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Abstract
Identification of, and compensation for, geometric errors is a cost-effective way to reduce the volumetric errors of five-axis 
machine tools and thus reduce workpiece geometric errors. An adaptive identification method is introduced to directly reduce 
workpiece geometric errors. We determined the relation between the root-sum-square values of geometric error sensitivity 
coefficients and workpiece geometric errors. Then, an optimal measurement path minimizing those values was adaptively 
determined to identify position-independent geometric errors of the rotary axis. We applied our method to improve the 
radial deviation of the cone-shaped ISO 10791-7 testpiece, as an example. The radial deviations were 22.6 and 27.6 μm in 
the counterclockwise (CCW) and clockwise (CW) directions, respectively, after compensating for the position-independent 
geometric errors identified using a common measurement path. These values improved by 27% and 17% to 16.4 and 22.9 μm 
in the CCW and CW directions, respectively, after compensating for the position-independent geometric errors identified 
using the optimal measurement path, thus confirming the validity of our approach.

Keywords Adaptive identification · Position-independent geometric error · Measurement uncertainty · Sensitivity 
coefficient · Workpiece geometric error

List of symbols
b  Setting angle of a ball on the 

workpiece table, degrees
nA  Sample number of A-axis 

measurements, μm
nC  Sample number of C-axis 

measurements, μm
nW  Sample number along the 

workpiece toolpath, μm
oij  Offset error of the j-axis 

relative to the i-direction 
(i = x, y, z; j = a, c) , μm

sij  Squareness error of the 
j-axis around the i-direction 
(i = x, y, z; j = a, c) , μrad

R  Nominal radius of a circular 
measurement path for the 
A-axis, mm

ΔRi,j,k  k-Th deviation in the 
j-direction of the i-axis 
(i = A,C; j = radial, axial;

k = 1,… , n
A
for A - axis;

k = 1,… , n
C
for C - axis

)

 , 
μm

(

xM,i, yM,i, zM,i

)

  Measured posi-
tional deviations 
(

i = 1,… , n
A
for A - axis;

i = 1,… , n
C
for C - axis

)

 , μm
(

xW,i, yW,i, zW,i, aW,i, cW,i

)

  iTh workpiece coordinate 
(

i = 1,… , nW
)

(

xTP,i, yTP,i, zTP,i, aTP,i, cTP,i
)

  Toolpath command corre-
sponding to the ith workpiece 
coordinate 

(

i = 1,… , nW
)
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(

ΔxW ,ΔyW ,ΔzW
)

  Set-up error of a ball on the 
workpiece table, μm

{�}  Coordinate system of the 
i-axis {i = X, Y , Z,A,C}

{�} , {�} , {�}  Coordinate system of the ref-
erence, workpiece, and tool, 
respectively

��i

(

xVE,i, yVE,i, zVE,i
)

  Volumetric errors at the 
ith toolpath command 
(

i = 1,… , nW
)

�
j

i
  4 × 4 Homogeneous transfor-

mation matrix from the j to i 
coordinate system

1 Introduction

The volumetric errors of machine tools decrease when 
geometric errors are identified and compensated, in turn 
reducing kinematic [1], stiffness-induced [2], and ther-
mally induced [3] errors. Geometric errors can be identi-
fied via direct and indirect methods [4, 5]. Geometric errors 
are divided into position-independent geometric errors 
(PIGEs; also termed “location and orientation errors” [6] 
and “kinematic errors” [7]) and position-dependent geomet-
ric errors (PDGEs; also termed “error motions” [8]). PIGEs 
are defined using the averages of the PDGEs over the work-
ing range of linear and rotary axes, and thus affect volumet-
ric error more significantly across the entire workspace [9]. 
Thirteen PIGEs are used to model the volumetric errors of 
five-axis machine tools, including three squareness errors 
between the three linear axes; two squareness errors and two 
offset errors for the rotary and tilting axes, respectively; and 
two squareness errors for the spindle axis [10, 11]. Although 
several methods of PIGE identification are available [6], it 
remains challenging to accurately determine the PIGEs of 
rotary axes; no method is optimal for identifying the errors.

PIGEs must be accurately identified to reduce workpiece 
geometric errors. However, PDGEs affect PIGEs because 
they are coupled. Thus, it is important to check the inter-
dependencies of PIGEs and PDGEs, and to perform Monte 
Carlo simulations to investigate the effects of the interde-
pendency [12]. Certain PIGEs are affected by the PDGEs 
[13], thermal errors [14] of linear axes, and PDGEs of both 
rotary and linear axes [15]. It is necessary to pre-identify and 
pre-compensate for PDGEs that affect rotary-axis PIGEs. 
However, this makes PIGE identification complex. Alter-
natively, as recommended here, PIGE identification can be 
optimized to minimize the effects of other errors (including 
PDGEs) on PIGEs.

Geometric errors affect workpiece geometric errors. The 
effects of PIGEs [7], and of PIGEs and PDGEs [16], on the 

machining geometric accuracy of a cone frustum have been 
investigated; the workpiece geometric errors were deter-
mined via simultaneous control of all five axes [17]. A cubic 
machining test was used to reveal the effects of geometric 
errors on the workpiece coordinate system [18]. A pyrami-
dal testpiece was machined in a five-axis machine tool and 
measured using a coordinate measuring machine (CMM) to 
identify PIGEs alone [19], and both PIGEs and PDGEs [20, 
21]. Three machining patterns were used, and CMM meas-
urements were obtained; 11 PIGEs were identified on a sin-
gle drive of a rotary axis and unwanted effects on the most 
sensitive direction were reduced, thereby enhancing accurate 
identification [22]. A cubic workpiece was subjected to five 
machining patterns via several large rotations of the rotary 
axes; a laser displacement sensor was employed to measure 
finished surface mismatches [23]. However, PIGEs identified 
via machining tests can be affected by errors in workpiece 
settings, cutting force, and tool parameters, which reduce the 
accuracy of the identified PIGEs [18]. Methods not affected 
by such errors have thus been developed. PIGEs are system-
atic deviations identified via double ball-bar (DBB) meas-
urements of the eccentricity of three-axis circular motions 
[24]. An R-test using a device measuring three relative dis-
placements has been applied to identify PIGEs after induc-
ing circular-spherical movements [25]. DBB measurements 
on a single set-up have also been employed to identify 
PIGEs; down-time was reduced when the structural restric-
tions of machine tools were considered [26, 27]. To simplify 
measurements, one method identified PIGEs via single-axis 
control during a series of DBB measurements [28]. A DBB 
method with a single setup, single-axis control, and exten-
sion bar was used to identify PIGEs [29]. A reconfigurable 
mechanism model was employed to identify the PIGEs of 
machine tools using arbitrary combinations of linear and 
rotary axes [30]. All of the above methods are single-ball 
measurements derived using a DBB or the R-test device; 
in principle, a touch-trigger probe could also be employed. 
Other methods derive multi-ball [31] and square column 
measurements using a touch-trigger probe [32] to identify 
PIGEs. However, single-ball methods have the advantages of 
a simple set-up and cost-effective measurement; ISO stand-
ards employ such measurements [33]. Geometric errors are 
identified by optimizing the distribution of measurement 
points to reduce volumetric errors [34]. However, there are 
no optimized methods for workpiece geometric errors [24, 
25, 33].

It is essential to consider the measurement uncertainties 
of identified PIGEs, where these uncertainties reflect a lack 
of precise knowledge of the measurand values [35]. In gen-
eral, PIGEs are the sums of sensitivity coefficients multi-
plied by the measured data [9]. The sensitivity coefficients 
describe how output estimates vary as the input estimates 
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change [36, 37]. During PIGE identification, the root-sum-
square (RSS) values of sensitivity coefficients, which are 
affected by the measuring angle range for rotary axes, are 
used to determine the measurement conditions [38]; uncer-
tainties in measured data are induced by both measuring 
devices and systematic and non-systematic errors of the con-
trolled axes [32]. Measurement uncertainty can be improved 
by reducing the RSS values of the sensitivity coefficients 
and/or uncertainties in the measured data. However, such 
reduction of the measured data requires highly accurate 
(and thus expensive) measuring devices. Pre-measurement 
of other systematic errors should be performed using addi-
tional devices, again increasing costs. It is reasonable to seek 
to optimize measurement paths by reducing the effects of the 
RSS values of sensitivity coefficients on workpiece geomet-
ric errors; this is a cost-effective approach.

In summary, the PIGEs of rotary axes are identified using 
a number of methods to improve the volumetric errors of 
five-axis machine tools, and measurement uncertainties are 
analyzed via error budgeting; this reveals the confidence 
intervals of the PIGEs and the feasibility of the chosen meth-
ods. However, all methods to date have aimed to improve 
machine tool volumetric errors, rather than to directly 
improve workpiece geometric errors (Fig. 1a); the improve-
ment is thus limited.

Here, we developed an adaptive method for identifying 
the PIGEs of rotary axes; this directly improves workpiece 
geometric errors (Fig. 1b) by optimizing the measurement 
processes. The processes are adaptively optimized for the 
workpiece rather than the machine tools. The measurement 
processes are optimized by determining the measurement 

paths that minimize the effects of PIGE sensitivity coeffi-
cients on workpiece geometric errors, whereas our previous 
method [38] used PIGE sensitivity coefficients to determine 
the measuring angle range for rotary axes without consider-
ing workpiece geometric errors. The method proposed in 
this study is shown in Fig. 2.

First, a workpiece coordinate 
(

xW,i, yW,i, zW,i, aW,i, cW,i

)

 
(

i = 1,… , nW
)

 in the workpiece coordinate sys-
tem {�} is  assigned, and toolpath commands 

Fig. 1  Strategies used to 
improve workpiece accuracy

Indirect
improvement

<Identification> <Five-axis machine tool> <Workpiece>

x y

z
{W}

{R} x
yz

Volumetric error
improvement

(a) Existing indirect approaches.

Direct improvement

<Identification> <Workpiece>

{R} x
yz

<Five-axis machine tool>

(b) Our direct approach.

Machine configuration

Error
synthesis
model

Measuring
path

PIGEs identification

RSS values of PIGEs

Workpiece coordinate in {W}
(xW,i, yW,i, zW,i, aW,i, cW,i)

Toolpath commands in {R}
(xTP,i, yTP,i, zTP,i, aTP,i, cTP,i)

Volumetric errors VEi

Analysis of RSS effects

Optimal measuring path

Start

End

Fig. 2  Adaptive method for identifying the PIGEs of rotary axes
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(

xTP,i, yTP,i, zTP,i, aTP,i, cTP,i
)

 
(

i = 1,… , nW
)

 in a reference 
coordinate system {�} are calculated for five-axis control. 
Then, the volumetric errors ��i 

(

i = 1,… , nW
)

 for the tool-
path commands are derived as functions of the commands 
and PIGEs, using an error synthesis model determined by 
the experimental machine configuration. The effects of the 
PIGE RSS values (which are affected by the measurement 
path) on workpiece geometric errors are analyzed, and an 
optimal path is determined to minimize such effects. In 
Sect. 2, a measurement path model concerned with the 
RSS values of the PIGE sensitivity coefficients is opti-
mized for the cone-shaped ISO 10791–7, M3_15 testpiece 
[17]. We use this example because this is a representative 
workpiece that requires simultaneous five-axis control. We 
then identify the PIGEs using a R-test device. Equivalent 
DBB measurements (with PIGE compensation) are also 
performed, and demonstrate the validity of our approach 
based on the improvement in cone-shaped testpiece radial 
deviation (Sect. 3). The main contributions of this study 
are discussed in Sect. 4.

2  Optimal measurement path for workpiece 
geometric errors

2.1  Error synthesis model

To identify PIGEs, it is essential to establish an error syn-
thesis model as a function of the nominal commands for the 
linear and rotary axes. Then, the relationships between the 

measured data and PIGEs are established using the model. 
The kinematic structure of our experimental machine tool is 
shown in Fig. 3 and the PIGEs of the rotary axes are listed 
in Table 1.

To identify the PIGEs, the ball positions on the work-
piece table and tool nose are described using the homo-
geneous transformation matrices of Eq.  (1). Here, 
(

xTP,i, yTP,i, zTP,i, aTP,i, cTP,i
)

 
(

i = 1,… , nW
)

 are the i-th 
toolpath commands corresponding to workpiece coordinate 
(

xW,i, yW,i, zW,i, aW,i, cW,i

)

 
(

i = 1,… , nW
)

 . The terms caTP,i , 
saTP,i , ccTP,i , and scTP,i  are cos

(

aTP,i
)

 , sin
(

aTP,i
)

 , cos
(

cTP,i
)

 , 
and sin

(

cTP,i
)

 , respectively. The reference coordinate system 
{�} is defined at the nominal crosspoint of rotary axes A and 
C; this allows for a simple description of the volumetric errors.

where:
(for the workpiece branch):

(1)
�w
R
= �Y

R
�A
Y
�C
A
�w
C

�T
R
= �X

R
�Z
X
�T
Z

�Y
R
=

⎡

⎢

⎢

⎢

⎣

1 0 0 0

0 1 0 −yTP,i
0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

,

�A
Y
=

⎡

⎢

⎢

⎢

⎣

1 0 0 0

0 1 0 oya
0 0 1 oza
0 0 0 1

⎤

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎣

1 −sza sya 0

sza 1 0 0

−sya 0 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎣

1 0 0 0

0 caTP,i saTP,i 0

0 −saTP,i caTP,i 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

1 −szacaTP,i − syasaTP,i −szasaTP,i + syacaTP,i 0

sza caTP,i saTP,i oya
−sya −saTP,i caTP,i oza
0 0 0 1

⎤

⎥

⎥

⎥

⎦

,

X-axis

Z-axis

C-axis
A-axis

Y-axis

Spindle

x

y

z

Fig. 3  Kinematic structure of the experimental machine tool

Table 1  PIGEs of the rotary axes of the experimental five-axis 
machine tool

PIGE: position-independent geometric error

Axis PIGEs Location and orientation 
errors (ISO 230–1)

Unit

A oya EY0A μm
oza EZ0A μm
sya EB0A μrad
sza EC0A μrad

C oxc EX0C μm
oyc EY0C μm
sxc EA0C μrad
syc EB0C μrad
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�C
A
=

⎡

⎢

⎢

⎢

⎣

1 0 0 oxc
0 1 0 oyc
0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎣

1 0 syc 0

0 1 −sxc 0

−syc sxc 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎣

ccTP,i scTP,i 0 0

−scTP,i ccTP,i 0 0

0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

ccTP,i scTP,i syc oxc
−scTP,i ccTP,i −sxc oyc

−sycccTP,i − sxcscTP,i −sycscTP,i + sxcccTP,i 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

,

�w
C
=

⎡

⎢

⎢

⎢

⎣

xW,i

yW,i

zW,i

1

⎤

⎥

⎥

⎥

⎦

,

(for the tool branch):

�X
R
=

⎡

⎢

⎢

⎢

⎣

1 0 0 xTP,i
0 1 0 0

0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

,

�Z
X
=

⎡

⎢

⎢

⎢

⎣

1 0 0 0

0 1 0 0

0 0 1 zTP,i
0 0 0 1

⎤

⎥

⎥

⎥

⎦

,

The volumetric errors ��i 
(

i = 1,… , nW
)

 (positional 
deviations of the ball on the workpiece table from the nomi-
nal values) are defined by Eq. (2). Note that the volumetric 
errors ��i are defined in the reference coordinate system 
{�} , and thus can be used directly to compensate for the 
identified PIGEs via the G-code modification [39]. Here, 
��coeff ,i refers to the sensitivity of the PIGEs to volumetric 
errors ��i.

where

�T
Z
=

⎡

⎢

⎢

⎢

⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

(2)

�

��i

0

�

=
�

�T
R

�−1
× �w

R
−
�

�T
R

�−1
× �Y

R
× ��A × ��C × �w

C

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�

xW,isaTP,iscTP,i + yW,isaTP,iccTP,i + zW,icaTP,i
�

sya +
�

−xW,icaTP,iscTP,i − yW,icaTP,iccTP,i + zW,isaTP,i
�

sza + oxc + zW,isyc

oya +
�

xW,iccTP,i − yW,iscTP,i
�

sza + oyccaTP,i −
�

xW,isaTP,iscTP,i + yW,isaTP,iccTP,i + zW,icaTP,i
�

sxc +
�

xW,isaTP,iccTP,i − yW,isaTP,iscTP,i
�

syc

oza +
�

−xW,iccTP,i + yW,iscTP,i
�

sya + oycsaTP,i +
�

xW,icaTP,iscTP,i + yW,icaTP,iccTP,i − zW,isaTP,i
�

sxc +
�

−xW,icaTP,iccTP,i + yW,icaTP,iscTP,i
�

syc

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

�

��coeff ,i

0

�

× �����

��i = [ xVE,i yVE,i zVE,i ]
T ,

��a =

⎡

⎢

⎢

⎢

⎣

1 0 0 0

0 caTP,i saTP,i 0

0 −saTP,i caTP,i 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

,

��c =

⎡

⎢

⎢

⎢

⎣

ccTP,i scTP,i 0 0

−scTP,i ccTP,i 0 0

0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

,

��coeff ,i =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0

0 0 1

xW,isaTP,iscTP,i + yW,isaTP,iccTP,i + zW,icaTP,i 0 −xW,iccTP,i + yW,iscTP,i

−xW,icaTP,iscTP,i − yW,icaTP,iccTP,i + zW,isaTP,i xW,iccTP,i − yW,iscTP,i 0

1 0 0

0 caTP,i saTP,i

0 −xW,isaTP,iscTP,i − yW,isaTP,iccTP,i − zW,icaTP,i xW,icaTP,iscTP,i + yW,icaTP,iccTP,i − zW,isaTP,i

zW,i xW,isaTP,iccTP,i − yW,isaTP,iscTP,i −xW,icaTP,iccTP,i + yW,icaTP,iscTP,i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

����� =
[

oya oza sya sza oxc oyc sxc syc
]T
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2.2  General measurement path for PIGEs

Two linear axes and a rotary axis are often controlled to 
identify PIGEs [33]. For the C-axis, it is easy to measure 
the positional deviations of the ball on the workpiece table 
along the full circle trajectory followed by the X, Y, and C 
axes. Thus, the measurement uncertainties are small. How-
ever, for the A-axis, the nominal measuring angle range is 
limited because the A-axis involves tilting only, i.e., not full 
rotation. Thus, the measurement path of the ball (followed 
by the Y, Z, A axes) on the workpiece table is limited to 
an arc, creating relatively large measurement uncertain-
ties in the PIGEs. The measurement path can be changed 
in space (Fig. 4) depending on the initial position of the 
ball on the table, although the measuring angle range does 

not change. For example, Fig. 4a and b show the different 
measurement paths when the initial position of a ball on 
the table is changed. The measurement uncertainties of the 
PIGEs are affected by the measurement path determined by 
the initial position of the ball. In this case, the initial position 
is modeled using setting angle b, which must be optimized 
to minimize the effects of PIGE sensitivity coefficients on 
workpiece geometric errors.

In Sect. 3, we measure the positional deviation of the ball 
on the workpiece table using a wireless Trinity probe (IBS 
Precision Engineering BV, Eindhoven, The Netherlands). In 
such a case, the ball position 

(

xW,i, yW,i, zW,i

)

 
(

i = 1,… , nW
)

 , 
which remains the same during measurements, is given by 
Eq. (3). The set-up error 

(

ΔxW ,ΔyW ,ΔzW
)

 is unknown and 
fixed if the ball installation is not varied, and is used to 
describe the ball position in coordinate system {�} . Here, 
cb and sb are cos (b) and sin (b) , respectively. The nominal 
commands 

(

xTP,i, yTP,i, zTP,i, aTP,i, cTP,i
)

 
(

i = 1,… , nW
)

 for the 
linear and rotary axes are given by Eq. (4) for the A- and 
C-axis measurements, respectively. Note that the ball posi-
tion 

(

xW,i, yW,i, zW,i

)

 on the workpiece table does not change 
during measurements with a single set-up.

By substituting Eqs. (3) and (4) into Eq. (2), the volu-
metric errors ��i are derived (along with the measurement 
paths) in Cartesian coordinates. However, it is essential 
to represent volumetric error ��i in terms of cylindrical 
coordinates to minimize the effects of the main PDGEs 
(i.e., the angular positioning errors) of the rotary axes 
[38, 40]. In such a case, the relationships between the 
PIGEs and measured positional deviations 

(

xM,i, yM,i, zM,i

)

 
(

i = 1,… , nA for A - axis; i = 1,… , nC for C - axis
)

 of the 
ball along the measurement path, are derived as shown in 
Eq. (5).

(3)
(

xW,i, yW,i, zW,i

)

=
(

Rcb + ΔxW ,ΔyW ,Rsb + ΔzW
)

(4)

For A - axis

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

xTP,i = 0

yTP,i = Rc
�

−aTP,i + b
�

zTP,i = Rs
�

−aTP,i + b
�

aTP,i = [amin, amax],
�

i = 1,… , nA
�

cTP,i = −90◦

For C - axis

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

xTP,i = RcbccTP,i

yTP,i = −RcbscTP,i

zTP,i = Rsb

aTP,i = 0◦

cTP,i = [cmin, cmax],
�

i = 1,… , nC
�

Fig. 4  Measurement paths according to the initial position of the ball 
on the workpiece table
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Equation (5) is formatted using the matrix notation of 
Eq. (6), and the PIGEs are identified using a least-squares 
approach at the given angle b. It is obvious that the coef-
ficient matrices �i,j (i = A, C; j = radial, axial) are affected 
by angle b.

2.3  Optimal measurement path using the RSS 
values

Pseudo-inversion of Eq. (6) yields Eq. (7). The PIGEs are 
identified by multiplying the rows of the pseudo-inverse 
matrix �+

i,j
 by the measured data Δ�i,j [Eq. (8)]. Here, ΔRi,j,k 

(

i = A,C; j = radial, axial; k = 1,… , nA for A - axis;

k = 1,… , n
C
for C - axis

)

 refers to the k-th component of the 
measured data Δ�i,j (i = A,C; j = radial, axial) . Thus, the 
rows of the pseudo-inverse matrix �+

i,j
 constitute the set of 

sensitivity coefficients for the corresponding PIGEs.

(5)

For A - axis: Radial

ΔRA,radial,i =

√

(

yTP,i + yM,i

)2
+
(

zTP,i + zM,i

)2
−

R = c
(

−aTP,i + b
)

oya + s
(

−aTP,i + b
)

oza + cboyc + cbΔxW + sbΔzW

For A - axis: Axial

ΔRA,axial,i = xM,i = Rs
(

−aTP,i + b
)

sya − Rc
(

−aTP,i + b
)

sza + oxc + Rsbsyc − ΔyW

For C - axis: Radial

ΔRC,radial,i =

√

(

xTP,i + xM,i

)2
+
(

yTP,i + yM,i

)2
−

Rcb =
{

oxc + R
(

sya + syc
)

sb
}

ccTP,i −
{(

oya + oyc
)

− Rsbsxc
}

scTP,i + ΔxW

For C - axis: Axial

ΔRC,axial,i = zM,i = −RcbscTP,isxc − R
(

sya + syc
)

cbccTP,i + oza + ΔzW

(6)�i,j�i,j = Δ�i,j (i = A,C; j = radial, axial)

Next, the measurement uncertainties of the PIGEs, 
U(PIGEs) , are calculated as the RSS values of the sensitivity 
coefficients, RSSPIGEs , multiplied by the measurement uncer-
tainties U

(

ΔRi,j,k

)

 [Eq. (9)] [36, 37]. The units for U(PIGEs) , 
U
(

ΔRi,j,k

)

 and RSSPIGEs are summarized in Table 2. Here, it 
is assumed that the measurement uncertainties U

(

ΔRi,j,k

)

 are 
identical over the measuring paths in Fig. 4, as the uncertain-
ties are affected by the measuring devices and systematic 
and non-systematic errors of the controlled axes, as stated 
in Sect. 1.

(7)�i,j =

(

�T
i,j
�i,j

)−1

�T
i,j
Δ�i,j = �+

i,j
Δ�i,j

(8)PIGEs = f
(

ΔRi,j,k

)

=
∑

i,j,k

{

�f

�
(

ΔRi,j,k

)ΔRi,j,k

}

Table 2  Measurement 
uncertainty units for U(PIGEs) , 
U
(

ΔRi,j,k

)

 , and the RSS values

Item Unit Description

U(PIGEs) μm for offset errors, 
{

oya, oza, oxc, oyc
}

μrad for squareness 
errors,

{

sya, sza, sxc, syc
}

Measurement uncertainties for identified PIGEs

U
(

ΔRi,j,k

)

μm Measurement uncertainties of measured data ΔRi,j,k

RSSPIGEs μm/μm for offset errors, 
{

oya, oza, oxc, oyc
}

μrad/μm for squareness 
errors,

{

sya, sza, sxc, syc
}

RSS values of the sensitivity coefficients
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The measurement uncertainty U(PIGEs) is affected by 
both RSSPIGEs and measurement uncertainty U

(

ΔRi,j,k

)

 . 
The RSSPIGEs are a function of angle b. To improve work-
piece geometric errors directly, it is essential to investi-
gate the effects of measurement uncertainty U(PIGEs) on 
the measurement uncertainty U

(

��i

)

 along the toolpaths 
(

xTP,i, yTP,i, zTP,i, aTP,i, cTP,i
)

 
(

i = 1,… , nW
)

 . The measure-
ment uncertainty U

(

��i

)

 is determined as shown in Eq. (10) 
[using Eq.  (2)]. Here, the units for U

(

��i

)

 and RSSVE,j,i 
(j = x, y, z) are μm and μm/μm, respectively.

where:

The measurement uncertainty U
(

��i

)

 
(

i = 1,… , nW
)

 is 
affected by both RSSVE,j,i 

(

i = 1,… , nW ; j = x, y, z
)

 (which 
is in turn affected by angle b) and measurement uncer-
tainty U

(

ΔRj,k,m

)

 (which is constant). Thus, the measure-
ment uncertainty U

(

��i

)

 can be improved by decreasing 
RSSVE,j,i 

(

i = 1,… , nW ; j = x, y, z
)

 ; this is achieved in a 
cost-effective manner by determining the optimal angle 
b. The effect of angle b on RSSVE,j,i along the toolpaths 
(

xTP,i, yTP,i, zTP,i, aTP,i, cTP,i
)

 
(

i = 1,… , nW
)

 should be mini-
mized for optimal adaptive identification. For example, we 
explored the effect of angle b on the RSSVE,j,i along toolpaths 
of the ISO 10791-7 cone-shaped testpiece, and optimized 
angle b to minimize unwanted effects. The case study is 
described in Sect. 3.

(9)U(PIGEs) = RSSPIGEs × U
(

ΔRi,j,k

)

=

√

√

√

√

√

∑

i,j,k

{

�f

�
(

ΔRi,j,k

)

}2

× U
(

ΔRi,j,k

)

(10)U
�

��i

�

=

⎡

⎢

⎢

⎣

U
�

xVE,i
�

U
�

yVE,i
�

U
�

zVE,i
�

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

RSSVE,x,i
RSSVE,y,i
RSSVE,z,i

⎤

⎥

⎥

⎦

× U
�

ΔRj,k,m

�

RSSVE,x,i =

√

√

√

√

8
∑

n=1

�2

i
(1, n),

RSSVE,y,i =

√

√

√

√

8
∑

n=1

�2

i
(2, n),

RSSVE,z,i =

√

√

√

√

8
∑

n=1

�2

i
(3, n),

�i = ��coeff ,i ×
[

RSSoya RSSoza RSSsya RSSsza RSSoxc RSSoyc RSSsxc RSSsyc
]T

3  Case study

3.1  Determination of the optimal measurement 
path

As an example, the optimal angle b is determined for the 
cone-shaped testpiece of ISO 10791-7, M3_15 [17]; this 
standard requires simultaneous control of five axes. The 
testpiece dimensions are shown in Fig. 5 and Table 3. In 
Sect. 3.3, DBB measurement (equivalent to machining) 
is performed to measure the radial deviation of the lower 
surface of the cone without and with PIGE compensation. 
The testpiece diameter D is 200 mm (not 80 mm in ISO 
10791-7 [17]) because the nominal length of the experi-
mental DBB is 100 mm. The spindle axis is constrained 
to lie tangential to the cone surface, and the toolpaths 
(

xTP,i, yTP,i, zTP,i, aTP,i, cTP,i
)

 (i = 1,… , 720) according to 
testpiece angle � are calculated as shown in Fig. 6. Here, 
nW = 720 , because the toolpath is calculated as � is varied 
0°–360° in steps of Δ� = 0.5◦.

The simulation sequence is summarized in Fig. 7. First, 
angle b in the range [0◦, 60◦] with an interval Δb = 5° is cho-
sen and RSSPIGEs is calculated using Eq. (9) (Fig. 8). Note 
that RSSPIGEs varies with angle b. As that increases, the 
RSSPIGEs for 

{

oya, oyc, sza
}

 (which reflects the sensitivity in 
the y-direction) decrease, and the measurement uncertain-
ties of 

{

oya, oyc, sza
}

 are thus reduced. In contrast, as angle 
b increases, the RSSPIGEs for 

{

oza, oxc, sya, sxc, syc
}

 (which 
reflect sensitivity in the x- and z-directions) increase, and 

the measurement uncertainties of 
{

oza, oxc, sya, sxc, syc
}

 are 
thus increased. However, it is not essential to improve the 
RSSPIGEs of all PIGEs. The reduction of workpiece geometric 
errors mainly requires an analysis of the effects of RSSPIGEs 
on the volumetric error ��i along testpiece toolpaths. As 
such, we used small (25°) and large (50°) angles of b to 
investigate the effect of this angle on volumetric error ��i 
over the cone-shaped testpiece.

RSSVE,i,j (i = x, y, z; j = 1,… , 720) were calculated 
in Cartesian coordinates using Eq. (10) (Fig. 9a). The 
RSSVE,i,j vary because the effects of RSSPIGEs on volu-
metric error ��i change with testpiece angle ψ. The 
peak-to-valley (PV) values of RSSVE,i,j are greater at 
a large angle of b (50°) than at a small angle (25°). 
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However, not all  RSSVE,i,j  affect workpiece geo-
metric errors, including the radial deviation of the 
cone lower surface; the radial deviations at that sur-
face are critical for evaluating the cone-shaped test-
piece because they reflect the lack of precise data on 
roundness. Thus, RSSVE,i,j  (i = x, y, z; j = 1,… , 720) 
in the Cartesian coordinate system are transformed 
into a cylindrical coordinate system, i.e., RSSVE,i,j 
(i = radial, tangential, axial; j = 1,… , 720) (Fig. 9b). This 

yields PV values of RSSVE,i,j (i = radial; j = 1,… , 720) 
of 0.3 and 0.2 μm/μm for angles of b of 25° and 50°, 
respectively. This reveals that testpiece radial deviation 
is further improved (by about 33%) when PIGEs are 
identified at b = 50° and compensated for, compared to 
the case when b = 25°. To determine the optimal angle 
b, the sum of the RSSVE,i,j  (i = radial; j = 1,… , 720) 
along toolpaths 

(

xTP,i, yTP,i, zTP,i, aTP,i, cTP,i
)

 (i = 1,… , 720) 
is calculated as shown in Fig.  10. The sum of the 
RSSVE,i,j  (i = radial; j = 1,… , 720) changes accord-
ing to angle b ;  the minimum (optimal)  value 
occurs when b = 50°. Note that the sum of RSSVE,i,j 
(i = tangential, axial; j = 1,… , 720) increases with angle 
b, but this does not affect testpiece accuracy.

Fig. 5  Cone-shaped testpiece

Table 3  Dimensions of the cone-shaped testpiece

Parameter Value Description

d 125 mm Offset from C-axis
D 200 mm Diameter of bottom surface
p 116 mm Offset from A-axis
θ 15° Half-apex angle
β 10° Inclination angle
ψ [0°, 360°] Testpiece angle

Fig. 6  Toolpath commands for the cone-shaped testpiece

Fig. 7  Simulation sequence to derive the optimal angle b 
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3.2  Experiments

3.2.1  PIGE identification according to angle b

The PIGEs of an experimental machine tool (VMD 
600/5AX; Doosan Machine Tools Co. Ltd., Republic 
of Korea) were identified at b angles of 50° (the opti-
mal condition) and 25° using the wireless Trinity probe 
(Fig. 11). To identify the PIGEs, static data were col-
lected over the range [− 90°, 30°] in steps of Δa = 15° 
(sample number nA = 9) for the A-axis, and over the range 
[0°, 360°] in steps of Δc = 45° (sample number nC = 9) for 
the C-axis.

The positional deviations 
(

xM,i, yM,i, zM,i

)

 along all 
measurement paths exhibited large PVs (Fig.  12, in 
black) because the PIGEs were high. When the deviations 
(

xM,i, yM,i, zM,i

)

 were inserted into Eqs. (5–8), the PIGEs 
shown in Fig. 13 were identified. The values differed, 
which was attributable to the various sensitivity coeffi-
cients of Eq. (8) that depend on angle b. By compensat-
ing the identified PIGEs using G-code modification, the 
positional deviations 

(

xM,i, yM,i, zM,i

)

 were clearly improved 
at b angles of 25° and 50° (Fig. 12, in red), as was the 
measurement path. However, this does not guarantee direct 
improvements in workpiece geometric errors. Thus, we 
assessed how the PIGEs identified at b angles of 25° and 
50° affected such errors.

3.2.2  DBB measurement for the cone‑shaped testpiece

We performed DBB measurements (equivalent to test-
piece machining) to assess the radial deviation of the cone-
shaped testpiece (Fig. 14). A DBB (QC20-w; Renishaw 
plc., Kingswood, UK) was used to measure radial devia-
tions ΔRi (i = 1,… , 2132) at a nominal length R = 100 mm 
along the bottom circular path of the testpiece without and 
with compensation of the PIGEs identified at b angles of 
25° and 50°. For the DBB measurements, a ball was fixed 
on the workpiece table and another ball was fixed at the 
tool nose. Then, the distance between the two balls, along 
with the measurement path, were measured using a linear-
variable-differential-transformer sensor. The ball on the 

Fig. 8  Calculated RSSPIGEs by the angle b 

Fig. 9  RSSVE,i,j values at b angles of 25° and 50°
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workpiece table deviated from the nominal position in the 
coordinate system {�} due to two main factors: the PIGEs 
of the machine tool itself [41] and the set-up error caused 
by imperfection of the clamping device used for the ball. 

However, the set-up error of the experimental clamping 
device is negligible [42]. The deviation of the ball on the 
workpiece table was mainly affected by PIGEs and can be 
further reduced by compensating for the identified PIGEs. 
Thus, we used the raw measured deviation ΔRi as the radial 
deviation, without eliminating the eccentric center of the 
least squares circle [43], to investigate the PIGE effect for 
the cone-shaped testpiece.

Without PIGE compensation (Fig. 15), the PV values 
were large, i.e., 94.8 and 95.5 μm in the counter-clockwise 
(CCW) and clockwise (CW) directions, respectively. Thus, 
the DBB measurements were repeated with PIGE compen-
sation (Fig. 13). For angle b = 25° (Fig. 16a, b), in black], 
the PVs improved to 22.6 and 27.6 μm in the CCW and 
CW directions, respectively, showing the effectiveness of 
PIGE identification and compensation. However, this was 
achieved by improving the volumetric errors of the experi-
mental machine tool, rather than by directly improving the 
workpiece geometric errors. Thus, the improvements were 
significant but limited. The PVs with compensation for the 
identified PIGEs at b = 50° (Fig. 16a, b), in red] were 16.4 
and 22.9 μm in the CCW and CW directions, respectively. 
Thus, the radial deviation values were further improved by 
27% and 17%, respectively, after compensating for the iden-
tified PIGEs at the optimal angle. Therefore, workpiece geo-
metric errors can be reduced cost-effectively simply by using 
an optimal angle b, rather than by decreasing the uncertain-
ties of measured data.

4  Summary and conclusion

The rotary axis PIGEs can be identified using the method 
in ISO 10791-6. However, the method is not optimized to 
reduce PIGE measurement uncertainties, associated with 
workpiece geometric errors. Thus, we proposed an adaptive 
identification method. The measurement paths for adaptive 
identification of rotary axis PIGEs described in ISO 10791-6 
were modeled according to the initial angle of a precision 
ball installed on a workpiece table. PIGEs were calculated 
as the sum of the sensitivity coefficients multiplied by the 
measured deviations, and PIGE measurement uncertainties 
were defined as the RSS values of the sensitivity coefficients 
multiplied by the uncertainties of the measured data. The 
effects of the RSS values on workpiece geometric errors 
were explored using an error synthesis model. The effect 
of the summed RSS values on volumetric errors along the 
workpiece toolpath was calculated and used as the criterion 
for the optimal initial angle. Finally, PIGEs were identified 
using an optimized measurement path to reduce workpiece 
geometric errors. The main findings of our study are as 
follows:

Fig. 10  Sum of RSSVE,i (i = radial, tangential, axial) over the test-
piece and the range of angle b 

Fig. 11  Experimental set-up for different angles b 
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Fig. 12  Measured positional 
deviations without/with com-
pensation
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(1) To determine the PIGEs of rotary axes, ISO 10791-6 
recognizes several methods using a DBB, R-test device, 
and touch-trigger probe, and defines the test conditions. 
Most approaches use PIGE measurements to reduce the 
volumetric errors of machine tools to, in turn, reduce 
workpiece geometric errors. However, such approaches 
are vague and indirect; although the improvements are 
significant, they are limited. It is essential to optimize 
the well-known method for PIGE measurements associ-
ated with workpiece geometric errors and reduce such 
errors directly.

(2) An error-budgeting model is essential for calculating 
the measurement uncertainties of identified PIGEs, 
which reflect a lack of precise knowledge. Calcu-

Fig. 13  PIGEs identified at angle b 

Spindle axis

R+ΔRi

Cone-shaped
testpiece (virtual)

DBB

x

y
z

Fig. 14  DBB measurement set-up

Fig. 15  Measured radial deviations of the DBB measurements (with-
out compensation)

Fig. 16  Measured radial deviations of the DBB measurements (with 
compensation)
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lated measurement uncertainties are used to derive 
the PIGE-measuring capabilities of the various meth-
ods. Such approaches focus mainly on the effects of 
measuring devices, and systematic and non-system-
atic errors of the controlled axes, on the identified 
PIGEs. However, PIGE measurement uncertainties 
are also affected by the measurement path, which 
therefore cannot be ignored. PIGE measurements 
should be performed along an optimized path, i.e., 
a path that minimizes the effect of the RSS values of 
the PIGE sensitivity coefficients on workpiece geo-
metric errors.

(3) Identification of and compensation for the PIGEs of 
rotary axes may reduce workpiece geometric errors, 
because the PIGEs are the most significant errors of 
five-axis machine tools. Equivalent DBB experiments 
(without compensation) revealed that the radial devia-
tion values of the ISO 10791-7 cone-shaped testpiece 
were 94.8 and 95.5 μm in the CCW and CW direc-
tions, respectively. However, the radial deviation values 
improved to 22.6 and 27.6 μm after compensation for 
the identified PIGEs along a common measurement 
path. Our strategy proved effective; the radial deviation 
values improved by 16.4 and 22.9 μm (27% and 17% 
improvements, respectively) when we adaptively iden-
tified and compensated for PIGEs along the optimal 
measurement path. Our method is also cost-effective. In 
addition, the improvements could be further increased 
by measuring and compensating the linear axis geomet-
ric errors.

(4) Five-axis machine tools play a significant role in the 
machining of various complex-shaped workpieces; 
their application is not limited to the ISO 10791-7 
cone-shaped testpiece used as an example in this 
study. The identification method in ISO 10791-6 
should be optimized in terms of workpiece geometric 
error, to maximize error reduction in a direct man-
ner. This can be done by analyzing the RSS values of 
the sensitivity coefficients. Measurements can then be 
optimized merely by adjusting the setting angle of a 
ball on the workpiece table (or the height of the ball 
from the table), without changing any methods of ISO 
10791-6.
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