covered in ISO 230-2 
and ISO 230-6 [49–51]. ISO 230-3 outlines tests aimed 
at assessing the impact of thermal effects resulting from 
linear motion and spindle rotation on the tool center posi-
tion [52–54]. Circular test is additionally described in ISO 
230-4 [55–57]. Furthermore, ISO 230-7 concentrates on 
standardizing methods for specifying and testing the geo-
metric errors of rotary axes utilized in machine tools[58], 
a focal point of discussion in this paper [59, 60]. Sec-
ondly, ISO 10791-1 to ISO 10791-3 specify test methods 
for assessing the geometrical conformance to design speci-
fications for various types of machining centers [61–65]. 
In ISO 10791-4, test methods are prescribed to evaluate 
the accuracy and repeatability of positioning of linear and 
rotary axes for machining centers [66–68]. Finally, ISO 
10791-6 and ISO 10791-7 specify the standards for the 
interpolation motion test and the machining accuracy test, 
respectively, for machining centers [69–72]. As described 
above, a comprehensive array of error definitions, calibra-
tion methods, and accuracy testing protocols for machine 
tools are established within the ISO standards mentioned.

Periodic error identification and calibration are highly 
significant tasks essential for characterizing, maintaining, 
and improving the performance of machine tools. Firstly, 
formulating the error model and developing measurement 
methodologies are foundational technological aspects in the 
process of identifying and calibrating machine tool errors. 
By quantifying the volumetric errors resulting from thermal, 
dynamic, motion control, and geometric errors in machine 

tools, it becomes possible to predict and specify the per-
formance and machining accuracy of the machine tools. 
Finally, error compensation is a crucial task in ensuring and 
optimizing the accuracy and performance of machine tools. 
As a result, it can be seen that measuring, calibrating, and 
compensating machine tool errors stands as a crucial under-
taking throughout the entire lifespan of a machine tool.

In the past decades, several review papers focusing on 
machine tool error measurement, calibration, and compensa-
tion have been published [27]. In 2008 and 2012, Schwenke 
et al. and Ibaraki et al. conducted reviews on the measure-
ment and compensation of geometric errors in complete 
machine tools, respectively [8, 73]. In addition, the thermal 
error measurement and compensation in machine tools were 
discussed and reviewed by Ramesh et al. and Mayr et al. 
[74–76]. Lyu et al. conducted a review specifically focusing 
on the dynamic errors of CNC machine tools in 2020 [77]. 
Absolutely, the evolution and significance of error measure-
ment and compensation techniques for machine tools indeed 
carry a lengthy history and crucial importance in enhancing 
manufacturing precision and efficiency.

Nowadays, in contemporary advanced manufacturing, 
unlike traditional methods, the machining accuracy of five-
axis machine tools is influenced by factors beyond thermal 
and dynamic errors [78]. Modern advanced manufacturing 
relies on five-axis machine tools equipped with sub-nanom-
eter position feedback systems and advanced thermal control 
systems to achieve superior precision and accuracy. As a 
result, concerning machining accuracy, the proportionate 
influence of geometric errors in five-axis machine tools has 
notably increased [79, 80]. Considering the diverse aspects 
covered in previous review papers regarding errors in entire 
machine tools, this particular paper primarily concentrates 
on the measurement of geometric errors specifically related 
to rotary axes in five-axis machine tools. As a result, this 
paper serves as a review, updating the state-of-the-art meas-
urement methodologies and compensation strategies for 
identifying and calibrating geometric errors of rotary axes 
in five-axis machine tools, building upon the groundwork 
laid by previous review papers.

This paper provides a review of multiple measurement 
schemes utilized to identify the geometric errors specifi-
cally associated with rotary axes in five-axis machine tools. 
As a foundation for error measurement, Sect. 2 classifies 
the geometric errors of the rotary axes in five-axis machine 
tools according to ISO 230-7. Section 3 provides a review 
of measurement schemes employed for assessing the geo-
metric errors of rotary axes, categorized based on the meas-
urement instruments utilized. Ultimately, Sect. 4 offers the 
conclusions drawn from the discussed content within the 
paper.
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2 � Classifications of Rotary Axis Geometric 
Errors

Absolutely, in line with the objective of this paper, which 
aims to review the state-of-the-art measurement method-
ologies and compensation strategies for identifying and 
calibrating geometric errors of rotary axes in five-axis 
machine tools, this section delivers a succinct review of the 
definitions and notations concerning the geometric errors 
of rotary axes outlined in ISO 230-7 and Annex A of ISO 
230-1. According to ISO 230-7: 2015, the geometric errors 
of rotary axes are classified into two categories based on 
their causes: position and orientation errors, as well as error 
motions.

Position and orientation errors of a rotary axis refer to 
the location errors associated with the average line of the 
axis. In other words, they are defined as deviations from the 
nominal position and orientation of the rotary axis within 
the machine coordinate system [8, 81]. As a result, they are 
mainly caused by imperfections in the assembly process 
[82]. As depicted in Fig. 1, taking the C rotary axis as an 
example, the position errors in the x and y directions are 
denoted as EXOC and EYOC, respectively. Additionally, they 
involve the orientation errors EA(OY)C and EB(OX)C around 
the X and Y axes, respectively, as well as the zero posi-
tion error, EC0C. Moreover, Table 1 presents a more detailed 

definition of position and orientation errors for the C rotary 
axis according to ISO 230-7. In previous literature, various 
other terms have been used to describe the position and ori-
entation errors of a rotary axis, including terms like position-
independent geometric errors (PIGEs) [5, 81, 83–85], link 
error parameters[86, 87], systematic deviations[88], and 
location errors[89–95]. As a result, in consideration of its 
comprehensibility, this paper employs the terms “PIGEs” to 
characterize the position and orientation errors associated 
with a rotary axis.

On the other hand, error motions of a rotary axis are 
defined to represent changes in the position and orientation 
of the axis of rotation as it rotates. Error motions associ-
ated with a rotary axis primarily arise from defects in its 

Fig. 1   Position and orientation errors (axis shift) of axis average line 
according to ISO 230-7 [58]

Table 1   Symbol of position and orientation errors (axis shift) of axis 
average line [58]

Symbol Description

EXOC Error of the position of C in X-axis direction
EYOC Error of the position of C in Y-axis direction
EA(OY)C Error of the orientation of C in A-axis direction;

Squareness of C to Y
EB(OX)C Error of the orientation of C in B-axis direction;

Squareness of C to X
EC0C Zero position error of C-axis

Fig. 2   Error motions of axis of rotation according to ISO 230-7 [58]
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segments and components [96]. As shown in Fig. 2, Accord-
ing to ISO230-7, considering the C rotary axis as an exam-
ple, the six error motions associated with the rotation of 
C axis consist of the linear deviations including the axial 
motion error EZC, the radial motion errors EXC and EYC 
in the X and Y axis directions, respectively, as well as the 
angular deviations including the angular positioning error 
motion ECC, the tilt error motions EAC and EBC around X and 
Y axis, respectively[97]. For a more comprehensive elucida-
tion in line with ISO 230-7 regarding error motions related 
to the C rotary axis, refer to Table 2. In prior literature, error 
motions associated with a rotary axis are also referred to 
as intra-axis kinematic errors [98], component errors [99], 
joint kinematic errors[100], and position-dependent geomet-
ric errors (PDGEs) [83, 96, 97, 101–103]. Consequently, this 
paper utilizes the terminology "PDGEs" to characterize the 
error motions related to a rotary axis.

3 � Geometric Errors Measurement for Rotary 
Axes

3.1 � Probes

Despite the widespread recognition of the commercial 
measurement device for its commendable precision and effi-
ciency, its substantial cost and intricate operational require-
ments pose considerable challenges. In contrast, touch-
trigger probes emerge as a sophisticated solution adept at 
circumventing these challenges. These probe measurement 
methods offer automated high precision measurements, 
adaptable to a wide array of workpiece geometries such as 
precision spheres or square components, as shown in Figs. 3 
and 4. Notably, they are effectively used to measure the geo-
metric errors in machine tools. Furthermore, the measure-
ment methods for the location errors of rotary axes, using a 
touch-trigger probe and a sphere as proposed by Chen et al., 
are depicted as follows [89].

As reported in [89], A robust on-machine measurement 
methodology and calibration algorithm were developed 
for identifying location errors in the rotary axes of a five-
axis CNC machine tool. Initially, the touch-trigger probe 

was mounted on the spindle, while the precise sphere was 
mounted on the C-axis rotary table. As show in Fig. 5, the 
touch-trigger probe was driven to measure the precise sphere 
at each measurement position of both Pattern I and Pattern 
II. Finally, the eight location errors were identified using 
mathematical measurement equations and a calibration algo-
rithm established through the application of homogeneous 
transformation matrix (HTM) and the least squares method. 
In the subsequent sections, the studies of measurement 
techniques are categorized based on the diverse shapes of 
the workpieces being evaluated. Furthermore, the practical 
applications and notable advantages of probes in effectively 
addressing the precision measurement challenges encoun-
tered by the industry are also explored.

In our previous works, we also presented a set of meth-
odologies to measure the PIGEs and PDGEs of rotary axes 

Table 2   Symbol of error motions of axis of rotation [58]

Symbol Description

EXC Radial error motion of C in X-axis direction
EYC Radial error motion of C in Y-axis direction
EZC Axial error motion of C Reference axis
EAC Tilt error motion of C around X-axis
EBC Tilt error motion of C around Y-axis
ECC Angular positioning error motion of C

Fig. 3   Touch-trigger probe with a precision sphere [89]

Fig. 4   Square workpiece for calibrating geometric errors of rotary 
axes [90]
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on five-axis machine tools by using a touch-trigger probe 
and precision spheres [89, 97]. Furthermore, several scholars 
have extensively investigated similar concepts [91, 95]. They 
utilized varying quantities of precision spheres and applied 
diverse mathematical methodologies to identify the errors 
linked with distinct machine tool configurations. These 
findings underscore the widespread utilization of precision 
spheres within advanced manufacturing, serving as essential 
tools for error measurements and calibrations.

Ibaraki et al. primarily employed cubes or square cylin-
ders as their main workpieces for measuring the geometric 
errors of rotary axis in five-axis machine tools. According 
to the proposed study, a cube was strategically positioned 
on a rotating table [90]. Eight distinct measurement modes 
were employed to gather data points, and mathematical 
equations were utilized to decouple the location errors of 
the two rotary axes. Ibaraki incorporated three test pieces 

resembling a square column geometry into the experimental 
setup, and effectively proposed the measurement method for 
PDGEs of rotary axes [104–106]. Wang et al. and Jiang et al. 
also conducted analogous studies involving cubes [92, 107].

Previous studies often overlooked the impact of linear 
axis geometric errors when proposing measurement meth-
ods to identify the geometric errors of the rotary axis. As a 
result, Ibaraki et al. addressed this issue by employing an 
uncalibrated cylindrical workpiece. They distinguished the 
geometric errors of the linear axis and rotation axis through 
four measurement procedures using probes positioned on 
the workpiece's side [108]. Validation was conducted using 
the R-test, demonstrating comparable accuracy between the 
two methods and emphasizing the utility of touch-trigger 
probes in precision measurement. Subsequently, Ibaraki 
improved the initial experimental procedure by extending 
detection to the top surface of the workpiece and introduc-
ing an additional rotation axis [109]. This enhancement led 
to the acquisition of further geometric errors in both linear 
and rotational axes.

In essence, the touch-trigger probe stands out as an excep-
tional device due to its remarkable cost-effectiveness and 
adaptability to diverse workpieces, effectively addressing 
the limitations of other measurement tools. Its distinctive 
advantage lies in the capacity to utilize workpieces that don't 
necessitate high precision for experiments, thereby enhanc-
ing convenience in precision measurement applications. This 
unique feature not only offers a more economically feasible 
solution for the manufacturing industry but also guarantees 
heightened accuracy and reliability in the measurement and 
calibration processes. Consequently, it significantly contrib-
utes to augmenting the cost-effectiveness and efficiency of 
the manufacturing sector.

3.2 � Double Ball‑Bar

The circular test using a double ball-bar (DBB) has gained 
widespread acceptance among machine tool builders or 
users for assessing the geometric accuracy of rotary axes 
in five-axis machine tools. By mounting the first ball on the 
tool tip and locating the other ball on the rotary table, the 
measurement of geometric errors in the rotary axes is con-
ducted. As described in [84], Fig. 6 illustrates four measure-
ment paths, each involving the control of a single rotary axis 
during the measurement process. During the measurement 
process, the length of the DBB was recorded, allowing for 
the calculation of the deviation between the nominal and 
actual length of the DBB. Ultimately, the eight PIGEs of 
rotary axes A and C are identified using the proposed paths 
along with the measurement equations created by HTM. 
Therefore, this subsection focuses on the measurement of 
geometric errors in rotary axes by using DBB, particularly 
in the context of multi-axis machine tools.

Fig. 5   Probes measurement patterns: a pattern I and b pattern II [89]
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Mayer et al. conducted a series of studies in which they 
modeled motion error sources as polynomial functions for 
individual joint coordinates [86, 87, 110, 111]. Using these 
polynomial coefficients, they made predictions regarding 
tool and workpiece position as well as orientation errors. 
In their research [110], they eliminated eccentricity from 
the results obtained through the DBB method and proposed 
a technique to quantify eccentricity, ensuring comprehen-
sive data processing and avoiding virtual elliptization. Their 
method outlined in [111] evaluated A-axis motion errors 
using five tests within a single setup, thereby simplifying 
the tests and independently addressing issues related to axis 
motion. Moreover, the systematic approach presented in [86] 
identified errors on a five-axis machine tool, encompassing 
joint misalignment, angle deviation, and rotary axis spac-
ing, and applied these findings for machine tool calibration.

Following the research conducted by Lei et al. [112–114], 
errors within rotary axes were diagnosed using specific cir-
cular test paths, with only two rotary axes in motion while 
the others remained stationary. This methodology effectively 
pinpointed error sources in rotary axes, specifically detecting 
servo mismatch within two rotary axes.

Research conducted by Yang et al. employed the use of 
DBB methods to estimate geometric errors in machine tool 
rotary axes [84, 85, 102, 115, 116]. Their approach, outlined 
in Fig. 7 [115], categorized errors into two types: position-
dependent and position-independent, and modeled them 
using nth-degree polynomials to enhance accuracy. In study 
[84], PIGEs in rotary axes, such as offset and perpendicu-
larity errors, were measured and verified for compensation. 
Study [85] utilized DBB and single-axis control to measure 
offset and perpendicularity errors in rotary axes, minimiz-
ing setup errors through an innovative fixture and enhancing 
machine tool positioning accuracy. Additionally, a method 
to identify and rectify geometric errors on the rotary axis 
of a five-axis machine tool equipped with a tilted worktable 
is investigated [55]. This achieved complete separation of 
PIGESs and PDGEs during measurement by controlling a 
single rotary axis.

Zhang et al. conducted multiple studies [5, 117, 118], 
starting with study [117], which employed the DBB tech-
nique to evaluate motion errors in the rotary axes of five-
axis machine tools. Their study [118] proposed a new 

Fig. 6   Four DBB measurement 
paths of PIGEs of rotary axis 
A and C [84]. a Measurement 
path for offset errors of rotary 
axis A. b Measurement path 
for squareness errors of rotary 
axis A. c Measurement path for 
offset errors of rotary axis C. d 
Measurement path for square-
ness errors of rotary axis C

Fig. 7   Ball-bar measurement of five-axis machine tools [115]
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measurement method that utilized only one DBB system 
and an adjustable fixture to simultaneously assess five 
errors arising from the rotary table, encompassing axial, 
radial, and tilt errors. Moreover, in study [5], eight posi-
tion-independent geometric errors on the rotary axis of a 
five-axis machine tool were identified using three meas-
urement modes. In these modes, the linear axes stayed 
stationary while only two rotary axes moved to trace cir-
cular trajectories. This method completely eliminated the 
influence of linear axes, thereby enhancing measurement 
accuracy. Furthermore, Fu et  al. presented the TFFIA 
method, which aimed to enhance accuracy by considering 
21 fundamental errors [119]. Using three effective meas-
urement modes, this method captured direction-sensitive 
errors and required only three workpiece ball positions to 
comprehensively identify 20 errors across two rotary axes.

Jiang et al. introduced a series systematic approach for 
identifying and characterizing PIGEs in the rotary axis 
of five-axis machine tools [120–122]. Among them, their 
study [121] presented a two-stage DBB method aimed at 
swiftly diagnosing and identifying PIGEs in the rotary axis 
of five-axis machine tools. The initial stage allowed for a 
rapid evaluation of both axes, providing a quick prelimi-
nary test. If the errors surpassed the tolerance range, the 
second stage offered a more accurate but slower inspec-
tion, suitable for periodic accuracy checks. Additionally, 
Chen et al. introduced a method that comprehensively 
measures and identifies linkage errors and volume errors 
in the rotary table using the DBB technique [123, 124]. In 
their study, volume errors were evaluated through circular 
trajectories, and the circular fitting method was utilized to 
enhance precision, effectively improving machining qual-
ity accuracy.

Lasemi et al. [66] proposed a precise method for identify-
ing geometric errors in five-axis machine tools, particularly 
focusing on the rotary axis, utilizing the DBB technique 
[125]. Their model encompasses both PIGEs and PDGEs, 
employing sensitivity analysis to streamline the model. 
Zhong et al. conducted a comprehensive assessment of tool 
position and axis direction errors using nine circular test 
paths [126]. Through kinematic analysis, Peng et al. devel-
oped a mathematical model capable of accurately identify-
ing both angular and displacement errors [103, 127]. Ding 
et al. employed single-axis drive and optimized parameters 
to enhance precision [101]. Jiang et al. proposed a novel 
measurement trajectory that involved simultaneous motion 
of two rotary axes [128]. Utilizing DBB to sample com-
plex motions, they obtained a true reflection of machine tool 
errors and suggested a method for estimating PIGEs in the 
two rotary axes.

Li et al. effectively identified all 12 PDGEs, including 
commonly overlooked angular positioning errors, by uti-
lizing four DBB installation positions and designing eight 

measurement modes [129]. Ding et al. investigated the cir-
cle-8 test, employing DBB to capture complex motions and 
extract valuable data, which aids in modeling and reducing 
errors in five-axis machine tools [130]. The method pro-
posed in [131] proved effective in eliminating installation 
errors in DBB tests, consequently enhancing measurement 
accuracy. Yao et al. analyzed eccentricity in trajectories 
measured by DBB during simultaneous three-axis motion 
[132]. By compensating for the impact of identified geo-
metric errors on tool center point (TCP) position error, they 
achieved precise identification and correction of geometric 
errors.

In summary, this collection of studies presents a wide 
array of comprehensive methods to evaluate not only geo-
metric errors but also dynamic errors within the rotary axis 
of five-axis machine tools. Various DBB tests and analysis 
techniques provide invaluable insights for enhancing accu-
racy and compensation. These studies encompass various 
aspects, such as test path design, initiation of test proce-
dures, data processing, and correction mechanisms. They 
demonstrate adaptability across different models and brands 
of five-axis CNC machine tools, propelling advancements 
in precision machining and significantly contributing to the 
enhancement of efficiency and product quality in manufac-
turing processes.

3.3 � R‑test

As mentioned above, Although the DBB has been widely 
acknowledged as an effective measuring device for identi-
fying geometric errors in the rotational axes of multi-axis 
machine tools, its application in five-axis machines poses 
a significant challenge. The DBB operates as a one-dimen-
sional measurement device, capable of measuring only a 
single direction of displacement at a time. This limitation 
requires operators to change the measurement device and 
machine tool settings multiple times to identify all geometric 
errors accurately, making full automation notably difficult.

To address these challenges, Weikert proposed an alter-
native device known as the "R-test." This device comprises 
three (or more) linear displacement sensors along with a 
precision sphere. The R-test operates by utilizing the linear 
displacement sensors to measure the three-dimensional dis-
placement of the sphere, thereby enabling the acquisition of 
three-dimensional error trajectories during the measurement 
cycle [133]. In general, the geometric errors of the rotary 
axes are calculated by analyzing these three-dimensional 
error trajectories. Therefore, Fig. 8 illustrates the prototype 
setup of the R-test, as demonstrated by Ibaraki et al. Cur-
rently, commercial R-test devices are available from IBS 
Precision Engineering and Fidia. This innovation offers a 
promising solution to the limitations associated with the 
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DBB by facilitating more comprehensive and efficient geo-
metric error measurements in multi-axis machine tools.

Several earlier studies have underscored the efficacy of 
the R-test in pinpointing geometric inaccuracies in rotary 
axes by precisely fitting measured data to the kinematics 
[134–136]. According to the experiments conducted by Flo-
russen et al., the dynamic R-test effectively identified areas 
that the static R-test failed to detect, showcasing its robust 
capability in assessing the actual contour performance of 
five-axis machine tools [137]. Ibaraki et al. employed HTM, 
Jacobian matrix, and the least squares method to tackle posi-
tion errors and rotational axis inaccuracies [138]. A similar 
approach was also adopted in another study [139].

The majority of measurements using R-test involve coor-
dinated movements of both linear and rotary axes. However, 
numerous prior studies have presumed that the error motion 
of the linear axis is negligible and can be ignored during the 
calibration of the rotary axis. Ibaraki et al. demonstrated that 
the error motions of rotary axes could be calibrated with 
minimal interference from the error motions of linear axes 
by strategically positioning the sphere on the nominal axis 
average line of a rotary table [140, 141]. Moreover, Masashi 
et al. also utilized the R-test methodology to estimate the 
motion error of linear axes in machine tools [142].

Thermal deformation also stands as a prominent factor 
contributing to errors in machine tools. Beyond addressing 
geometrical errors, the R-test measurement method can also 
serve to measure the thermal state of a machine tool due to 
its brief measuring duration. Lee et al. conducted a three-day 
experiment employing the B-spline interpolation method, 
unveiling a notable correlation between specific errors and 
fluctuations in ambient temperature [143]. Hong and Ibaraki 
also introduced a method to observe heat-induced geometric 
errors in a rotary axis using the R-test [144, 145].

Furthermore, it is worth acknowledging that the tradi-
tional contact-type R-test might be vulnerable to friction 

effects or dynamics related to the supporting spring in dis-
placement sensors, particularly in dynamic measurement 
scenarios. To address this concern, Hong and Ibaraki pro-
posed a non-contact R-test employing laser displacement 
sensors to enhance measurement accuracy and reliability 
[146, 147]. Additionally, Ibaraki et al. proposed a software 
which is designed to analyze R-test measurement trajecto-
ries, aiming to numerically rectify PIGEs of the rotary axis 
[148].

In summary, the R-test, functioning as a precision meas-
uring tool for machine tools, has made substantial advance-
ments in addressing the limitations associated with the DBB. 
It has notably enhanced measurement accuracy and effi-
ciency across multiple facets of evaluation and calibration.

3.4 � Tracking Interferometer

The utilization of laser trackers for identifying geometric 
errors has gained substantial popularity owing to their excep-
tional capabilities in 3D metrology [149]. The measurement 
principle relies on the laser tracker's ability to determine 
the distance to the target, alongside two angles: the azimuth 
angle and zenith angle, providing positional data within a 
spherical coordinate system [150]. Prominent brands in use 
include Leica Geosystems, Faro, and Automated Precision 
Inc. (API). Laser trackers present various advantages, such 
as high measurement efficiency, an extensive measurement 
range, not mandating precise installation, and lacking spe-
cific trajectory limitations. In contrast to the DBB and R-test, 
laser trackers are not limited by a fixed length, allowing 
them to comprehensively measure the geometric errors of 
five-axis machine tools more efficiently and with fewer steps 
[151, 152]. Due to its measurement capabilities and ease of 
use, the laser tracker is increasingly employed for volumetric 
error measurements. However, it is crucial to note that the 
primary contributor to the measurement uncertainty in laser 
trackers is the angular measurement error. Accompanied by 
the angular measurement error, the position measurement 
error deteriorates significantly with increased measurement 
distances [150]. Consequently, a similar instrument to a laser 
tracker, known as a laser tracer, has been proposed. By the 
way, the laser tracer employs the multilateration method to 
determine the target's position. Compared to conventional 
laser trackers, employing the laser tracer for position meas-
urement results in reduced measurement uncertainty [151, 
153]. As a result, in sectors such as automobile manufactur-
ing, aerospace manufacturing, and the measurement of large 
machining parts, the use of laser tracers and laser trackers 
remains indispensable. Furthermore, laser tracking tech-
nology is also widely employed in precision measurement 
and metrology for five-axis machine tools. Therefore, the 

Fig. 8   The prototype setup of the R-test [133]
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following paragraph will depict the measurement methods 
applied in the field of five-axis machine tools measurement.

As a result, the measurement methods for determining 
geometric errors in rotary axes using the laserTRACER 
were outlined in [154]. In the study [154], a novel fix-
ture standard with reflectors was designed and mounted 
on the pending measurement rotary table. Additionally, 
the LaserTRACER was installed at different external base 
stations to identify the location of each reflector at every 
measurement position, as shown in Fig. 9. Due to the 
requirement for high measurement accuracy, the principles 
of multi-station and time-sharing measurements developed 
by Wang et al. were adopted to obtain and identify the 
6-DOF geometric errors of rotary table [155, 156]. In the 
following paragraph, practical applications for measuring 
geometric errors of rotary axes using laser tracking tech-
nology, as proposed in previous studies, are introduced.

In 2012, Wang et  al. introduced a method employ-
ing a laser tracker based on the sequential multilatera-
tion measurement principle [155]. This method involved 
measuring the motion trajectory of the linear and rotary 
axes of a machine tool at different base stations using the 
laser tracker. In a subsequent study in 2013, Zhang et al. 
proposed a series of studies for measuring the geomet-
ric errors of rotary axes on machine tools [157, 158]. By 
maintaining continuous measurements of three points and 
incorporating error model calculations, the tracker was 
sequentially placed in four positions for measurements, 
yielding improved repeatability. Yin et al. utilized a laser 
tracker to identify quasi-static errors of two rotating axes 
and perpendicularity errors between the centerline of the 

rotating axis and three linear axes of the gantry-style five-
axis machine tool [159]. Furthermore, the laser trackers 
were also used in conjunction with other instruments. For 
instance, Acosta et al. utilized linear displacement sensor 
and self-centring probe to conduct additional measure-
ments focused on radial, pendulum, and axial movement 
errors [160]. Ellingsdalen et al. presented a compensation 
strategy for all axes of a five-axis machine tool [161]. This 
method involved measuring three points on the spindle 
and worktable at various axis displacements, enabling the 
calculation of PIGEs. Recently, Yao et al. employed a dual 
quaternions model for geometric error analysis, employing 
the Powell algorithm for calculation [152]. This approach 
allowed the simultaneous determination of PDGEs and 
PIGEs of rotary axes, simplifying the error decoupling 
process, as shown in Fig. 10.

Fig. 9   Schematic diagram illus-
trating the method for measur-
ing geometric errors using 
LaserTRACER [154]

Fig. 10   The experimental setup [152]
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On the other hand, in the laser tracer-based application 
fields, Zha et al. employed four-station laser tracers to meas-
ure and differentiate geometric errors in an NC rotary table 
[162]. This involved implementing self-calibration algo-
rithms for the laser tracers and employing measurement 
point-solving algorithms to determine the errors. Deng et al. 
concurrently incorporated rigid-body motion constraints in 
multilateration for motion error measurements [151]. Their 
approach involved a two-step geometric error identification 
method, enhancing the accuracy of error measurements. 
Furthermore, Hsu et al. proposed a method to determine 
the geometric errors of rotary tables using a laser tracer and 
reflectors mounted on a reflector standard fixture. This tech-
nique employed a multi-station and time-sharing measure-
ment approach, employing six distinct reflector positions and 
six different laser tracer base stations. This method allows 
measurements without necessitating the operation of the 
other three external linear axes, thereby reducing setup 
errors. Importantly, it can be applied to various rotary table 
configurations. Lastly, Hongdong et al. implemented coordi-
nated movements across all five motion axes to concurrently 
identify all geometric errors, departing from the conven-
tional method that necessitates separate calibration of linear 
and rotary axes [163], as shown in Fig. 11. This streamlined 
approach reduces the measurement process while enhanc-
ing accuracy.

3.5 � Optical Techniques

Optical measurement falls within the realm of direct meas-
urement. However, due to extensive research and exploration, 
there has been an increasement in optical methods aimed 
at concurrently measuring multi-axis motion errors. Conse-
quently, the relevance and importance of optical measure-
ment in this domain have significantly increased. In the field 
of optical measurements, many studies proposed novel and 
specific optical measurement systems incorporating laser 
sources, lenses, detectors, etc., for measuring the geometric 
errors of rotary axes. As referred in [164], to analyze the 

geometric errors of rotary axes, a mathematical model of the 
measurement equations was constructed using a HTM and 
the skew-ray tracing method. Furthermore, the subsequent 
paragraph details various methodologies outlined in prior 
studies for measuring geometric errors associated with rotary 
axes, employing diverse optical measurement techniques.

Chen et al. introduced and validated a six-degree-of-free-
dom (six-DOF) optoelectronic motion error measurement 
system incorporating three laser-diode/position-sensitive 
detector pairs and a pyramid-polygon-mirror [165]. Skew-
ray tracing methods and first-order Taylor series expansion 
techniques are employed to determine the geometric errors 
inherent in rotary axes [166]. Subsequently, Murakami et al. 
devised a straightforward and cost-effective optical measure-
ment system by utilizing rod lenses and ball lenses integrated 
into the micro-spindles. This system enabled simultaneous 
measurement of the five degrees-of-freedom error motions in 
high-speed micro-spindles. Feng et al. proposed three meth-
ods for measuring geometric errors of rotary axes employing 
a combination of prism groups, beam-splitting films, position-
sensitive detectors, quadrant detectors, and retroreflectors. Ini-
tially, in [167], the deviation of laser light reflected from two 
mirrors on the rotary axis were measured for enabling simul-
taneous calculation of five-DOF motion errors. Subsequently, 
in [80], the laser interferometry principles, laser collimation, 
and PID closed-loop control were employed achieving pre-
cise and simultaneous measurement of all six-DOF motion 
errors of a rotary axis. Finally, Feng et al. extended the model 
to linear axes, establishing a direct measurement method for 
concurrently measuring six-DOF geometric motion errors in 
both linear and rotary axes, as shown in Figs. 12 and 13 [79]. 
Liu et al. combined a polygon mirror with a conical lens to 
simultaneously measure six-DOF for a rotary axis [164, 168]. 
Zhao et al. employed a high-precision steel ball and a special-
ized mirror on the rotary axis to measure collimated laser light 
from three perpendicular directions, providing axial and tilt 
error measurements for rotary axes [169].

For miniaturized 5-axis machine tools, Park et al. pro-
posed a simple and cost-effective method utilizing only two 
position-sensitive detectors and a laser diode to identify geo-
metrical errors of a rotary axis through non-contact measure-
ments [170]. Meanwhile, He et al. introduced the dual opti-
cal path measurement method (DOPMM) to identify all six 
volumetric error parameters with straightforward algebraic 
operations, simplifying machine tool measurements [171].

Furthermore, Yang et al. proposed the position-distance 
measurement method using multi-wavelength phase-shifting 
interferometry technology and a high-speed CCD camera to 
track the spatial posture of a designed microstructure feature 
during rotary stage movement, as shown in Fig. 14 [172]. 
Additionally, Yin et al. utilized a monocular camera, pre-
senting a programmable identification method for visually 

Fig. 11   Experiment setup based on the proposed measurement 
method [163]
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measuring and identifying geometric errors of rotary axes 
in compact five-axis platforms [173].

3.6 � Machining Test

In comparison to traditional non-cutting measurements, 
machining tests provide a significantly accurate method 
for elucidating the inherent motion errors in five-axis 
machine tools during actual machining processes. As a 
result, several researchers have proposed their own spe-
cific shapes of workpieces, such as NAS979, S-shaped, 

Fig. 12   Schematic diagram for simultaneously measuring 6DOF geometric motion errors of both linear and rotary axes; a laser source and fiber 
coupling unit; b measurement unit; c error-sensitive unit for measuring a linear axis; d error-sensitive unit for measuring a rotary axis [79]

Fig. 13   Measurement experiments of rotary axis [79]
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and cylindrical-type, for predicting the geometric errors 
of the rotary axis. For example, Ibaraki et al. employed 
NAS979 standard workpieces to experimentally validate 
the prediction and compensation of geometric errors dur-
ing five-axis machining [174]. Using an error model of the 
machining center with identified kinematic errors and con-
sidering location and geometry of the workpiece, machin-
ing geometric error with respect to the nominal geometry 
of the workpiece is predicted and evaluated.

Subsequently, Hong et al. analyzed top cone truncation 
for revealing the influence of gravity and geometric errors 
on radial error motion and tilt error motion [83]. These 

factors were identified as significant error sources in cone 
machining tests. Ohta et al. used truncated pyramid work-
piece instead of cone shaped workpiece for their study 
[175]. Their results highlighted how changes in linear axis 
speeds significantly affected the profile curves of the trun-
cated pyramid.

Unfortunately, the experimental results indicate that the 
cone shaped workpiece is primarily influenced by the geo-
metric accuracy of the machine tool, demonstrating limited 
sensitivity towards dynamic accuracy. For addressing this 
challenge, the development of new testing workpieces was 
conducted. Ibaraki et al. [176, 177] proposed specialized 
machining tests for five-axis machine tools aimed at iden-
tifying fundamental motion errors by shaping the work-
piece to resemble a pyramid, as shown in Fig. 15. Several 
researchers also adopted a similar approach and employed 
similar-shaped test pieces to identify various errors of rotary 
axes [94, 178–181]. Chang et al. utilized Taguchi methods 
and signal-to-noise ratio (S/N) to calculate effectiveness of 
direct cutting motion error data [182, 183]. Additionally, Li 
et al. utilized pyramid-shaped test pieces to assess the quan-
titative impact of dynamic synchronization errors between 
rotational and linear axes on machined surfaces [184].

However, Mou et al. noted that the NAS979 tests in 
the five-axis machine tools might not align with practi-
cal industrial demands [185]. To address this issue, Mou 
et al. proposed the 'S' machining test, demonstrating its 
feasibility for the industrial applications. Additionally, 
several researchers compared the machining results of 
the S-shaped workpieces with the NAS979 workpieces 
[186–192]. Tao et al. proposed a novel error reduction 
method and demonstrated its effectiveness through experi-
mental evidence [193]. Furthermore, Osei et al. introduced 
the S-cone test piece, aiming to delineate the geometric and 
kinematic characteristics of the machine tools in Fig. 16 
[194]. They noted that abrupt alterations in axis speed, 
acceleration, and jerk significantly influenced its machining 
process. The widespread adoption of the S-shaped speci-
men by numerous enterprises highlights its significance as 
a crucial benchmark for evaluating five-axis machine tool 
manufacturing technology.

Furthermore, with the proposed S-shaped workpieces, 
considerable research continued in the realm of uniquely 
shaped workpieces, aiming to employ straightforward cut-
ting methods for precise error identification [195, 196]. Flo-
russen et al. and Ibaraki et al. tried to identify the maximum 
geometric errors of the machine tools through machining 
a cylindrical-type workpieces [197, 198]. Sato et al. pro-
posed hemispherical workpieces as an effective method to 

Fig. 14   Experimental platform for simultaneous measurement of 
6DOF errors of the precision rotary stage [172]

Fig. 15   Finished test piece geometry [172]
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discover the causes of surface defects [199]. Finally, Huang 
et al. developed a uniquely shaped specimen proficient in 
identifying PIGEs and PDGEs of the rotary axes [30]. As 
highlighted in mentioned studies involving extensive experi-
ments and simulations, it is evident that confirming the geo-
metric errors of rotary axes through cutting is a practical and 
feasible approach.

4 � Conclusions

Due to the exceptional processing flexibility and efficiency 
of five-axis machine tools, they have found widespread use 
across industries like aviation, shipbuilding, and precision 
manufacturing. As the rising demand for increased precision 
in products and components, the identification and compen-
sation of errors in five-axis machine tools become increas-
ingly critical. Existing research indicates that geometric 
errors of the rotary axes constitute a substantial portion of 
the overall error sources in five-axis machine tools. There-
fore, identifying and compensating for geometric errors 
stand as pivotal measures to enhance machining accuracy.

In response to this demand, leading manufacturers of 
machine tool controllers like Heidenhain and Siemens have 
integrated compensation capabilities for geometric errors 

in their systems. These functions enable the insertion of the 
measured geometric errors (including PIGEs and PDGEs) 
into the controller, facilitating automated adjustments to tool 
position and orientation. Therefore, researchers worldwide 
are vigorously engaged in the advancement of measurement 
theories and technologies. As a result, this paper consoli-
dates and reviews a significant portion of the existing lit-
erature concerning measurement techniques for geometric 
errors in rotary axes. Based on the instrumentation and 
equipment utilized, these existing literatures can broadly be 
categorized in five primary types. Their distinct advantages 
and limitations are described as follows:

4.1 � Probes

By probing the designated artifacts, geometric data can be 
obtained to compute the difference between the ideal and 
actual probing positions. Through mathematical computa-
tions, the correlation between the geometric data and errors 
can be established, allowing for the derivation the geomet-
ric errors of the rotary axis. The ability of this approach to 
identify diverse geometric errors according to the features of 
the measured artifacts offers design flexibility, operational 
simplicity, and cost-effectiveness.

Fig. 16   Development of the two surfaces of the S-cone and the tool movement on the surface [194]
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4.2 � DBB

The principal measurement approach entails executing 
circular motion using a calibrated rod in conjunction with 
two correction balls—one installed on the spindle and 
another on the worktable. Through calculating the length 
variations of the rod in specific circular paths, the various 
geometric errors of rotary axes are identified. Although 
this method is cost-effective and easier to install compared 
to the R-TEST methods, it only offers one-dimensional 
deviation information in a single measurement.

4.3 � R‑Test

R-test is a widely adopted commercial measurement sys-
tem designed for assessing geometric errors in rotary axes. 
Despite the limitations such as the sequential measurement 
of one-axis errors, complex installation, and relatively 
higher costs, its three-dimensional sensing capability and 
remarkable precision have led to substantial research and 
application advancements.

4.4 � Tracking Interferometer

Utilizing a laser tracker or laser tracer to monitor reflector 
positions enables the measurement of position informa-
tion and analysis of diverse geometric errors in rotary axes. 
Despite its advantages, like high precision, non-contact 
measurement, and extensive measurement range, challenges 
such as high costs and the requirement for ample space dur-
ing equipment installation remain important considerations.

4.5 � Optical Techniques

These designs involved creating dedicated optical pathways 
using laser light, reflectors, sensors, and beam splitters to 
identify the geometric errors of the rotary axes. Moreo-
ver, multiple theoretical measurement methodologies 

for geometric errors in rotary axes have been formulated. 
Although the optical measurement techniques promise high 
accuracy and broad applicability, there is currently a lack of 
commercially available measurement systems specifically 
designed for identifying geometric errors in the rotary axes 
of five-axis machine tools.

4.6 � Machining Test

Machining the specific workpieces on the five-axis machine 
tools and subsequently measuring the resultant features 
reveals the dimension errors of the workpieces. Through 
analysis the dimension errors of the workpieces, the geo-
metric errors of the rotary axes were obtained. Although this 
method directly reflects the impact of the errors on machining 
accuracy, it is really a significant challenge for disciplining 
the geometric error from the other machine errors. Hence, it 
remains an area with potential for further development.

Furthermore, Table 3 presents a comparison of the six 
measurement methods used for identifying the geometric 
errors of rotary axes in five-axis machine tools. Although 
the modeling, identification, and compensation methods of 
errors in machine tools have reached a significant level of 
maturity over the last few decades, they still demand a high 
level of engineering and metrology expertise [27, 89, 97]. 
Additionally, the measurement and compensation of geomet-
ric errors in the rotary axes of five-axis machine tools are 
time-consuming and demand skilled engineers to operate the 
measuring equipment. Consequently, the requirements men-
tioned above pose significant barriers to the advancement 
of intelligent manufacturing. In our view, the development 
trend in the machine tool error calibration field is towards 
the creation of a measurement system that offers efficient 
and automated calibration procedures for each periodic 
measurement. As a result, the integration of inexpensive sen-
sors and intelligent measurement algorithms embedded into 
machine tools and their control systems enables precise and 
intelligent manufacturing. This paper summarizes multiple 
measurement methodologies and the efforts made towards 
achieving the future goal of true intelligent manufacturing.

Table 3   Comparison of the six 
measurement methods

Measurement times Measurement types Operation Sensing 
dimen-
sions

Cost

Probes Time-saving Contact Ease 1D Cost effective
double ball-bar Time-consuming Contact Ease 1D Cost effective
R-test Time-saving Non-contact Difficulty 3D High
Tracking Interferometer Time-consuming Non-contact Difficulty 1D Hgh
Optical techniques Time-saving Non-contact Difficulty 3D High
Machining test Time-consuming Contact Difficulty 3D Cost effective
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