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Abstract
Recently, ultrafast laser machining has been used to machine hard materials. Ultrafast laser machining can be precisely 
machined without a non-thermal effect or damage to machining tools. However, their morphologies differed depending on 
the pulse energy. Generally, to machine difficult-to-machine materials, hard materials are irradiated by laser pulses with 
high pulse energy. Laser pulses with high pulse energy remove large volumes. However, burrs are formed at the top surface, 
and the large volumes removed remain empty. These burrs and empty spaces reduce the efficiency of the process. Owing to 
these problems, the formation of burrs must be restricted during laser ablation. Accordingly, this work aimed to reduce the 
formation of burrs and improve the machining efficiency. In this study, to overcome the aforementioned undesirable effects, 
the position of a focused laser beam with a high pulse energy was altered when irradiating cemented tungsten carbides; the 
laser had a pulse duration of 190 fs, wavelength of 1026 nm, frequency of 6 kHz, and pulse energy of 100 µJ. When focused 
laser beam was irradiated at the ablated bottom surface, the laser machining efficiency increased. Moreover, the position 
of the focused laser beam affected the morphology of burrs. On focusing the laser beam at the surface, burrs with shorter 
heights and larger lengths were formed. The morphologies of these burrs and the ablated space affected the laser passing 
rate and machining efficiency.
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1 Introduction

Laser machining is a technology widely employed in vari-
ous industries and has many advantages as a non-contact 
method. Undesired effects such as machining tool wear, 
fracture, and replacement costs incurred by contact methods 
are avoided with non-contact machining [1, 2]. In addition, 
ultrafast laser can be used for precise machining on difficult-
to-cut materials with high precision and flexibility by tightly 
focusing a laser beam [3, 4].

Among difficult-to-cut materials, cemented tungsten car-
bides have superior mechanical hardness and wear resistance 
and are employed in aerospace, machining tools, and press-
stamping because of their ability to maintain their original 
stiffness at high temperatures [5, 6]. Generally, cemented 
tungsten carbides are machined using electrical discharge 
machining (EDM) or grinding. However, EDM and grinding 
induce the wear or even failure of cutting tools composed of 
cemented tungsten carbides. These approaches also result in 
the formation of heat effected zones (HAZs) [7]. Recently, 
cemented tungsten carbides have been investigated for laser 
machining applications to overcome the problems [8–10].

Laser machining is affected by various parameters, 
including laser wavelength, pulse duration, and pulse type 
etc. Among the laser parameters, the pulse duration of the 
laser can classify the laser as a nanosecond, picosecond, or 
femtosecond laser. Heat accumulation during laser ablation 
is a major property [11–13]. When a nanosecond laser irradi-
ates the surface of a material, the laser energy is absorbed by 
the surface of the material, where melt pool formation and 
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vaporization occur owing to the absorbed laser beam. The 
vapor-induced recoil pressure pushes the melted material 
outside the pool. In addition, the Marangoni effect occurs 
because of the temperature gradient of the melt pool. There-
fore, the melted materials flow from the hot center to the 
cold edge [14]. The melted and flowing materials become 
burrs and particles. Furthermore, cracks occur inside the 
material due to heat effects. Post-processing is required to 
remove burrs and cracks. Post-processing increases manu-
facturing costs and time.

The heat effect is a major cause of burr formation. There-
fore, to decrease the burrs, an ultrafast laser with a short 
pulse duration can be employed. A shorter pulse duration 
results in a smaller heat effect. Recently, machining using 
ultrafast lasers has been investigated [15, 16]. When the 
ultrafast laser was irradiated at the workpiece surface, the 
irradiated material evaporates before transferring heat to an 
adjacent area [17]. Thus, the heat effect can be decreased, 
and various materials can be quickly and precisely ablated 
[18].

Nevertheless, burrs have been observed in studies 
that employed ultrafast lasers with various materials [10, 
19–21]. Wu et al. focused on the burrs in stainless steel, 
where a 10 ps laser with a wavelength of 532 nm and pulse 
energy of 3 µJ was used [10]. Further, Bian et al. reported 
the formation of burrs in indium tin-oxide when using a 
60 fs laser with a wavelength of 800 nm and pulse energy 
of 125–310 nJ [19]. Zhao et al. conducted hole drilling on 
Ti alloy, Cu, Al alloy, and Ni alloy, by using a 10 ps laser 
with a wavelength of 532 nm and a maximum pulse energy 
of 135 µJ [20]. Wang et al. also studied holes drilling on 
ceramics, with the use of lasers with various pulse dura-
tions [21]. These previous studies indicate that burrs are 
formed regardless of the laser parameters, and that lasers 
with femtosecond pulse durations and a high pulse energy 
are insufficient. However, thus far, analyses of the forma-
tion burrs have not been reported. To improve the quality of 
ultrafast laser machining, further research on burr formation 
is imperative. However, research on the formation of burrs 
using femtosecond lasers is insufficient. In the study, we 
studied the interaction between cemented tungsten carbides 
and a femtosecond laser with high pulse energy to realize 
the many ablated volume. In addition, the position of the 
laser-focused beam was regulated to change the properties 
of the laser beam.

Understanding the interaction between femtosecond 
lasers and the burr formation of cemented tungsten car-
bides is important for the widespread application of laser 
machining in various industries. To understand the interac-
tion between the laser parameters and cemented tungsten 
carbides, we analyzed the diameter, depth, and morphology 
of the machined hole. These results will be useful for laser 
machining technology without the formation of burrs.

2  Experimental Setup

We performed machining by changing the position of the 
pulsed laser-focused beam. We irradiated laser pulses with 
1026 nm of center wavelength, 190 fs. The laser beam diam-
eters were 30, 47, and 52 μm at the positions of focus, defo-
cus_4 μm, and defocus_8 μm, respectively. A vibrator was 
used to change the position of the laser-focused beam and 
couple it to the objective lens. In this study, we used a 50× 
objective lens with a 0.42 NA and 1.60 µm DOF (Depth 
of Field) (Mitutoyo, Japan) to focus the laser beam. The 
objective lens was equipped with a vibrator (P-726; Physik 
Instrumente, Karlsruhe, Germany) to change the position 
of the focused laser beam. A function generator (NF Cor-
poration, Yokohama, Japan) was used to change the posi-
tion of the pulsed laser-focused beam. The input voltage 
to the vibrator was controlled using a function generator 
and monitored using an oscilloscope (Tektronix, Beaverton, 
OR, USA). Consequently, the position of the focused laser 
beam can be regulated. Figure 1 shows the proposed laser 
machining system.

We investigated two ablation methods by changing the 
position of the laser-focused beam. In the first method, the 
workpieces were irradiated with a pulsed laser with 50 laser 
counts. Once the pulsed laser focus beam was located on the 
workpiece surface, it was defocused to 4 and 8 µm below the 
surface. In the second method, we changed the pulsed laser 
focal beam position step-by-step using the following four 
schemes: First, type A was irradiated with 50 laser counts 
on the surface of the cemented tungsten carbide. Second, 
in type B, the initial 10 laser counts were irradiated on the 
surface and 40 laser counts were irradiated 4 µm below the 
initial position of the pulsed laser focus beam. Third, in type 
C, the initial 10 laser counts were irradiated on the surface 
and 40 laser counts were irradiated 8 µm below the initial 

Fig. 1  Schematic of ultrafast laser machining system (ND Neutral-
density filter; MS Mechanical shutter; CCD Charge-coupled device; 
OB Objective lens; VT vibrator; FG Function generator)
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position of the pulsed laser focus beam. Finally, in type D, 
the initial 10 laser counts were irradiated on the surface, 20 
laser counts were irradiated 4 µm below the initial position 
of the pulsed laser focus beam, and the final 20 laser counts 
were irradiated 4 µm below (total:8 µm) the prior 4-µm posi-
tion of the pulsed laser focus beam. The machining types are 
listed in Table 1.

In this study, the thickness of the cemented tungsten car-
bide was 1 mm, and the material comprised 90% WC and 
10% Co. The laser used was a Pharos SP manufactured by 
Light Conversion (Lithuania). The central wavelength of 
Pharos SP was 1026 nm, and the pulse width was 190 fs. In 
addition, the maximum pulse energy was 1 mJ at a repetition 
rate of 6 kHz, and  M2 was 1.3. Laser pulse energies of 100 µJ 
were used at a repetition rate of 6 kHz. The morphologies 
were analyzed using a scanning electron microscopy (SEM; 
SM-350, Topcon, Japan; S-4800, Hitachi, Japan) and confo-
cal laser scanning microscopy (VK-1000, Keyence, Japan).

3  Results and Discussions

We analyzed the morphologies of the holes ablated by laser 
pulsed beams depending on the positions of the focused laser 
beam with 100 µJ of laser energy. The height and length of 
the burrs were measured. Once the length of the burrs was 
determined, as shown in Fig. 2a, we observed that the length 
of the burrs increased as the laser beam was defocused in 
Fig. 2b. The height of the burrs were determined using con-
focal laser scanning microscopy (VK-1000, Keyence, Japan), 
as shown in Fig. 3a. Figure 3b shows that as the laser beam 
was focused, a higher burr height was formed. The tempera-
tures of electrons and lattices are important in femtosecond 
laser machining. To predict temperature changes, we used 
the two-temperature method (TTM), which describes the 
temperature evolution of electrons and lattice systems via 
two differential equations:
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where C is the heat capacity of the electrons and the lattice, 
as denoted by subscripts e and i, respectively. S, γ, ke, ki, α, 
R, and τ denote the laser source, electron–photon coupling 
coefficient, electron thermal conductivity, lattice thermal 
conductivity, absorption coefficient, reflectivity, and pulse 
duration, respectively (Table 2).

When the materials were irradiated by a pulsed laser 
beam with a femtosecond laser, the electrons were rapidly 
excited. The excited electrons collide with each other. The 
collided electron-induced energy is transferred to the lattice. 
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Table 1  Focused laser beam position changes for each machining 
type

Machining 
types

Number of laser pulses

 ~ 10 pulses 11–30 pulses 31–50 pulses

A Focus_0 µm Focus_0 µm Focus_0 µm
B Focus_0 µm Defocus_4 µm Defocus_4 µm
C Focus_0 µm Defocus_8 µm Defocus_8 µm
D Focus_0 µm Defocus_4 µm Defocus_8 µm

Fig. 2  Burr lengths irradiated by laser pulse with 100  µJ in various 
focus position and counts of laser pulses: a determining a burr length, 
b Burr lengths depending on focus position and counts of laser pulses
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The heated lattice transfers heat to the surrounding area. 
The heat transfer was completed until the temperature of 
the electron equaled to the temperature of the lattice [7, 22]. 
Beam diameters were calculated using the  D2 method [23]. 
The  D2 method was mainly used to calculate the diameter 
of the laser beam through the interrelation of laser energy 
and diameter formed by laser pulses. The diameters of 
the laser-focused, defocused_4 µm, and defocused_8 µm 
beams are 30, 47, and 52 µm, respectively. The temperature 

changes of the electrons and lattice were calculated, as 
shown in Fig. 4. The many induced electrons are gener-
ated by excited electrons irradiated by the laser pulses [24]. 
Many electrons induce enhanced nonlinear effects, such as 
multi-phonon absorption and avalanche ionization [25]. 
Therefore, when the same surface of the cemented tungsten 
carbides was irradiated, the maximum temperature of the 
electrons differed depending on the focus of the laser beam. 
The highest temperature was achieved under irradiation by 
the focused laser beam. Furthermore, under the equilibrium 
state, the temperatures of the electrons and lattices were 
higher for the focused laser beam, as compared with those 
for the unfocused laser beam. This higher temperature of 
the electrons and the equilibrium of the electrons and lat-
tices affected physical phenomena. Specifically, owing to 
the higher temperature, the cemented tungsten carbides 
underwent vaporization. When the focused laser beam was 
located at the ablated bottom surface, an additional amount 
of the cemented tungsten carbides was removed, as shown 
in Fig. 5, under irradiation by the multi-pulse laser. We also 
observed that the diameter of the holes varied depending on 
the type of machining. When the focused laser beam was 
positioned at the top surface, various physical phenomenon 
such as plasma and shockwaves led to additional ablation 
at the top surface of the cemented tungsten carbides. As a 
result, the 25 µm of diameter was acquired. Similarly, when 
the focused laser beam was positioned at the ablated bottom 
surface, various physical phenomena occurred in the interior 
of the cemented tungsten carbides. Accordingly, when the 
focused laser beam was positioned at the ablated bottom 
surface, the diameter of the holes decreased. The length 
of the burrs under machining type A was 7.9 µm, similar 

Fig. 3  Burr height irradiated by laser pulse with 100  μJ in various 
focus position and counts of laser pulses: a determining a burr height, 
b Burr height depending on focus position and counts of laser pulses

Table 2  Properties of the cemented tungsten carbides

ke [W/(m*K)] ki [W/(m*K)] α[cm−1] R γ [W/m−3K−1]

84.02*(Te/Ti) 144.5 2.5*10–5 0.46 1.65*1017

Fig. 4  Temperature and time to reach thermal equilibrium analyzed 
by TTM: the time to reach thermal equilibrium irradiated by 100 µJ 
depending a position of laser focused beam  (Te: the temperature of 
electron system,  Ti: the temperature of lattice system)
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to that under machining type B (7.9 µm) but shorter than 
those under machining types C and D (i.e., 9.5 and 10.2 µm, 
respectively). The height of the burrs under machining type 
A was 4.7 µm, similar to those under machining types B and 
D but shorter than that under machining type C (5.9 µm). 
When the focused laser beam was irradiated at the surface, a 
higher temperature distribution was formed. The majority of 
cemented tungsten carbides were removed by the rapid rise 
in temperature-induced vaporization. However, the edges of 

the focused laser beam had a lower temperature owing to the 
properties of the Gaussian laser beam. The area irradiated 
by the edges of the Gaussian laser beam remains melted. In 
addition, a higher temperature induced tensile stress inside 
cemented tungsten carbides [26, 27]. The tensile stress was 
pushed away from the center. Consequently, burrs with 
higher heights were formed (Fig. 6).

It was observed that the rapid temperature affected the 
morphologies of the burrs at the surface of the cemented 
tungsten carbides. Laser pulses were irradiated by chang-
ing the position of the laser-focused beam. The ablated bot-
tom surface was irradiated with a laser-focused beam. The 
changes in the positions of the laser-focused beams are listed 
in Table 1. To change the position of the laser-focused beam, 
the diameters of the ablated holes were 25 µm. However, the 
depth of the ablated holes differed depending on the machin-
ing type. In addition, the change in the position of the laser-
focused beam affects the lengths and heights of the burrs.

The initial 10 laser pulses were irradiated at the top sur-
face regardless of the machining type. The focused laser 
beam was located at the ablated bottom surface after the 
initial 10 laser pulses. The location of focused laser beam 
was in the gap between the top and ablated bottom surfaces. 
The length of the burrs increased depending on the machin-
ing type. When the laser-focused beam was located at the 
ablated bottom surface, the top surface was irradiated at 
the edge area of the Gaussian laser beam. For a Gaussian 
laser beam, the edge area has lower laser energy. Lower 
laser energy induced a smaller temperature increase. For a 
lower temperature of electrons increase, the major material 
removal mechanism is the heat process. Consequently, the 

Fig. 5  Diameters and depths of ablated holes with different machin-
ing types and laser pulse energies of 100 μJ

Fig. 6  Measured length and height of burrs depending on machining types: a a measured length of burrs, b a measured height of burrs
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lengths of burrs were longer. For machining types B and 
C, the position of the laser-focused beam is changed once. 
For machining type D, the position was changed twice. The 
height of the burrs was shorter in machining type D than 
in machining types B and C. If the laser pulses with high 
energy were irradiated to the same spot, a large amount 
of material will be removed. In addition, the height of the 
burrs increased. However, enhanced depths of the holes 
were obtained in machining type D than in machining type 
A. Therefore, the heights of the burrs are similar. Under 
irradiation using laser pulses with a high pulse energy, burr 
formation is inevitable. However, burrs with shorter heights 
and larger lengths help improve the laser energy efficiency 
[10]. For laser machining with multi-pulse lasers, the laser 
energy efficiency can be expressed as in Eqs. (5) and (6):

where  rd is the radius of the burrs, w(ZF) is the beam size, 
N is the laser passing rate, and I is the laser intensity. Burrs 
with larger heights reduced the laser passing rate, leading 
to a decrease in the machining efficiency. Thus, position-
ing the focused laser beam at the ablated bottom surface is 
advantages for machining via multi-pulse lasers with a high 
pulse energy.

4  Conclusion

We investigated the interaction between cemented tungsten 
carbides and a femtosecond laser with high pulse energy. In 
addition, we analyzed the diameter, depth, and morphology 
of the holes. When the laser focused beam was irradiated 
at a surface, the maximum temperature of the electrons is 
high. At high electron temperatures, a mount of cemented 
tungsten carbides was removed. However, the laser-induced 
heat created a melted state of cemented tungsten. In addi-
tion, the high-temperature induced tensile stress was pushed 
away. Therefore, high heights were formed.

Under irradiation by a multi-pulse laser with a high laser 
pulse energy, burrs were formed. On focusing the laser 
beam, shorter burrs with larger heights were observed. By 
contrast, when the focused laser beam was incident on the 
ablated bottom surface, burrs with shorter heights and larger 
lengths were formed. The height and length of these burrs 
affected the laser efficiency; specifically, burrs with shorter 
heights and larger lengths increased the laser passing rate. 
Accordingly, machining type D was observed to improve the 
machining efficiency.

(5)N = 1−exp
(

−2r2
d
∕w

(

ZF
)2
)

(6)Ic(n+1) = Ini ∗ Nn

Recently, laser machining with high pulse energy and 
many laser pulses has been required because of the proper-
ties of the materials. Subsequently, the removal of many 
materials induces a laser-defocused beam and reduces 
the laser energy efficiency. Understanding the interaction 
between the high pulse energy of the femtosecond laser and 
cemented tungsten carbides is helpful for laser processes 
requiring high pulse energy.
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