
Vol.:(0123456789)

International Journal of Precision Engineering and Manufacturing (2023) 24:767–786 
https://doi.org/10.1007/s12541-023-00777-9

1 3

REGULAR PAPER

Online ISSN 2005-4602
Print ISSN 2234-7593

Motion Tracking of Four‑Wheeled Mobile Robots in Outdoor 
Environments Using Bayes’ Filters

Deok‑Kee Choi1 

Received: 28 November 2021 / Revised: 10 November 2022 / Accepted: 8 February 2023 / Published online: 22 February 2023 
© The Author(s), under exclusive licence to Korean Society for Precision Engineering 2023

Abstract
The demand for outdoor wheeled mobile robots (WMRs) is rapidly growing to assist humans in outdoor environments such 
as transportation, exploration, rescue, security, agriculture, military, etc. To effectively control outdoor WMRs, we need 
motion models applicable in such unknown environments. Conventional modeling mainly concerns physics laws or equations 
of motion, such as kinematics, dynamics, terrains, and wheel-ground interactions. Modeling WMRs on unstructured ground 
is more complicated than in a well-developed indoor environment. To alleviate such difficulties, we looked at a data-driven 
approach instead. We built a four-wheeled mobile robot with wheel encoders installed, with which the forward and inverse 
differential kinematic solutions were derived. Then, we performed more than a thousand test runs in outdoor environments, 
having the robot run on normal, icy, and sandy roads, including test runs under constraints partially blocked by brick and 
grid-type holes. We employed Bayes’ filter because the robot’s tri-variate states (two linear velocities and the rotation) are 
not directly measurable through wheel encoders. With such uncertainty, Bayes’ filtering technique of the Kalman filter and 
a newly developed unscented Kalman filter were applied to infer how each wheel’s speed affects the robot’s velocity. We 
established a probabilistic motion model, where the differential kinematic solutions are combined with uncertainty from 
outdoor environments. Consequently, we could closely track the robot’s motion. This modeling technique can be used to 
develop better outdoor WMRs.

Keywords Bayes’ filter · Unscented Kalman filter · Kalman filter · Four-wheeled mobile robot · Data-driven model

1 Introduction

Mobile robots are becoming increasingly popular across dif-
ferent industrial areas. Recently, a mobile robot has been 
stated as a machine manipulated by artificial intelligence that 
uses sensors and other technology to identify its surround-
ings and move around its environment. Mobile robots have 
physical robotic elements, such as wheels, tracks, legs, etc. 
Among the different locomotion devices of mobile robots, 
wheeled mobile robots (WMRs) have drawn more atten-
tion because of structural simplicity than other devices [1]. 
The demand for outdoor WMRs is rapidly growing to assist 
humans. For example, autonomous wheeled mobile robots 

or vehicles are being planned for many applications such as 
transportation, exploration, rescue, security, military, etc.

Even so, a robot equipped with various sensors is 
likely to operate differently due to inexplicable factors in 
outdoor environments. For example, the wheel encoder 
might lose counting steps upon wheel slippage; the radar 
may work unsatisfactorily under dense fog or heavy rainy 
days. An ultrasonic sensor may not detect bounced sig-
nals due to bad weather. A camera only works properly 
in a well-lit environment. A global positioning system 
(GPS) can quickly lose signals among high-rise build-
ings or dense forests. Such harsh outdoor environments 
have demanded an advanced intelligent system to control 
mobile robots. Conventional WMRs have been developed 
in indoor environments such as warehouses, factories, 
etc. However, to control WMRs in outdoor environments, 
we need somewhat different motion models than indoor 
environments because of various uncertainty. Thus, the 
realization of the motion of WMRs is solely vital, and we 
need to understand how a robot moves in various outdoor 
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environments. Even so, tracking the motion of WMRs in 
an outdoor environment is not a trivial problem. A typical 
robot tracking would be computed from a distance traveled 
given a velocity or acceleration. However, no mobile robot 
runs on a perfect road. There are different kinds of obsta-
cles that raise and lower the speed, even with slippage. 
Unlike well-established indoor environments, we have not 
fully understood how WMRs respond to various outdoor 
environments.

The conventional analysis mainly concerns several 
categories of physics laws or differential equations on 
the movement of robots. The categories of the analysis 
are composed of kinematics (rolling, yawing, pitching), 
dynamics (steering, skidding, braking), terrains (uphill, 
tilted roads), and wheel-ground interactions (ice, rocky, 
sand). Therefore, most researchers have focused on build-
ing detailed physics models concerning each category. 
This requires a vast amount of research to come up with 
each of the models. Even for simple robots, the dynamic 
models are usually very complex, and they would not con-
sider friction between wheels and various ground, wheel 
slippage, etc. The wheel-ground interaction depends on 
many parameters, which require prior knowledge of the 
ground parameters (friction coefficient, wheel slippage, 
sand friction, etc.). Furthermore, lateral slippage usu-
ally may not be observed; thus, a more detailed study is 
required [2]. Therefore, modeling a WMR moving out-
doors is far more complex than in indoor environments 
because of the interaction between the wheels and the 
ground.

In this study, we built a four-wheeled mobile robot with 
encoders installed on each wheel. Tracking a four-wheeled 
robot is quite involved because each wheel rotates inde-
pendently and is subjected to different road, traction, and 
load conditions. Ideally, we need four models for each 
wheel, which is impractical. Instead of separately estab-
lishing physics laws for road conditions, we employed 
the data-driven approach. In so doing, we may analyze 
dynamic systems without full knowledge of physics mod-
els. All models are inherently not accurate because they 
come with uncertainty. Thus, models can only partially 
explain the robot’s underlying phenomena and its envi-
ronment. Therefore, the probabilistic approach can play 
an essential role in recognizing uncertainty. Probabilistic 
algorithms present results in the form of probability distri-
butions. The Bayesian paradigm has been known to fit well 
with such problems. The filtering technique has played 
a vital role successfully in many disciplines for tempo-
ral data. We employed two variants of Bayes’ filter, the 
Kalman filter and the unscented Kalman filter, to estimate 
the robot velocity given wheel speed measurement in an 
outdoor environment.

In summary, 

1. We derived forward and inverse differential kinematic 
solutions for four-wheeled mobile robots with the fixed-
standard wheel system.

2. We carried out more than a thousand test runs in out-
door environments, having the robot run on normal, icy, 
and sandy roads under a constraint, partially blocked 
by brick and stuck with grid-type holes. As a result, we 
obtained wheel speed measurements on different road 
conditions.

3. We applied the Kalman filter and the unscented Kalman 
filter, which stemmed from Bayes’ filtering technique, to 
infer how each wheel’s speed affects the robot’s velocity 
in different road conditions.

4. We could closely track tri-variate states depicting the 
robot’s motion: two linear velocities and rotation. We 
demonstrated how to relate the differential kinematic 
solutions to a probabilistic model with uncertainty in 
outdoor environments.

5. We adopted five outdoor environments for estimating the 
robot’s motion for demonstration purposes; however, we 
think the present method can be applied to any unknown 
outdoor environment without significant modifications.

This paper is organized as follows: A brief review of the 
current research is mentioned in Related work; the wheel 
equation for a four-wheeled mobile robot with the fixed-
standard wheel system is derived in Kinematics, a more 
general version of the wheel equation is also developed. 
Bayesian formalism applicable to this study is explained 
in detail in Bayes’ filter along with the Kalman filter and 
the unscented Kalman filter. An experimental setup for the 
robot is described in the Four-wheeled mobile robot. Upon 
more than a thousand test runs, the estimated robot velocity 
is listed in Results and Discussion. The brief summary is 
expressed with further study in Conclusion.

2  Related Work

In general, studies on wheeled mobile robots (WMRs) have 
been well established [3, 4]. With mainly kinematics [5] 
and dynamics [6] combined, the models can be utilized for 
control [7] and design of WMRs equipped with a general 
or standard type of wheels. Obviously, unlike kinematics 
models, the dynamics model would be pretty complex to 
define the motion of WMRs in general because of not a few 
physics laws and empirical rules to be parameterized [8]. 
Those parameters should be valued through experimental 
data, which demands vast experimentation. Furthermore, 
dynamics models are likely to be more sensitive to external 
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factors; for example, even a slight offset of the center of 
mass of a robot by an unexpected external force might fail 
to meet the robot’s design criterion.

The most popular WMRs may be robots with two-differen-
tial drive systems [9]. The differential drive is a two-wheeled 
system with independent motors for each wheel. Thus, two-
wheeled mobile robots can make many different movements, 
even spinning themselves on site simply by differing wheel 
speeds. Conventional indoor mobile robots typically operate 
on plain ground where wheel slip is negligible. On the con-
trary, mobile robots more often experience low traction in 
outdoor environments: unknown environments [10], skidding 
and slipping [11], wheel slippage [12], and yawing [13, 14]. 
It is quite challenging to catch the effects of outdoor environ-
ments on the robot’s motion [15, 16] that mapping of the out-
door environment becomes quite important [17]. For example, 
it may not be possible to exposit the exact movement when 
robots operate on ice or a slippery surface. There is no sure 
way for physics laws or equations to explain such an ambigu-
ous situation. In addition, the control of WMRs in unpre-
dictable environments calls for advanced techniques such 
as Fuzzy control [18, 19]. Therefore, Outdoor robots bring 
about additional challenges not considered in indoor envi-
ronments. Therefore, WMRs require dynamic and kinematic 
models, not to mention terrain. For example, acknowledging 
the unexpected environment in the autonomous drive is more 
critical because a robot should run without any human opera-
tors’ intervention [20]. Even we might need some degree of 
terrain classification using machine learning techniques [21].

In this study, we set up a four-wheeled mobile robot with 
a differential drive system. A study on four-wheeled mobile 
robots with different wheel systems for trajectory tracking 
[22], calibration of systematic errors [23], and design and 
control [24] was published. We derived forward and inverse 
differential kinematic solutions for four-wheeled mobile 
robots with the fixed-standard wheel system. We need more 
information on mobile robots’ movement in outdoor envi-
ronments. In order to solve robot motion problems relating 
to outdoor environments, where the conventional approaches 
have much difficulty, we chose a probabilistic paradigm and 
experiment data. As for the experiment, we carried out about 
a thousand test runs in outdoor environments, having the 
robot run on normal, icy, and sandy roads. In addition, we 
performed tests on the robot under a constraint partially 
blocked by brick and being stuck with grid-type holes. As a 
result, we obtained wheel speed measurements on different 
road conditions. In general, the motion of a robot can be best 
described in a set of equations or differential equations. Nev-
ertheless, when we are concerned with a temporal process 
such as robot motion, employing the state-space process may 
be more convenient, where the process can be calculated 
recursively over time. Analytically, perfectly modeling a 
system is impossible except for the most trivial problems.

The probabilistic approach of the Bayesian framework 
with state-space models best fits the filtering technique, 
which can formulate an entire prediction-update-estimation 
process recursively [25, 26]. The Bayes filter framework 
comprises an initial distribution (prior), a motion model 
distribution, and a measurement model distribution (likeli-
hood). The reduced posterior is equivalent to the updated 
state variables in the corresponding state-space model. In 
particular, probabilistic approaches are typically more robust 
in the face of sensor flaws, noise, environment dynamics, etc. 
There are a few variants of Bayes’ filtering techniques we 
can apply to infer how each wheel’s speed affects the robot 
velocity on different road conditions: the Kalman filter [27], 
the unscented Kalman filter [28], and the extended Kalman 
filter [29], and so on. In this study, we employed the Kalman 
filter and the unscented Kalman filter for comparison. We 
demonstrated how to relate the differential kinematic solu-
tions to a probabilistic model with uncertainty for better 
design considering outdoor environments. Hence, with the 
help of Bayes’ filtering technique, we could estimate the 
motion of a four-wheeled mobile robot at each time step 
given measured wheel speeds.

3  Kinematics

This section will pursue a solution to wheel equations for a 
four-wheeled mobile robot in planar environments, subject 
to two kinematic constraints and three state variables (two 
linear velocities and rotation) that characterize the robot’s 
pose in motion.

3.1  Wheel Equations

A schematic of a mobile robot with fixed standard wheels of 
four is shown in Fig. 1, in which we employ four frames, the 
inertial, robot body, steering, and wheel frames, to define the 
position and the velocity of the robot [30]. The position of a 
wheel in the inertial frame can be expressed as:

where the coordinate frames I for Inertial, R for Robot’s 
body, S for steering, and W for wheels. Thus, IPR denotes 
the position of the robot, RPS is the steering offset and SPW 
for the wheel offset. By taking the time derivative of Eq. (1), 
the velocity vectors are

where IVR is the robot velocity and I�R is the robot angular 
velocity. It is noted that the position vector RPS is fixed for 
the standard wheel system at frame {R} that RVS =

RṖS = 0 
upon considering standard wheels. Frame {S} and {W} are 

(1)IP = IPR +
RPS +

SPW

(2)IVW = IVR +
I
�R ×

RPS +
I
�R ×

SPW + R
�S ×

SPW
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concentric that SVW = SṖW = 0 . Moreover, there is no wheel 
offset that SPW = 0 . Thus, the velocity equation of Eq. (2) 
can be written

In order to apply the kinematic constraints residing in the 
wheel plane, the velocity equation of Eq. (3) needs to be 
projected on the wheel plane to yield

The projected components of LHS and RHS of Eq. (4) in 
wheel frame {W} are:

LHS of Eq. (4):

RHS of Eq. (4):

(3)IVW = IVR +
I
�R ×

RPS

(4)W
(
IVW

)
= W

(
IVR

)
+ W

(
I
�R ×

RPS

)

(5)W
(
IVW

)
= W

I
RIVW

(6)

W
(
IVR

)
+ W

(
I
�R ×

RPS

)
= W

I
RIVR +

W
(
I
�R ×

RPS

)
= W

S
RS
R
RR
I
RIVR +

W
�R ×

W
R
RRPS

= W
S
RS
R
RR
I
RIVR +

W
�R ×

W
R
RRPW

where W
I
R , W

S
R , S

R
R , and R

I
R denote to a rotation in the frame 

referring to the subscript with respect to the frame indicating 
the superscript, respectively. Two frames of {S} and {W} are 
concentric that RPS =

RPW as shown in Fig. 2. Substituting 
Eqs. (5) and (6) into Eq. (4) to get

We projected the robot velocity IVR of Eq. (7) into the wheel 
frame {W} as shown in Fig. 2 to yield

where ẋ and ẏ are the linear velocity of a robot in their 
respective directions, and the rotations are

Each wheel-ground contact is a single point, and normal 
forces acting on the wheel-ground contact points are con-
stant depending on the mass of a robot and gravity. Through-
out the kinematic wheel equation derivation steps, we 
assume that wheels do not slip while rolling. The longitudi-
nal constraint is due to the rolling of wheels on the ground, 
and the lateral constraint is due to sliding. It is noted that 
the wheel velocity W

I
RIVW in LHS of Eq. (7) is given as the 

wheel constraints to each wheel:

(7)
W
I
RIVW

⏟⏟⏟
Wheel Velocity

= W
S
RS
R
RR
I
RIVR

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Robot Velocity

+W
�R ×

W
R
RRPW

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Robot Rotation

(8)W
S
RS
R
RR
I
RIVR = W

S
RS
R
RR
I
RI

⎡⎢⎢⎣

ẋ

ẏ

0

⎤⎥⎥⎦
= R(𝛼 + 𝛽)R(𝜃)

⎡⎢⎢⎣

ẋ

ẏ

0

⎤⎥⎥⎦

R(�) =
⎡
⎢⎢⎣

sin � cos � 0

− cos � sin � 0

0 0 1

⎤
⎥⎥⎦

R(� + �) =
⎡⎢⎢⎣

sin(� + �) cos(� + �) 0

− cos(� + �) sin(� + �) 0

0 0 1

⎤⎥⎥⎦

Fig. 1  Four coordinate frames for the fixed standard four-wheeled 
robot pose. I for the inertial frame, R for the robot body frame, S for 
the steering frame, and W for the wheel frame. IPR is the position 
vector from I to R, and RPS is for from R to S, respectively. The robot 
body frame makes an angle of � concerning the inertial frame

Fig. 2  A fixed standard wheel and the coordinate systems. R for 
the robot body frame, S for the steering frame, and W for the wheel 
frame. � is the steering angle, and � denotes the wheel angle
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where r is the radius of a wheel, and �̇� denotes the wheel 
speed. The rotation in Eq. (7) can be calculated by

where, as shown in Fig. 2, l is the position vector RPS , � is 
the wheel angle, and �̇� denotes the rotation of a robot body 
(yawing). Equations (8), (9), and (10) are substituted into 
Eq. (7) to yield two constraints applying to a wheel:

• Rolling constraint: 

• No-sliding constraint (lateral movement): 

where the pose I� = [x, y, �]T and velocity I �̇� = [ẋ, ẏ, �̇�]T . We 
have derived the wheel equation as Eqs. (11) and (12) subject 
to the two kinematic constraints.

3.2  Differential Kinematics

We have already derived the wheel equation in Sect. 3.1, where 
a set of wheel speed (constraints) determines robot velocity. 
Each wheel operates independently in the four-wheeled mobile 
robot; thus, we must apply the wheel equation to each wheel 
separately, called the differential kinematic equation. The 
wheel equation of Eqs. (11) and (12) for a robot with n wheels 
of the radius ri , for i = 1,… , n is written as follows.

where

where �i is the steering offset angle and �i is the wheel offset 
angle of i-th wheel. Stacking Eq. (13) to yield a compact 
matrix equation:

where R�̇� = R(𝜃)I �̇� , Φ̇ = [�̇�1,… , �̇�n]
T , and

(9)W
I
RIVW =

⎡
⎢⎢⎣

r�̇�
0

0

⎤
⎥⎥⎦

rolling constraint

no-sliding constraint

planar motion assumption

(10)

W
�R ×

W
R
RRPW =

⎡
⎢⎢⎣

0 − �̇� 0

�̇� 0 0

0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

l cos 𝛽
−l sin 𝛽

0

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

l sin 𝛽
l cos 𝛽

0

⎤
⎥⎥⎦
�̇�

(11)[ cos(𝛼 + 𝛽), sin(𝛼 + 𝛽), l sin 𝛽]R(𝜃)I �̇� − r�̇� = 0

(12)[ − sin(𝛼 + 𝛽), cos(𝛼 + 𝛽), l cos 𝛽]R(𝜃)I �̇� = 0

(13)
J1(𝛽i)R(𝜃)

I �̇� − r�̇�i = 0

C1(𝛽i)R(𝜃)
I �̇� = 0

J1(�i) = [cos(�i + �i), sin(�i + �i), l sin �i]

C1(�i) = [− sin(�i + �i), cos(�i + �i), l cos �i]

(14)
[
J1(𝛽)
C1(𝛽)

]
R�̇� =

[
J2
0

]
Φ̇

For a robot with four wheels, we have J1(�) ∈ ℝ
4×3 and 

C1(�) ∈ ℝ
4×3 because each wheel has one rolling constraint 

and one no-sliding constraint defined in Eqs. (11) and (12). 
Equation (14) can be written in a compact form:

where A ∈ ℝ
8×3 and B ∈ ℝ

8×4 , and

or

Because A is a rectangular matrix that we cannot obtain an 
inverse matrix to solve the forward differential equation in 
Eq. (15) for R�̇ by a direct manner. Thus, the solution can be 
given via a pseudo-inverse matrix:

or in an explicit form:

This concludes the derivation of the forward kinematic solu-
tion to the wheel equation upon two kinematic constraints. 
Hence, with Eq. (16), we may estimate the robot velocity 
given each wheel speed.

For later use, we need another equation called inverse 
kinematic solution, where we can relate the wheel speed 
with the robot velocity. This can be done by solving 
Eq. (15) for the wheel speed �̇:

where

J1(�) =
⎡
⎢⎢⎣

J1(�1)
⋮

J1(�n)

⎤
⎥⎥⎦

J2 = diag(r1,… , rn) C1(�) =
⎡
⎢⎢⎣

C1(�1)
⋮

C1(�n)

⎤
⎥⎥⎦

(15)AR�̇ = B�̇

A =

[
J1(�)
C1(�)

]
B =

[
J2
0

]

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 − l sin �
1 0 l sin �
1 0 l sin �
1 0 − l sin �
0 1 l cos �
0 1 l cos �
0 1 − l cos �
0 1 − l cos �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r 0 0 0

0 r 0 0

0 0 r 0

0 0 0 r

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)R�̇ = (ATA)−1ATB�̇

⎡⎢⎢⎣

ẋ

ẏ

�̇�

⎤
⎥⎥⎦
=

⎡⎢⎢⎣

r∕4 r∕4 r∕4 r∕4

0 0 0 0

−r sin 𝛼∕4l r sin 𝛼∕4l r sin 𝛼∕4l − r sin 𝛼∕4l

⎤
⎥⎥⎦

⎡⎢⎢⎢⎣

�̇�1

�̇�2

�̇�3

�̇�4

⎤⎥⎥⎥⎦

(17)
�̇ = (BTB)−1BTAR�̇

= HR�̇

H = (BTB)−1BTA
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or

We have established the forward differential kinematic equa-
tion of Eq. (16) and inverse differential kinematic equation 
of Eq. (17) for the four-wheeled mobile robot.

3.3  Maneuverability

The mobility of a robot is about movement in the environ-
ment. The fundamental constraint is the limitation that 
each wheel should meet the no-sliding constraint, where no 
lateral movement or slip is allowed. Complying the con-
straint C1(𝛽)

R�̇� = 0 in Eq. (14), the velocity R�̇� is the null 
space of the projection matrix C1(�) . The null space of is 
the space N such that vector n ∈ N , that is C1(�)n = 0 . The 
robot kinematics is closely related to the set of independent 
constraints of wheels, which are also directly connected to 
the rank of the projection matrix. The rank of C1(�) is the 
number of independent constraints. Thus, three degrees of 
freedom exist in each wheel. However, since two kinematic 
constraints apply to each wheel, as we discussed before, the 
maneuverability may change accordingly. The rank of C1(�) 
of the robot can be calculated as two and is higher than that 
of a two-wheeled mobile robot, which is one. Interestingly, 
the four-wheeled mobile robot has less maneuverability 
because of degenerated configuration. The degree of mobil-
ity can be defined as �m = 3 − rank(C1(�)) . Thus, �m = 1 for 
the robot. This can be explained that the robot may control 
only forward or backward velocity by varying each wheel 
speed. However, it may not always be possible for the robot 
to keep the constraints, in particular, in the outdoor envi-
ronment. The robot may slip and slide perpendicular to the 
wheel plane. Therefore, such a violation, for example, on 
an icy road or a terrain with fine grain sand, may result in 
significant errors on the odometer and cause position track-
ing into less accurate. That is a reason that we pursued in 
this study the velocity approach in Eq. (15) rather than the 
odometric approach.

4  Bayes Filters

4.1  Motivation

To track the robot’s motion, we need a model closely fol-
lowing the robot’s behavior over time. Although we have 
derived the differential kinematic equations in Sect. 3.1, this 

H =

⎡
⎢⎢⎢⎢⎣

1

r
0 −

l sin (�)

r
1

r
0

l sin (�)

r
1

r
0

l sin (�)

r
1

r
0 −

l sin (�)

r

⎤
⎥⎥⎥⎥⎦

equation may contain some unknown uncertainty. Alterna-
tively, we may need to understand in depth how the robot 
will behave in ever-changing wheel-ground interactions in 
outdoor environments. A variety of uncertainty may arise 
due to various factors: such as erratic hardware, software 
flaws, motors, sensors, or even slippage of wheels. Filtering 
techniques have been used to alleviate such uncertainties for 
many applications. The Bayesian framework can explain the 
technique best, forming the Kalman filtering technique and 
several other probabilistic algorithms. In the probabilistic 
fashion, the estimated velocity of a robot can be represented 
by a probability density function relating to the state space. 
The idea with the Bayes filter is to employ Bayes’ rule, 
and the corresponding notion of conditional probability to 
form probability distributions representing a belief in the 
robot’s state, given the robot’s previous state and predicted 
state. The filter outputs the probability of the state variables 
at each time step. The prediction is the prior belief of the 
robot’s state after a motion before updating recent sensor 
measurements. In the measurement update step, we compute 
the posterior.

In this study, rather than disregarding uncertainty and 
forming an estimated state, we employed the probability to 
yield mathematically optimal estimates using the unscented 
Kalman filter and Kalman filter algorithm. The goal is to 
account for the robot’s uncertainty as it interacts with out-
door environments with insufficient information.

4.2  Bayes’ Filter and Robot Motion

We have sought a model that can describe the robot’s motion 
in outdoor environments over time. As seen in the forward 
differential equation of Eq. (16), the velocity �̇ of a robot is 
dictated by the wheel speed measurements �̇ . Hence, an 
ideal motion model can be written in a joint distribution of 
the velocity and wheel speed measurement:

If we could get such a model of Eq. (18), the motion of 
a robot can be tracked and explained over the entire time 
steps. However, dictating the dependencies of future meas-
urements on all previous measurements, the model would be 
impractical because its complexity would grow unbounded 
as the number of measurements accrues. For example, when 
a new measurement �̇k+1 comes in, we need to recalculate 
the states over the entire time steps, which is computation-
ally intractable in practice. Therefore, we may alleviate the 
requirement and calculate the probability for the most recent 
step, confining the full joint probability model to a tractable 
model using some assumptions. The Markov assumption 
implies that the current state variable �̇k contains all the 

(18)p(�̇1,⋯ �̇k, �̇1,⋯ , �̇k)
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information needed to compute the next state. This para-
digm can be thought of as the state-space model in Fig. 3. In 
so doing, we may come up with a motion model with fewer 
requirements to meet.

Bayes’ filter technique can be used to estimate the state vari-
ables �̇ . It is noted that the forward kinematic solution we have 
derived in Sect. 3.1 is a motion model without considering 
noise, whereas Bayes’ filter model could embrace uncertainty 
both in the system equations and the measurement.

Bayes’ filter algorithm [31] can be briefly explained in 
Algorithm 1. We need a model that can mimic the behavior 
of a four-wheeled mobile robot, in particular, under unknown 
outdoor environments. However, it is impossible to earn the 
fully jointed probability for the model shown in Eq. (18) ana-
lytically; a conditional probability can be employed instead. 
In so doing, we may define the belief for the current state as

It is shown that the belief of Eq. (19) is based on the meas-
urement over time as presented by a probability density 
function distributed over the state space. By applying Bayes’ 
rule to Eq. (19) to yield

(19)bel(�̇k) = p(�̇k|�̇1∶k)

where � is the normalizing constant, which is a marginaliza-
tion of the denominator over �̇k:

We have derived the belief for estimating the unknown state 
based on the measurement as shown in Eq. (20). However, 
in this study, we employed the probabilistic models of the 
motion and measurement separately; thus, Eq. (20) still 
seems impractical to be used for the calculation. There-
fore, with further mathematical manipulation, we expanded 
Eq. (20) into a more explicit form with models of motion 
and measurement. With the help of Bayes’ rule and Markov 
process assumption, it resulted in a more tractable equation 
shown in Eq. (21).

(20)

bel(�̇k) = p(�̇k|�̇1∶k)

=
p(�̇1∶k|�̇k)p(�̇1∶k)

∫ p(�̇k|�̇k, �̇1∶k−1)p(�̇k|�̇1∶k−1)d�̇k

= 𝜂p(�̇k|�̇k, �̇1∶k−1)p(�̇k|�̇1∶k−1)

𝜂 =

[
∫ p(�̇k|�̇k, �̇1∶k−1)p(�̇k|�̇1∶k−1)d�̇k

]−1

where (B) for Bayes’ rule applied, (M) for Markov process 
assumed, (T) for total probability, where

(21)

bel(�̇k) = 𝜂p(�̇k|�̇k, �̇1∶k−1)p(�̇k|�̇1∶k−1) (B)

= 𝜂p(�̇k|�̇k)p(�̇k|�̇1∶k−1) (M)

= 𝜂p(�̇k|�̇k)∫ p(�̇k|�̇k−1, �̇1∶k−1)p(�̇k−1|�̇1∶k−1)d�̇k−1 (T)

= 𝜂p(�̇k|�̇k)∫ p(�̇k|�̇k−1)p(�̇k−1|�̇1∶k−1)d�̇k−1 (M)

= 𝜂p(�̇k|�̇k)∫ p(�̇k|�̇k−1)bel(�̇k−1)d�̇k−1

bel(�̇k−1) = p(�̇k−1|�̇1∶k−1)

Fig. 3  Graph of a state space model for a robot’s motion and meas-
urement. The Markov process implies that the current state variable 
�̇ contains all the information needed to compute the next state. We 
may update the state variable only through the measurements �̇ and 
the most recent estimated state
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As can be seen in Eq. (21), we derived a recursive Bayes fil-
ter. The recursive refers to the fact that the belief in the pre-
sent time bel(�̇k) is determined by the belief in the previous 
time step bel(�̇k−1) recursively. In addition, the belief bel(�̇k) 
is expressed in terms of the motion model p(�̇k|�̇k−1) and the 
measurement model p(�̇k|�̇k) . For the computation’s sake, 
the recursive process can be divided into two steps shown in 
Algorithm 1: one is for the prediction, and the other for the 
update. The prediction step is defined as

and the update step is written as

In conclusion, as shown in Algorithm 1, with the help of 
the Bayes filter, through recursive fashion on the predic-
tion and update, we can successfully track the motion of 
the four-wheeled mobile robot based on the wheel-speed 
measurement. There are a few filters that are Bayes’ filter’s 
practical realization, avoiding direct analytic high-dimen-
sional integration; the Kalman filter is a classical optimal 
filter for linear-Gaussian models. The unscented Kalman fil-
ter is a sigma-point transformation-based extension of the 
Kalman filter. In this study, we employed the Kalman filter 
and the unscented Kalman filter to realize Bayes’ filter in 
comparison.

4.3  Kalman Filter

The classical recursive solution to the state space estimation 
is called the optimal filter. The filter computes the posterior 
distribution of the state or the belief bel(�̇k) given the meas-
urements as written in Eq. (21). Typical linear Gaussian 
state-space models in probabilistic notation are expressed as

bel(�̇k) = ∫ p(�̇k|�̇k−1)bel(�̇k−1)d�̇k−1

bel(�̇k) = 𝜂p(�̇k|�̇k)bel(�̇k)

where the measurement matrix H , the state transition matrix 
F , the measurement noise matrix R = N(0, �2

�
) , the system 

noise matrix Q = N(0, �2
�
) , and �� and �� are their respective 

covariances. The prior distribution p(�̇0) models the infor-
mation already known with the mean m0 and covariance P0 . 
Substitution of Eq. (22) into Eq. (21), the optimal filter solu-
tion via Kalman filter is obtained in a form of Gaussian dis-
tribution. Hence, the solution in Eq. (19) can be obtained 
with the mean mk and covariance Pk as follows:

We assumed that the robot’s velocity might not vary sig-
nificantly at each time step due to the low wheel speeds and 
rather a short sampling time ( Δt = 0.1 s). Thus, the transition 
matrix of Eq. (22) can be set as F = I , which is the identity 
matrix. The measurement matrix H is given in Eq. (17). All 
of the state variables are set to zero initially, the initial covar-
iance is 5.0, the system noise Q is a discrete white noise with 
a variance of 0.5, and a variance of the measurement noise 
R is 0.5. Those values are hyperparameters, which can be 
adjusted by the optimal computational and accuracy consid-
eration through several test runs.

4.4  Unscented Kalman Filter

Unscented Kalman Filter (UKF) is one of newly developed 
Bayes filters [32]. The UKF utilizes a series of transforma-
tion and sigma points instead of direct use of state vari-
ables as in the Kalman filter. The entire process of UKF can 
be divided into three algorithms: Sigma point algorithm, 
unscented transform, an unscented Kalman filter algorithm.

(22)
p(�̇k|�̇k) = N(�̇k|H�̇k,R) Measurement model

p(�̇k|�̇k−1) = N(�̇k|F�̇k−1,Q) Motion model

p(�̇0) = N(m0,P0) Prior distribution

(23)p(�̇k|�̇1∶k) = N(mk,Pk)
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4.4.1  Van der Merwe’s Scaled Sigma Point Algorithm

There are a few algorithms for sigma points generation, 
among which Merwe’s Scaled Sigma Point Algorithm has 
been most popular for superior performance to others. The 
Merwe’s algorithm uses three parameters to control how the 
sigma points are distributed and weighted: � = 0.1 , � = 2 , 
and � = 0 are used in this study. A detailed algorithm is 
shown in Algorithm 2. The algorithm takes the mean and 
covariance of the state variables and outputs the correspond-
ing sigma points � , the weights wm , and wc . The sampled 
sigma points for a normal road are displayed in Fig. 4. In 
the figure, the points at three different time steps are shown 
in the temporal order. The figure shows a pattern of how the 
sigma points are generated as time goes.

4.4.2  Unscented Transform

The unscented transform (UT) is the essence of the 
unscented Kalman filter algorithm as written in Algorithm 3. 
Firstly, the sigma points � are passed through a nonlinear 
function resulting in a transformed set of points Y . The 
UT takes the sigma points sampled from some arbitrary 
probability distribution, passes them through a function f 
(motion model in this study), and outputs a Gaussian, of 
which weighted mean � and weighted variance � , for each 
transformed point.

Fig. 4  Sigma points � at k = 0 , k = 10 , and k = 99 for the unscented Kalman filter on a normal road. The depth of the point color is proportional 
to the value of �̇�
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4.4.3  Prediction Step

The UKF is divided into two steps: the prediction and the 
update step. A transformed set of sigma points is

The prediction step of the UKF computes the prediction 
(prior) as listed in Algorithm 4 using the sigma points � 
generated from Algorithm 2. The predicted mean �̇− and 
covariance P− using the UT on the transformed sigma points 
are computed as follows:

where

This result is obtained while the measurement is yet seen; 
therefore, the correction can be made through the update 
step.

4.4.4  Update Step

The UKF performs the update in measurement space as 
shown in Algorithm 4. Thus, we need to map the sigma 
points into the measurement space using a measurement 
function h. A set of transformed points in the measure-
ment space is:

(24)Y = f (�)

�̇
−
,P− = UT(Y,wm,wc,Q)

�̇
−
=

2n∑
i=0

wm
i
Yi, P− =

2n∑
i=0

wc
i
(Yi − �̇

−
)(Yi − �̇

−
)T

Z = h(Y)

The mean and covariance of those points of Z through the 
UT are given by

where

The residual of the measurement y is

To compute the Kalman gain we first compute the cross 
covariance of the state and the measurements of Eqs. (25) 
and (26).

And then the Kalman gain is defined with Eqs. (25) and 
(27) as

Finally, we obtain the estimated �̇ and P using the residual 
and the Kalman gain as shown in Algorithm 4 as follows.

In so doing, we may conclude that the tri-variate states (two 
linear velocities and rotation) of the robot has been realized 
as a numerically tractable form in Eq. (28).

(25)�Φ̇,PΦ̇ = UT(Z,wm,wc,R)

�Φ̇ =

2n∑
i=0

wm
i
Zi, PΦ̇ =

2n∑
i=0

wc
i
(Zi − �Φ̇)(Z

i − �Φ̇)
T + R

(26)y = �̇ − �Φ̇

(27)P�̇Φ̇ =

2n∑
i=0

wc
i
(Yi − �̇

−
)(Zi − �Φ̇)

T

K = P�̇�̇P
−1

�̇

(28)�̇ = �̇
−
+Ky, P = P− −KP

�̇
KT
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5  Four‑Wheeled Mobile Robot

In this study, we set up a four-wheeled mobile robot, as 
shown in Fig. 5, operated by a DC motor at each wheel, 
which comes with a 120:1 gearbox and an integrated quadra-
ture encoder that provides a resolution of 16 pulse single per 
round giving a maximum output of 1920 within one round. 
The dimension of the robot is the length of 24 cm, the width 
of 17.5 cm, a diameter of a wheel of 6.6 cm. A Raspberry 
Pi single-board computer delivers commands into the robot 
and receives measurements from the encoders. The refer-
ence wheel speed is set to 6.54 rad/s (200 encoder ticks per 
second) for all the wheels throughout the test runs. In other 
words, regardless of road conditions, we demand that each 
wheel spins at the reference wheel speed. Thus, as long as 
an ideal condition to the robot’s motion holds without any 
hindrance, the robot would move forward at 21.6 cm/s in the 
heading direction. The information of electric specification 
for the robot is listed in Table 1.

6  Results and Discussion

We had more than a thousand test runs along with five dif-
ferent road conditions: normal, sandy, icy, partially blocked, 
and grid holes. The detail of the tests is listed in Table 2. The 
reference wheel speed was set to a constant of 6.54 rad/s 
(about 62.5 rpm) throughout the tests.

The overall schematic of different roads is displayed 
in Fig. 6. For example, we may anticipate that wheels can 
quickly get stuck with fine grain sand. In Fig. 7, variation 
of each wheel speed on a normal road for 10 s is shown. 
We initiated the robot on a normal road, demanding each 
wheel spin at the reference wheel speed so that the robot 
may go straight in the heading direction. Interestingly, the 
rear right wheel spins faster than the others. The median 
and variance of the velocities is shown in Fig. 8. However, 
it is not clear that what causes the rear right wheel to run 
faster. Since we built the robot with identical DC motors 
and wheels, we expected all wheels to run at the same speed 
upon the same road condition. It could be an encoder error 

Fig. 5  Different views of the four-wheeled mobile robot with a fixed standard wheel system. Four optical encoders are equipped into each wheel 
to send wheel speed data through the Raspberry Pi computer board

Table 1  Overall specification of the robot system and the encoders

Item Content

Gear ratio 120:1
No-load speed @ 6V 160 rpm
No-load speed @ 3V 60 rpm
No-load current @ 6V 0.17A
No-load speed @ 3V 0.17A
Max Stall current 2.8A
Max Stall torque 0.8 kgf cm
Rated torque 0.2 kgf cm
Motor operating voltage 3 to 7.5V
Operating ambient temperature − 10 to 60
Encoder SJ01 (16 pulses 

per revolution)



778 International Journal of Precision Engineering and Manufacturing (2023) 24:767–786

1 3

or road conditions, or unknown flaws in the robot itself. 
Unmistakably, this unbalanced wheel speed can bring about 
some uncertainty and difficulty to the analysis. Therefore, 

we need to know whether that unbalance in wheel speeds 
should be regarded as statistically significant or not. That 
is, the presence of this unbalance may not be justified with-
out rigorous statistical examination. Thus, we performed an 
ANOVA (Analysis of Variance) test on it. With the ANOVA 
F = 28.5 and the p-value is significant p < 0.05 , we may 
conclude significant speed differences among wheels with a 
95% confidence level. Hence, we learned that not all wheels 
run at an identical speed upon demanding them so. Such 
an unexpected issue is not uncommon in the actual world, 
making modeling harder.

A comparison of different filtering techniques for the 
estimated state velocities of the robot on a normal road is 
shown in Fig. 9. The velocity of heading direction ẋ is dis-
played in the figure (left). The expected velocity (red-dashed 
line) is 21.6 cm/s (6.25 rad/s with 6.6 cm of the diameter of 
the wheel). However, any of the estimated velocity has not 

Table 2  Specification of the five different road conditions in which 
the robot runs more than a thousand tests

The wheel speed of each wheel is set to 6.54 rad/s (about 62.5 rpm) 
for the entire tests

Roads Wheel 
speed 
(rad/s)

Number of test Remark

Normal 6.54 200 > Dry
Ice 6.54 200 > Thin ice
Sand 6.54 200 > Fine grain sand
Partially blocked 6.54 200 > Physically blocked
Grid holes 6.54 200 > Grid type holes

Fig. 6  The robot runs on difference roads. Icy road (top left), sandy road (bottom left), partially blocked by a brick (center), and grid type holes 
(right)

Fig. 7  Measured wheel speeds of the robot on a normal road
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reached the designated value. We were not sure whether it 
was because of the unbalanced wheel speed we observed 
earlier or varying ground-wheel conditions, or both. Among 
two filtering algorithms, the unscented Kalman filter shows 
an excellent fit to the estimated velocity from experiment 
data (no filter). Furthermore, the no-lateral movement 
constraint seems to be kept all the time (center pane in the 
figure). Thus, the robot does not make a lateral move (no 
sliding). Even so, the robot’s rotation (right) shows some 
interesting behaviors. Even if no rotation is theoretically 
allowed due to the fixed wheel, some positive rotation rate 
is seen, which is the counter-clockwise rotation. We may 
conclude that such rotation is caused by the unbalanced 
wheel speed in which the rear right wheel runs faster and 
the road condition.

In Fig. 10, it is shown that the probability density function 
of the estimated velocity in the robot heading direction ẋ 
evolves at each time step, which is calculated via the Kalman 
filter. As time goes, the distribution gets narrow and higher 
probability density value; we may conclude that the model 
closely estimates the robot’s motion on a normal road.

In Fig. 11, the measured wheel speeds on an icy road are 
shown. Each wheel’s speed appears relatively more scat-
tered. Besides, considering the faster speed in the rear-right 
wheel discussed earlier, the front-left wheel spins a bit fast. 
That can be because of the slippage of the wheels on an 
icy road. Once a wheel gets into a slippage, the robot may 
not get back to a designated pose without external interven-
tion, such as a human operator. We observed that no single 
test was similar to the others during several test runs on an 
icy road. Therefore, analytical modeling based on a wheel-
ground interaction for an icy road might not be practical at 
all. It is because each time we place the robot on an icy road, 
an ice condition may change due to inexplicable factors such 
as the non-uniform melting of ice due to wheel-ice contacts.

The performance comparison of modeling on an icy road 
is shown in Fig. 12. The velocity ẋ (left) in the heading 
direction is significantly displaced from the reference and 
scattered. Even so, the unscented Kalman filter appears to 
perform exceptionally well against the uncertainty of the 
measurements. The lateral velocity ẏ (center) seems to 
remain around zero. As for the rotation rate �̇� (right), sig-
nificant impacts must have been exerted to the robot that the 
rotation rate peaks of about 0.6 rad/s during 4–7 s. Then, 
the robot would likely move sideways quite violently due to 
this heavy rotational rate change. According to the forward 
differential equation in Eq. (16), the robot is not supposed 
to be rotated at any moment (see the dashed red line in the 
figure). However, this rule seems to be much violated due to 
an icy road. That helpful information might be hard to obtain 
when only sticking to analytical models without allowing 
any uncertainty in motion and measurement models.

In Bayes’ framework, the estimated results are produced 
in probability, particularly for Gaussian distribution. We 
drew a plot with the mean and covariance of the distribu-
tion. In so doing, we may get more information on how the 
filtering algorithm works on various conditions. In Fig. 13, 

Fig. 8  A swarm plot of the measured wheel speed of each wheel 
of the robot on a normal road. Note FL (forward left), FR (forward 
right), RR (rear right), and RL (rear left). It is observed that RR 
seems to spin faster than the others

Fig. 9  A comparison of the estimated state velocities ( ẋ , ẏ , and �̇� ) of the robot on a normal road through different algorithms (no filters, Kalman 
filter, and unscented Kalman filter). The expected velocity is 21.6 cm/s (6.25 rad/s with 6.6 cm of the diameter of the wheel)
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the ellipsoids of the covariance obtained from the Kalman 
filter and unscented Kalman filter are shown, respectively. 
The estimated velocity �̇ is composed of three elements of 
velocities ẋ , ẏ , and �̇� . The ellipsoid represents the covariance 
space; thus, the larger the space, the less belief we can rely 
on from the result. Also, we need to pay some attention to 
the shape of an ellipsoid. For example, the ellipsoid being 
similar to a sphere can be considered that three elements are 

not correlated much. The dots on the surface of an ellipse 
are sampled from the tri-variate normal distribution. Three 
panels at the top of the figure show the temporal trend of 
covariance via the Kalman filter. As time goes, although the 
ellipsoid gets smaller and longer, the red dots appear to be 
away from the surface of the ellipsoids. This explains why 
the Kalman filter solution deteriorates over time. Likewise, 
three panels at the bottom of the figure show the trend of 
the covariance from the unscented Kalman filter. As can be 
seen, most of the green dots appear to dwell closely on the 
surface of the ellipsoids. As is seen in the comparison, we 
may conclude that the unscented Kalman filter works better 
than the Kalman filter in general.

Figure 14 shows the wheel speeds on a sandy road. The 
road is covered by a 2-cm thick fine grain of sand as shown 
in Fig. 6. We might expect that the robot gets in easily stuck 
intermittently into slippage states. Thus, it may be hard for 
the robot to maintain the designated wheel speed all the 
time. Furthermore, front-left and rear-left wheels spin at the 
reverse rotation rate of about negative 2 rad/s during the first 
half of the test run. Then, the wheel comes to a stop and then 
gets back in the reverse direction. In this test, we can be sure 

Fig. 10  On a normal road, the estimated velocity �̇ in the form of 
Gaussian distribution is evolving at each time step. Each distribution 
is calculated via the Kalman filter

Fig. 11  Measured wheel speeds of the robot on an icy road

Fig. 12  A comparison of the estimated state velocities ( ẋ , ẏ , and �̇� ) of the robot on an icy road through different algorithms (no filters, Kalman 
filter, and unscented Kalman filter). The expected velocity is 21.6 cm/s (6.25 rad/s with 6.6 cm of the diameter of the wheel)
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that fine grain of sand is a great hindrance to the wheels’ 
spin, in particular, during the first half of the test run.

A comparison of the estimated state velocities of the 
robot on a sandy road is shown in Fig. 15. The velocity in 
the heading direction ẋ goes up and down. It has reached 
about 16 cm/s at most, which is below the expected velocity. 
As for the lateral velocity ẏ , it lands around zero; thus, the 
no-sliding constraint has been met. The rotation rate shows 
a significant peak between 2 and 3 s. The unbalanced wheel 
speed may cause this peak in the rotation. Furthermore, the 

rotation rate has changed significantly in a relatively short 
time. It may be because of the big motion that the robot 
makes in order to get out of stuck in the sand. As for the 
overall performance, the unscented Kalman filter gets the 
highest score.

In Fig. 16, each wheel speed when the robot is partially 
blocked by brick is shown. Initially, the wheel speeds go 
down immediately. Around 5 s, the wheel speeds of the 
front-left and rear-right wheels bounce back to near the des-
ignated wheel speed. It can be explained that the robot being 

Fig. 13  Comparison of the estimated covariances on an icy road cal-
culated through the Kalman filter (red) and the unscented Kalman fil-
ter (green) at T = 0 , T = 0.5 , and T = 9.9 s. In order to get a better 
appearance for comparison, each ellipsoid is drawn not to scale. The 

red (Kalman filter) and green (unscented Kalman filter) dots are sam-
pled from their respective tri-variate Gaussian distributions. (Color 
figure online)

Fig. 14  Measured wheel speeds of the robot on a sandy road
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blocked can cause a lowering of its wheel speeds. Since the 
robot head and the brick are partially contacted over a small 
area, the robot tends to rotate clockwise about the brick. 
Even though the brick keeps the robot from going forward, 
the rotation will occur to be out of the blockage; thus, the 
wheel speeds rise again.

The estimated velocities of the robot partially blocked 
are displayed in Fig. 17. The velocity of heading direction 
ẋ seems to be directly affected by a subtle change of each 
wheel speed due to the blockage. It appears that the brick 
keeps the robot from moving forward, and ẋ is suppressed 
under a speed of 15 cm/s. The lateral velocity remains 
around zero without violating the constraint. The rotation 
rate shows quite an interesting result that in the first half, the 
counter-clockwise rotation occurs, followed by the clock-
wise rotation. That direction change informs us of helpful 
information about how the robot makes movement subject 
to a brick on a partial contact. As seen in the figure, the 
unscented Kalman filter performs well throughout the test 
run.

Figure 18 shows the wheel speeds on grid-type holes. The 
robot initially starts on a normal road and then gets into the 
grid holes. We might anticipate that the robot does not freely 
move as intended because of the complicated ground-wheel 

conditions of grid-type holes. This may be true, as seen in 
the figure. However, it is pretty difficult for us to get any 
explicable information from the result in this case. Besides, 
as seen in Fig. 6, two wheels get stuck in the grid holes, 
whereas the other wheels are on a dirt road. There might 
not exist an easy solution to incorporate such road condi-
tions into physics laws or empirical equations to be used as 
a wheel-ground interaction model.

In Fig. 19, the velocity of heading direction ẋ appears 
to be affected by the grid holes. In this case, the two robot 
wheels get stuck into the grid holes while the others are 
on the normal road. The lateral velocity remains around 
zero. The rotation rate �̇� shows that the positive and nega-
tive rotation rates. However, it is not easy to explain the 
cause of the rotations because of the complexity of the 
motion in this case.

We have made several comparisons between Bayes’ algo-
rithms (the Kalman filter and the unscented Kalman filter). 
Besides comparing the results, it might be interesting to pay 
attention to the numerical aspect of those algorithms. Since 
Bayes’ rule is composed of the multiplication of likelihoods 
and priors to yield posteriors, we need to check the behavior of 
likelihoods given each measurement. The maximum likelihood 
estimation (MLE) often calculates the optimal parameters for 

Fig. 15  A comparison of the estimated state velocities ( ẋ , ẏ , and �̇� ) of the robot on a sandy road through different algorithms (no filters, Kalman 
filter, and unscented Kalman filter). The expected velocity is 21.6 cm/s (6.25 rad/s with 6.6 cm of the diameter of the wheel)

Fig. 16  Measured wheel speeds of the robot on partially blocked
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the likelihood given measurements. The likelihood can be 
written:

(29)

L(�) = log p(�̇|�)

= log

n∏
i=1

p(�̇i|�)

=

n∑
i=1

log p(�̇i|�)

where � is the parameter given the measurement 
�̇ = {�̇1,… , �̇n} . Applying maximum likelihood estima-
tion to Eq. (29) to yield

where �̂ is the optimal parameter. In Fig. 20, the trend of 
MLE values of two algorithms on different road conditions 
is shown. For all cases, the unscented Kalman filter has 

�̂ = argmaxΘL(�)

Fig. 17  The estimated velocities of the robot on partially blocked

Fig. 18  Measured wheel speeds of the robot on grid holes

Fig. 19  A comparison of the estimated state velocities ( ẋ , ẏ , and �̇� ) of the robot on grid type holes through different algorithms (no filters, 
Kalman filter, and unscented Kalman filter). The expected velocity is 21.6 cm/s (6.25 rad/s with 6.6 cm of the diameter of the wheel)
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clearly shown superior performance to those of the Kalman 
filter. The Kalman filter seems to fluctuate severely per var-
ying measurements, whereas the unscented Kalman filter 
keeps a relatively steady state for all the cases. This may 
explain that the unscented Kalman filter is not likely to be 
affected by measurement uncertainties, guaranteeing more 
reliable results.

In summary, we carried out more than a thousand test 
runs over different road conditions. Using Bayes’ filtering 
techniques, we could obtain the estimated velocities of the 
robot given only measured wheel speeds. In most cases, the 
kinematic constraints are met well, particularly in the lateral 
velocity being zero.

7  Conclusion

As the popularity and demand for outdoor wheeled mobile 
robots are rapidly growing, the lack of fundamental study 
on kinematics, dynamics, wheel-ground interaction, and ter-
rains can hinder the further development of wheeled mobile 

robots. Particularly autonomous wheeled mobile robots 
should run without human intervention in unknown outdoor 
environments. This study derived forward and inverse dif-
ferential kinematic solutions for four-wheeled mobile robots 
with the fixed-standard wheel system. Furthermore, with a 
thousand tests performed in outdoor environments, we could 
build the motion model of the robot. With the help of Bayes’ 
filtering framework, we learned that the unscented Kalman 
filter outperformed other algorithms, such as the Kalman 
filter, for the task. The notion of ensemble modeling of kin-
ematics and data-driven models demonstrated in this study 
can be extended to any wheeled mobile robot as long as the 
fundamental kinematic solution and measurement data are 
given. This ensemble approach would incorporate analytical 
and data-driven methods into a recursive state-space equa-
tion to model the robot’s motion against outdoor environ-
ments. Undoubtedly, further study is needed; for example, 
we could have employed machine learning to find significant 
patterns inside seemingly unstructured data of wheel speeds 
in outdoor environments. We hope to see more research to 
utilize machine learning in this field soon.

Fig. 20  Comparison of log 
MLE (maximum likelihood esti-
mation) convergence of Kalman 
filter and unscented Kalman 
filter for four different cases: 
Icy road, sandy road, grid holes, 
and partially blocked
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Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12541- 023- 00777-9.
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