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Abstract
This paper deals with the problems of high detection cost and low detection efficiency in geometric errors identification of 
five-axis welding equipment, proposing a new method for rotating axis equipment, based on screw theory and monocular 
vision. In this paper, a low-cost and high-precision pose measurement method is first proposed, while the screw theory is used 
to establish a kinematics model for five-axis welding equipment. Furthermore, an identification method for the kinematics 
parameters and geometric errors of the rotating axis is proposed. In order to verify the validity and feasibility of the proposed 
identification scheme, the high detection accuracy of the pose detection system is first verified. Following, the significant 
improvement of the motion accuracy, after geometric errors identification, is verified, based on sampling within the working 
range of the five-axis welding equipment. The experimental results show that, the average value of the relative direction error 
of the five-axis welding equipment is reduced from 0.5427°, prior to identification, to 0.0478°, post identification, while the 
average value of the relative position error is reduced from 0.1472 to 0.0174 mm, respectively. Therefore, the identification 
scheme is proven can effective in identifying the geometric errors for the rotating axis, while it significantly improves the 
motion accuracy of the five-axis welding equipment.

Keywords Monocular vision · Kinematics modeling · Five-axis welding equipment · Geometric error identification

1 Introduction

Compared to the three-axis motion platform, the five-axis 
platform has higher processing flexibility and efficiency [1]. 
However, due to the introduction of two rotating axes, more 
geometric errors are generated, resulting in greater process-
ing errors for the five-axis platform. The geometric errors 
in the rotating axes of the five-axis platform have a more 
complicated impact on the accuracy than those in the linear 
axes as they comprehensively affects the accuracy of the 
actuator's position and orientation relative to the workpiece 
and produce a highly nonlinear kinematics relationship. 

Therefore, the identification of the rotating axis error can 
significantly improve the motion accuracy of the five-axis 
welding equipment. Geometric errors are usually divided 
into position-dependent geometric errors (PDGEs) and posi-
tion-independent geometric errors (PIGEs) [2, 3]. PDGEs 
are mainly caused by manufacturing defects relating to 
machine tools, while PIGEs are mainly caused by assembly 
defects [4–6]. The geometric error measurement methods of 
the five-axis platform are generally divided into direct meas-
urement methods and indirect measurement methods [7, 8]. 
The direct measurement method, uses instruments to directly 
measure a single geometric error item. The method is simple 
but the measurement efficiency is low. The indirect measure-
ment method solves the geometric errors by establishing a 
mathematical model of the error [9], exhibiting high detec-
tion efficiency. Many researchers have proposed different 
geometric errors identification methods based on different 
measuring instruments. M. Tsutsumi et al. [10] used a ball-
bar to identify the PIGEs of the five-axis platform, based 
on the indirect measurement method, while they verified 
the feasibility of this method through experiments. High-
precision testing instruments, such as Capball [11, 12], laser 
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tracker [13, 14], R-test [15, 16], etc. can be used to indirectly 
detect geometric errors. In recent years, the rapid develop-
ments in the computer vision field, provided achievements 
that have gradually been used in the research of parameter 
identification of industrial automation equipment. The use 
of computer vision as a detection method can largely reduce 
the cost and complexity of detection compared to the use 
of traditional expensive and precise detection instruments 
[17–20]. Wang et al. [21] proposed a robot identification 
method based on machine vision; Yusuke et al. [18] used 
a camera to measure the two-dimensional position error of 
a machine tool; Liu W et al. [22] used binocular vision to 
identify the PIGEs of a five-axis platform. As mentioned 
above, traditional high-precision measurement equipment 
requires a high degree of operational expertise and com-
plexity. In addition, traditional measurement methods are 
time-consuming and difficult to meet the needs of indus-
trial automation processes for high-volume error detection, 
while the use of vision methods provides great convenience, 
in terms of automated operation and programmability. The 
main contribution of this paper is to propose a low-cost and 
high-precision method for the identification of geometric 
errors in rotating axes, based on an improved pose measure-
ment method. The goal is to achieve efficient calibration of 
a five-axis motion stage, in an automated process, so as to 
meet specific needs, such as five-axis welding processing.

The article is organized as follows: Sect. 2 proposes an 
optimized algorithm for pose measurement and establishes 
the kinematics model of the five-axis welding equipment. 
Section 3 proposes a geometric errors identification method 
of rotating axes. In Sect. 4, experiments are carried out on 
the five-axis welding equipment, in order to verify the feasi-
bility and effectiveness of the proposed modeling and iden-
tification schemes. Finally, Sect. 5 summarizes the proposed 
concept.

2  Pose Measurement System 
and Kinematics Modeling of Five‑Axis 
Welding EQUIPMENT

2.1  An Optimized Direct Linear Transform (DLT) 
Algorithm for Pose Measurement

As shown in Fig. 1, the monocular camera is fixed at the 
end of the Z-axis actuator, the checkerboard target (hereafter 
referred to as the target) is fixed on the C-axis table. The 
spatial pose of the camera is determined by the amount of 
movement of the X, Y, and Z axes, while the spatial pose of 
the target is determined by the amount of movement of the 
A and C axes.

The imaging of the target, according to the ideal camera 
imaging model, is shown in Fig. 2, including 4 coordinates 

systems: the camera coordinates system Oc−XcYcZc , the tar-
get coordinates system Ob−XbYbZb , the image physical coor-
dinates system o−xy and the image pixel coordinates system 
o−uv . The PnP(Perspective-n-Point) problem is described 

as knowing the 3D position point 

⎛⎜⎜⎜⎝

Xc

Yc
Zc
1

⎞⎟⎟⎟⎠
 and the correspond-

ing 2D position 
⎛⎜⎜⎝

u

v

1

⎞⎟⎟⎠
 of the projection, and solving the pose 

matrix M2 of the camera, as shown in Eq. (1):

Fig. 1  Schematic diagram of five-axis welding equipment structure

Fig. 2  Imaging model of monocular camera and target
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where M1 =

⎡
⎢⎢⎣

fx 0 u0 0

0 fy v0 0

0 0 1 0

⎤
⎥⎥⎦
 is the internal parameter matrix 

and M2 =

[
r3×3 t3×1
0T 1

]
 is the external parameter matrix; 

r3×3 =

⎡⎢⎢⎣

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎥⎥⎦
 is the rotation matrix and t3×1 =

⎡⎢⎢⎣

t1
t2
t3

⎤⎥⎥⎦
 

is the translation vector in the matrix M2 . The calibration 
method of Zhang Zhengyou [23] was used to calibrate the 
camera's internal parameter matrix M1.

Expanding the Eq. (1) and canceling out � , the follow-
ing equation can be obtained:

Since the number of corresponding points of 3D-2D 
is greater than 6, the pose matrix M2 can be obtained by 
finding the least square solution of the above overdeter-
mined equation. When the above-mentioned traditional 
DLT method is used to solve the external parameter matrix 
M2 , this is regarded as composed of 12 unknown numbers, 
and its connection is ignored. In fact, although the rotation 
matrix r3×3 in the matrix M2 has 9 unknown numbers, it 
has only three degrees of freedom. Therefore, this paper 
proposes an optimized DLT algorithm to solve the pose 
matrix M2 . Considering the influence of noisy data, the 
following method is used to estimate the rotation matrix 
r3×3:

The solved rotation matrix r̃3×3 is substituted into 
Eq. (2) and then, the translation vector t3×1 is solved using 
the Singular Value Decomposition (SVD) method.

(1)�

⎡
⎢⎢⎣

u

v

1

⎤
⎥⎥⎦
=

⎡⎢⎢⎣

fx 0 cu 0

0 fy cv 0

0 0 1 0

⎤
⎥⎥⎦

�
r3×3 t3×1
0T 1

�⎡⎢⎢⎢⎣

Xc

Yc
Zc
1

⎤⎥⎥⎥⎦
=M1M2

⎡⎢⎢⎢⎣

Xc

Yc
Zc
1

⎤⎥⎥⎥⎦

(2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xcfx 0

Ycfx 0

Zcfx 0

fx 0

0 Xcfy
0 Ycfy
0 Zcfy
0 fy

Xccu − Xcu Xccv − Xcv

Yccu − Ycu Yccv − Ycv

Zccu − Zcu Zccv − Zcv

cu − u cv − v

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11
r12
r13
t1
r21
r22
r23
t2
r31
r32
r33
t3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0

(3)r̃3×3 =
(
r3×3 ⋅ r

T
3×3

)− 1

2
⋅ r3×3

2.2  Kinematics Model of Five‑Axis Welding 
Equipment

According to the principle of pose measurement system, the 
camera coordinates system on the Z axis can be defined as 
the actuator coordinates system{A}, while the target coor-
dinates system on the C axis can be defined as the work-
bench coordinates system{W}. In order to obtain the kin-
ematics model from the actuator coordinates system{A} to 
the workbench coordinates system{W}, the transformation 
relationship between the coordinates systems is required. 
The term agw represents the pose homogeneous transfor-
mation matrix of the workbench coordinates system{W} 
relative to the actuator coordinates system{A}. Based on 
product of exponentials formula [1], the forward kinemat-
ics model from the workbench coordinates system{W} to 
the actuator coordinates system{A} is:

where the term agw(0) represents the initial pose matrix of 
the workbench coordinates system {W} relative to the actua-
tor coordinates system {A}. �x , �y , �z , �a and �c represent the 
screw coordinates of the X, Y, Z, A and C axes respectively.x
,y,z,�a and �c represent the motion components of X, Y, Z, A 
and C axes respectively.

In this section, a kinematics model of the five-axis weld-
ing machine is developed, based on the derivation of the 
screw theory (Appendix 1). The specific matrix form of 
forward kinematics model is mathematically expressed as:

where

The ideal kinematics parameters and screw coordinates 
are expressed as follows:

�x =

[
�x
03×1

]
,�x =

[
1 0 0

]T,�y =
[

�y
03×1

]
,�y =

[
0 1 0

]T

, �z =
[

�z
03×1

]
, �z =

[
0 0 1

]T  ,  �a =

[
−�a × �a

�a

]

(4)agw(x, y, z, 𝜃a, 𝜃c) = e�̂z⋅ze�̂x⋅xe�̂y⋅ye�̂a⋅𝜃ae�̂c⋅𝜃c(agw(0))

(5)

agw(x, y, z, 𝜃a, 𝜃c) = e�̂z⋅ze�̂x⋅xe�̂y⋅ye�̂a⋅𝜃ae�̂c⋅𝜃c (agw(0))

=

[
I3×3 �Z ⋅ z

01×3 1

][
I3×3 �x ⋅ x

01×3 1

][
I3×3 �y ⋅ y

01×3 1

]
.

[
e[��]𝜃a (I3×3 − e[��]𝜃a)�a
01×3 1

][
e[��]𝜃c (I3×3 − e[��]𝜃c)�c
01×3 1

]
⋅

(agw(0)) =

[
R3×3 �3×1

01×3 1

]
(agw(0))

(6)R3×3 = e[��]�ae[��]�c

(7)
�3×1 = (I3×3 − e[��]�a)�a + e[��]�a(I3×3 − e[��]�c)�c

+(��x + ��y + ��z)
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, �a=
[
1 0 0

]T , �a=
[
0 0 0

]T , �c =

[
−�c × �c

�c

]

,�c=
[
0 0 1

]T,�c=
[
0 0 0

]T.

3  A Geometric Errors Identification Method 
of Rotating Axis

In this section, based on the pose measurement system of the 
monocular camera, a geometric errors identification scheme 
for the five-axis welding equipment is designed. Although it 
is difficult to identify the kinematics parameters directly by 
five-axis linkage, this paper proposes an analytical method, 
based on the least squares method, to identify the kinemat-
ics parameters. Then, the geometric errors of the A-axis and 
C-axis identification follows. The flowchart of the geometric 
errors identification method is shown in Fig. 3.

3.1  Kinematics Parameters Identification Method 
for Kinematic Chain

Based on the principle of the monocular camera measure-
ment, the target on the platform is fixed, while the monocu-
lar camera is used to take an image of the calibration target, 
to calculate the pose matrix agw , based on the image infor-
mation. The kinematic chain of the five-axis welding equip-
ment is shown in Fig. 4.

Equation (5) is simplified as follows:

where

(8)agw=

[
R3×3 �3×1

01×3 1

]
(agw(0))

where�� , �� , �1 , �2 , �� , �� , �� , �� , �� are as listed in Table 1.
According to Eq. (8), the matrix R3×3 in Eq. (9) can be 

obtained as follows:

The values of W1,W2,W3,W4,W5,W6,W7,W8,W9 are listed in 
Table 2.

According to Eq.  (8), the following expression can be 
obtained:

(9)

⎧
⎪⎨⎪⎩

R3×3 = e[�1]�1e[�2]�2

�3×1 = (I3×3 − e[�1]�1)�1 + e[�1]�1(I3×3 − e[�2]�2)�2

+(�1x + �2y + �3z)

(10)

R3×3 = (I3×3 +
[
�1

]
sin(�1) +

[
�1

]2
(1 − cos(�1)))⋅

(I3×3 +
[
�2

]
sin(�2) +

[
�2

]2
(1 − cos(�2)))

= W1 +W2 sin(�1) +W3(1 − cos(�1)) +W4 sin(�2)

+W5 sin(�1) sin(�2) +W6(1 − cos(�1)) sin(�2)

+W7(1 − cos(�2)) +W8 sin(�1)(1 − cos(�2))

+W9(1 − cos(�1))(1 − cos(�2))

(11)
[
R3×3 �3×1

01×3 1

]
=
(
agw

)(
agw(0)

)−1

Fig. 3  Schematic diagram of the identification algorithm

Fig. 4  Kinematics chain of five-axis welding equipment

Table 1  The parameters value corresponding to the symbols

Symbol Parameter value Symbol Param-
eter 
value

�1 �a �2 �c

�1 �a �1 �x

�2 �c �2 �y

�2 �c �3 �z

�1 �a
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where, agw represents the pose matrix, while the welding 
equipment is represented by (x, y, z, �1, �2);agw(0) represents 
the pose matrix as the motion component of each axis of the 
platform is (0, 0, 0, 0, 0) in the initial state.

Let aGw =
(
agw

)(
agw(0)

)−1 , then the following expres-
sion can be obtained:

where, the pose matrix agw and agw(0) can be obtained by 
image data processing, provided by a camera, so aGw can be 
measured by a monocular camera.

Regarding the matrix R3×3 in matrix aGw , it can be 
solved according to Eq.  (10). For any i ∈ {1, 2, 3} and 
j ∈ {1, 2, 3},aG(i,j)

w = R
(i,j)

3×3
 . Each element in the matrix R3×3 

can be matched to a corresponding expression. Consider-
ing the element aG(1,1)

w
 (which is also R(1,1)

3×3
)in the first row 

and the first column of aGw as an example, set:

Next, the following expression can be obtained:

(12)aGw =

[
R3×3 �3×1

01×3 1

]

(13)W (1,1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W
(1,1)

1

W
(1,1)

2

W
(1,1)

3

W
(1,1)

4

W
(1,1)

5

W
(1,1)

6

W
(1,1)

7

W
(1,1)

8

W
(1,1)

9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)Θ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

sin(�1)

1 − cos(�1)

sin(�2)

sin(�1) sin(�2)

(1 − cos(�1)) sin(�2)

1 − cos(�2)

sin(�1)(1 − cos(�2))

(1 − cos(�1))(1 − cos(�2))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Actually, for any i ∈ {1, 2, 3} and j ∈ {1, 2, 3} , the follow-
ing expressions can be obtained:

When the five-axis welding equipment is at the initial 
position, the initial pose matrix agw(0) can be obtained. As 
the five-axis welding equipment moves to different positions, 
the pose matrix agw,corresponding to the different positions,is 
obtained, while then the matrixes aG(i,j)

w  and Θ1 , correspond-
ing to different positions, are obtained. Moreover, Eq. (16) 
is a linear type of equation, while the matrix W (i,j) can be 
obtained through multiple sets of different aG(i,j)

w  and Θ1 , 
using the least square method. Therefore, according to Eqs. 
(17) (18) (19) and (20), the values of �1 and �2 are easily 
derived from matrix W2 and matrix W4,as shown in Table 2.

The vector �3×1 in Eq. (12) is simplified into the follow-
ing expression:

where vector �1 =
⎡⎢⎢⎣

�
(1,1)

1

�
(2,1)

1

�
(3,1)

1

⎤⎥⎥⎦
,vector �2 =

⎡⎢⎢⎣

�
(1,1)

2

�
(2,1)

2

�
(3,1)

2

⎤⎥⎥⎦
 , the values 

of Ω 1 , Ω 2 and W10 are listed in Table.3.

(15)aG(1,1)
w

= ΘT
1
W (1,1)

(16)

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

aG
(i,j)
w = ΘT

1
W (i,j)

W (i,j) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W
(i,j)

1

W
(i,j)

2

W
(i,j)

3

W
(i,j)

4

W
(i,j)

5

W
(i,j)

6

W
(i,j)

7

W
(i,j)

8

W
(i,j)

9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)W2 =

⎡⎢⎢⎣

0 −�
(z)

1
�

(y)

1

�
(z)

1
0 −�

(x)

1

−�
(y)

1
�

(x)

1
0

⎤⎥⎥⎦

(18)W4 =

⎡⎢⎢⎣

0 −�
(z)

2
�

(y)

2

�
(z)

2
0 −�

(x)

2

−�
(y)

2
�

(x)

2
0

⎤⎥⎥⎦

(19)�1 =
[
�

(x)

1
�

(y)

1
�

(z)

1

]T

(20)�2 =
[
�

(x)

2
�

(y)

2
�

(z)

2

]T

(21)�3×1 = Ω 1�� + Ω 2�� +W10

[
x y z

]T

Table 2  The matrix symbol and value

Matrix symbol Value Matrix symbol Value

W1 I3×3 W6

[
�1

]2[
�2

]
W2

[
�1

]
W7

[
�2

]2
W3

[
�2

]2 W8

[
�1

][
�2

]2
W4

[
�2

]
W9

[
�1

]2[
�2

]2
W5

[
�1

][
�2

]
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Each element in the vector �(1)

3×1
 can be matched to the 

corresponding expression. Considering the first element �(1)

3×1
 

in the �3×1 vector as an example, the following expression 
can be obtained:

where,

For �(2)

3×1
 and �(3)

3×1
 , the same expressions can be used:

The values of �1 and �2 have already been calculated, as 
previously described. Substituting the values of �1 and �2 
into Ω1 and Ω2 , and considering �1 、 �2、x、y and z as the 
recorded components of each motion axis, the expressions 
of Ψ1,Ψ2 and Ψ3 are derived. When the five-axis welding 
equipment moves to different positions, the aGw is obtained, 
followed by the respective �(1)

3×1
 and Ψ1 . Considering that 

Eq. (22) is a linear equation, the Φ(1) can be obtained through 
multiple sets of different �(1)

3×1
 and Ψ1 , using the least square 

(22)�
(1)

3×1
= ΨT

1
Φ(1)

(23)Ψ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω
(1,1)

1

Ω
(1,2)

1

Ω
(1,3)

1

Ω
(1,1)

2

Ω
(1,2)

2

Ω
(1,3)

2

x

y

z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)Φ(1)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
(1,1)

1

�
(2,1)

1

�
(3,1)

1

�
(1,1)

2

�
(2,1)

2

�
(3,1)

2

�
(1,1)

1

�
(1,1)

2

�
(1,1)

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)�
(2)

3×1
= ΨT

2
Φ(2)

(26)�
(3)

3×1
= ΨT

3
Φ(3)

method. The values of Φ(2) and Φ(3) can also be obtained. 
Therefore, vector �1 and vector �2 can be easily derived from 
Φ(1),Φ(2) and Φ(3).

3.2  Identification of Geometric Errors for Rotating 
Axis

Considering the case of the C-axis as an example, a single 
rotating axis has 6 geometric errors, as shown in Fig. 5. It 
will produce errors in the six degrees of freedom in space, 
including one axial position error, which is represented by 
�xc;two radial position errors, which are represented by �yc 
and �zc ; three angle errors, represented by �xc,�yc and �zc , 
respectively were used to describe the angular error of the 
X-axis, Y-axis, and Z-axis of the coordinates system.

The composite error matrix TD
ec

 , formed by the 6 geomet-
ric errors on the C-axis, is as follows:

where Tx(∗) , Ty(∗) and Tz(∗) , represent the 4 × 4 homogene-
ous transformation matrix of translational motion along the 
x-axis, y-axis and z-axis, respectively; Rx(∗),Ry(∗) and Rz(∗) 
represent the 4 × 4 homogeneous transformation matrix of 
the rotational motion around the X-axis, Y-axis and Z-axis, 
respectively. Since the geometric errors are very small quan-
tities, expanding the expression TD

ec
 and ignoring the higher-

order terms in TD
ec

 , provides a simplified expression of the 
error matrix TD

ec
 as follows:

When identifying the geometric errors of a single axis, 
in order to prevent other axes from affecting the geomet-
ric errors measurement of the specific axis, the other axes 
are maintained in their initial position, while only the 

(27)TD
ec
= Tx(�xc)T

y(�yc)T
z(�zc)R

x(�xc)R
y(�yc)R

z(�zc)

(28)TD
ec
=

⎡⎢⎢⎢⎣

1 −�zc �yc �xc
�zc 1 −�xc �yc
−�yc �xc 1 �zc
0 0 0 1

⎤⎥⎥⎥⎦

Table 3  The value of Ω1,Ω2 and W10

Matrix symbol Matrix value

Ω 1 I3×3 − e[�1]�1

Ω 2 e[�1]�1(I3×3 − e[�2]�2 )

W10

[
�1 �2 �3

]

Fig. 5  Geometric errors of the C axis
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investigated axis is moved. Regarding the C-axis, the respec-
tive kinematics model can be established as:

Therefore, Eq. (29) can be obtained as:

where,

The terms �c and �c have been calculated in Sect. 3.1, 
whereas agw and agw(0) can be obtained by a monocular 
camera. Therefore, for any �c , the corresponding TD

ec
 can be 

obtained according to Eq. (30). Therefore, when the axis 
is at �c , 6 geometric errors of C-axis can be obtained from 
Eq. (28).

After measuring A-axis and C-axis geometric errors at 
different positions, each error term can be smoothed and fit-
ted to obtain the expression for geometric errors compensa-
tion. For example, the C-axis can move within the range of 
360°, while each error term can be considered as a periodic 
function of �c with a maximum period of 2π. The following 
finite term Fourier series can be selected to fit the various 
errors:

4  Experiment

4.1  Inspection of Monocular Camera Measurement 
Accuracy

The vision measurement system in this article needs to have 
relatively high accuracy requirements for the pose measure-
ment. Therefore, the measurement accuracy is analyzed by 
separately moving the axis to a specified distance in the five-
axis welding equipment workspace. The feedback value by 
the motor encoder is regarded as the actual value da , while 
the value of the visual pose measurement is represented 
as dm . The accuracy of the vision measurement system is 
detected by examining the difference Δd between da and dm.

A single-axis motion experiment of the C-axis was per-
formed. The specific motion control commands are: rotate 2 
degree each time and rotate continuously for one cycle in a 
single direction, then calculate the angle error Δd generated 
by sampling points. The actual value da is obtained by cal-
culating the change between two encoder counts, before and 

(29)agw = e�̂c𝜃c(TD
ec
)(agw(0))

(30)TD
ec
= (e�̂c𝜃c)−1(agw)(

agw(0))
−1

(31)e�̂c𝜃c =

[
e[�c]𝜃c (I3×3 − e[�c]𝜃c)�c
01×3 1

]

(32)f (x) =
a0

2
+

n∑
k=1

(ak cos(kx) + bk sin(kx))

after. The measured value dm by monocular vision is 
obtained by calculating the change between the two camera 
external parameter matrices, before and after, as the pose 

matrix M2 =

[
r3×3 t3×1
01×3 1

]
 in Eq. (1). The measured value dm 

by monocular vision can be solved by the Eq. (33):

where r03×3 represents the rotation matrix and t03×1 represents 
the translation vector in the previous pose matrix M1;r13×3 
represents the rotation matrix and t13×1 represents the transla-
tion vector in the latter pose matrix M1.Δ(t) represents the 
displacement of this movement, while Δ(r) represents the 
respective rotation.

As shown in Fig. 6, the proposed optimized DLT algo-
rithm proposed exhibits higher detection accuracy in pose 
measurement than the traditional DLT algorithm. As shown 
in Fig. 6, the angular error of the optimized DLT algorithm, 
caused by the single-axis rotation of the C-axis, is within 
0.0025°, while the traditional DLT algorithm provides a 
slightly larger value. Comprehensive analysis shows that, 
the optimized DLT algorithm shows higher accuracy of pose 
measuring than the traditional algorithm, which meets the 
requirements of the process of parameter identification in 
a five-axis welding equipment, as presented in this paper.

4.2  Identification Experiment of Geometric Errors 
for Rotating Axis

In order to accurately identify the kinematics parameters, 
the following experiment is carried out. The physical map 
of the five-axis welding equipment is shown in Fig.  7, 
where a Basler monocular camera with a resolution of 5 
million pixels is used; the target is a 15 × 15 black and white 

(33)

⎧
⎪⎨⎪⎩

Δ(t) =
���t03×1 − t

1
3×1

���
Δ(r) = 2 arccos

��
1 + tr

�
r
0
3×3
rT
1 3×3

��
∕2

Fig. 6  Angle error of rotation C-axis
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chessboard, with 2 × 2mm squares. The sensor chip of the 
monocular camera is CMOS type and the frame rate is 14 
fps. The closed-loop control of each single axis based on 
motion controllers, servo drives and motors, while the com-
munication format is EtherCAT bus. Each motion axis pro-
vides real-time feedback of motor position signal based on 
incremental photoelectric encoder. The X, Y and Z axes are 
equipped with Panasonic AC servo motors and precision ball 
screw with a pitch of 5 mm, whereas their operating ranges 
are 425 mm, 375 mm and 220 mm, respectively. The motion 
assembly of A-axis consists of Panasonic AC servo motor 
and speed reducer, where the reduction ratio is 20:1. The 
motion of C-axis is realized by Akribis direct drive motor.

In the actual operation of the five-axis welding equip-
ment, the working stroke range of the A-axis is ± 25°, and 
the operating range of the C-axis is ± 180°. The A axis is 
sampled every 0.5° according to the full stroke, while C 
axis is sampled every 1° across the full stroke path. Since 
the imaging of the monocular camera requires that the tar-
get is within the view field of the camera, it is necessary to 
roughly determine the positions of the translation axes X, 
Y, and Z according to the positions of the A-axis and the 
C-axis, as well as ensure that the target imaging is clear. 
Three items of data are recorded during sampling: the initial 
pose matrix agw(0) at the initial position, the pose matrix agw 
when the axes of the platform are located at each sampling 
point, and the components (x, y, z, �1, �2) of each axis at the 
respective sampling point. According to Eq. (8), the initial 
pose matrix agw(0) is a key data in the modeling process. 
In order to eliminate random errors, the average value of 
multiple measurements is considered in the calculation of 
agw(0) . After identification, the actual kinematics parameters 
are listed in Table 4. The ideal and actual screw coordinates 
are shown in Table 5.

4.2.1  Identification of C‑Axis Geometric Errors

During the identification of geometric errors of the C axis, 
the other axes are remain at their initial positions, while 

the C axis is recorded every 1° within a range of ± 180°. 
According to the geometric errors identification method of 
the rotation axis, proposed in Sect. 3.2, the pose matrix of 
the target is measured at the sampling point, and the geo-
metric errors of the C axis are calculated at each sampling 
points. Finally, considering n = 4, the various geometric 
errors of the C axis are fitted according to Eq. (32). Figure 8 
illustrates the identified values of the geometric errors of 
the sampled C axis and the fitted curve. The points in Fig. 8 
represent the identified values at each angle, while the curve 
represents the fitted curve.

4.2.2  Identification of A‑Axis Geometric Errors

The identification method of the A-axis geometric errors is 
similar to that of C-axis. For this experimental platform, if 
only the A-axis is rotated and the X, Y, and Z axes remain 
still, the target will move out of the camera's field of view 
after the A-axis is rotated to a certain angle, causing the 
camera to fail to measure the target's pose. Therefore, only 
a small range of geometric errors identification is performed 
on the A axis here. The A-axis records a sampling point 
every 0.1° within a range of ± 7°, and the geometric errors 
are calculated at each sampling point. Considering n = 1, 
the geometric errors of the A-axis are fitted according to 
Eq. (32). Figure 9 shows the identified values of the geomet-
ric errors of the A-axis and their fitted curves.

4.3  Verification of the Identification Accuracy 
of Geometric Errors

In order to intuitively evaluate the motion accuracy of the 
five-axis welding equipment before and after the geomet-
ric errors identification, the relative position error and the 
relative direction error are defined, and used to evaluate the 
spatial pose accuracy. Figure 10 shows a common spiral-
machining trajectory of a five-axis welding equipment in the 
actual workspace. The trajectory maintains the same pose 
at any position, while the sampling points are uniformly 

Fig. 7  Experimental setup

Table 4  Actual kinematics parameters

Kinematics parameters Actual values

�a
[
0.9994 0.0071 0.0049

]T
�c

[
−0.0048 0.0049 1.0000

]T
�a

[
0 0.5670 0.8237

]T
�c

[
0.9156 0.4022 0

]T
�x

[
0.9999 0.0130 0.0025

]T
�y

[
−0.0059 0.9998 −0.0190

]T
�z

[
0.0049 0.0019 1.0000

]T
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selected within the trajectory, in order to analyze the accu-
racy, before and after error identification.

For any sampling point Si , the actual measured pose 
matrix of the workbench coordinates system {W} relative 
to the actuator coordinates system {A}, obtained by the 

monocular camera imaging is (R̃i
wa
, T̃ i

wa
) , where R̃i

wa
 denotes 

the rotation matrix and T̃ i
wa

 denotes the position vector in 
the pose matrix. Before geometric errors identification, 
the theoretical pose matrix of the workbench coordinates 

Table 5  Ideal and actual screw 
coordinates

Screw coordinates Ideal values Actual values

�x
[
1 0 0 0 0 0

]T [
0.9999 0.0130 0.0025 0 0 0

]T
�y

[
0 1 0 0 0 0

]T [
−0.0059 0.9998 −0.0190 0 0 0

]T
�z

[
0 0 1 0 0 0

]T [
0.0049 0.0019 1 0 0 0

]T
�a

[
0 0 0 1 0 0

]T [
−0.0031 0.8232 −0.5667 0.9994 0.0071 0.0049

]T
�c

[
0 0 0 0 0 1

]T [
0.4022 −0.9156 0.0064 −0.0048 0.0049 1

]T

Fig. 8  The identification value and fitting result of C-axis geometric errors

Fig. 9  The identification value and fitting result of A-axis geometric errors
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system {W} relative to the actuator coordinates system 
{A}, obtained by the ideal model is (R

i

wa
,T

i

wa
) . After geo-

metric errors identification, the theoretical pose matrix 
of the workbench coordinates system {W} relative to the 
actuator coordinates system {A}, obtained by the actual 
model is (

⌣

R

i

wa
,
⌣

T

i

wa
).

The relative direction error, before and after geomet-
ric errors identification, are defined as �R

i

wa
 and 𝛿

⌣

R

i

wa
 , 

respectively:

(34)𝛿R
i

wa
=
‖‖‖‖log((R̃

i
wa
)−1 ⋅ R

i

wa
)v
‖‖‖‖

where v denotes the transformation of rotation matrix to 
rotation vector according to the relationship between Lie 
group and Lie algebra.

The relative position error, before and after geometric 
errors identification, are defined as �T  and 𝛿

⌣

T  , respectively:

Figure 11 shows the relative position error and relative 
direction error at each sampling point Si , before and after 
geometric errors identification. Table 6 lists the average and 
maximum values of the relative position error and relative 
direction error. As shown in Table 6, the relative position 
error and relative direction error of the five-axis welding 
equipment have been significantly reduced after identifica-
tion, compared to their respective values prior to identifica-
tion. It is evident that, the identification method, as provided 
in this article, has a significant effect on improving the accu-
racy of the five-axis welding equipment.

(35)𝛿
⌣

R

i

wa
=
‖‖‖‖‖
log((R̃i

wa
)−1 ⋅

⌣

R

i

wa
)v
‖‖‖‖‖

(36)𝛿T =
‖‖‖‖T̃

i
wa

− T
i

wa

‖‖‖‖

(37)𝛿
⌣

T =
‖‖‖‖‖
T̃ i
wa

−
⌣

T

i

wa

‖‖‖‖‖

Fig. 10  A common spiral-machining trajectory

Fig. 11  Errors at each sampling point before and after geometric errors identification
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5  Conclusions

In order to deal with the problems of high cost and low effi-
ciency of geometric errors identification of five-axis welding 
equipment, this paper proposes a new method for rotating 
axes, based on screw theory and monocular vision.

(1) Based on the structural characteristics of the five-axis 
welding equipment, this paper proposes an optimized 
DLT algorithm for pose measurement, based on the 
monocular camera.

  The proposed method demonstrates its low cost and 
high accuracy and contributes, to a certain extent, to the 
automated process of effective calibration of five-axis 
welding equipment.

(2) According to the screw theory and the above mentioned 
pose measurement system, this papers proposes a geo-
metric errors identification method for the rotating axis 
of five-axis welding equipment. The sampled experi-
mental results show that, before identification, the 
average relative position error of the five-axis welding 
equipment is 0.1472 mm and the average value of the 
relative direction error is 0.5427°. After identification, 
the average relative position error of the five-axis weld-
ing equipment, is 0.0174 mm and decreased by 88.18%, 
while the average value of the relative direction error, is 
0.0478° and decreased by 91.19%. Therefore, the accu-
racy and effectiveness of the identification scheme are 
verified.

Appendix 1. Derivation of Screw Theory

In the case of a rotary axis, the screw coordinate � can be 
expressed as:

(38)� =

[
�

�

]
, � = � × �

where � is the unit direction vector of the rotation axis-line 
and � is a point on the rotation axis-line.

The exponent e𝜉𝜃 of a spinor coordinate for a rotary 
axis, is expressed as follows:

where

� is the rotation angle of the axis.
In the case of purely rotating motion, when ‖�‖ ≠ 0 , � 

is orthogonal to � , so �T� = 0;when ‖�‖ = 0 , �T� = 0 is 
still valid. Therefore, the following relation is obtained as:

Let � = � × � , while the geometric meaning of � is the 
vertical point between the origin and the line of the rota-
tion axis. Thus, � represents the position of the vertical 
point of the rotation axis, while � represents the direction 
of the rotation axis.

The exponent e�̂𝜃 of a rotary axis can be simplified as 
follows:

Regarding the translational axis, the screw coordinate 
� can be expressed as:

where � is the unit direction vector of the translational axis.
The exponent e�̂𝜃 of a translational axis is expressed as:

Authors Contribution XT established the kinematic model and 
designed the identification algorithm; he also drafted the manuscript. 
TX carried out relevant experiments and data processing; HZ made 
suggestions and reviewed the manuscript.

(39)e�̂𝜃 =

[
e[�]𝜃 (I3×3 − e[�]𝜃)(� × �) + ��T�𝜃

01×3 1

]

(40)e[�]� = I3×3 + [�] sin(�) + [�]2(1 − cos(�))

(50)� =
[
�(x) �(y) �(z)

]T

(51)[�] =

⎡
⎢⎢⎣

0 −�(z) −�(y)

�(z) 0 −�(x)

−�(y) �(x) 0

⎤
⎥⎥⎦

(52)��T�� = 01×3

(53)e�̂𝜃 =

[
e[�]𝜃 (I3×3 − e[�]𝜃)�

01×3 1

]

(54)� =

[
�

03×1

]

(55)e�̂𝜃 =

[
I3×3 �𝜃

01×3 1

]

Table 6  Maximum and average values of errors before and after iden-
tification

Relative position 
error(mm)

Relative directional 
error(°)

Average Maximum Average Maximum

Errors before identifica-
tion

0.1472 0.2802 0.5427 0.8080

Errors after identifica-
tion

0.0174 0.0392 0.0478 0.1337
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