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Abstract
Metal oxide reinforced composite, as a new kind of engineering material, was an essential research topic to industry. Mag-
nesium oxide as particle-reinforced phase, were mixed with wood fiber-matrix to enhance the mechanical properties of 
composite. However, the research on the surface quality of this composite is still desirable for expanding its application. In 
order to investigate the surface integrity of this kind particle-reinforced wood-based composite, spiral up-milling experiments 
were performed with different cutting depth and cutting speed. The effect of cutting speed and cutting depth on surface integ-
rity was investigated. According to the calculation results of black pixels proportion of binary image of machined surface, 
surface defects were greatly affected by cutting depth rather than cutting speed. Defects, such as pile-up and debonding of 
particles, were usually observed under 0.5 mm cutting depth, meanwhile, extensive damage of flacking and fracture of wood 
fiber-matrix were usually observed under 1.5 mm cutting depth. In all, the machined surface formation mechanism of this 
composite can be different by changing cutting depth.

Keywords Magnesium oxide particle-reinforced · Cutting depth · Cutting speed · Material removal rate · Surface formation 
mechanism

1 Introduction

Wood-based materials, as a kind of environmental protec-
tion biomass material [1], were widely applied in furnish-
ings field, such as doors and windows, fencing and floor-
ing in terms of their flame retardancy, moisture resistance, 
insect prevention and so on properties [2–8]. However, for 
the applications in engineering field, metal-matrix compos-
ites are still mainly used due to its high hardness, stiffness, 
specific strength and low thermal expansion [9]. In order 
to expand the application of wood-based materials in engi-
neering industry, magnesium oxide particle reinforced wood 
fiber-matrix composite has emerged, which inspired by a 

founding that claims particle-reinforced composites have 
advantage of easy manufacturing and low cost [10].

Magnesium oxide particle belongs to one kind of ceramic 
materials. It is difficult to cut ceramic materials due to its 
high hardness, leading to machine problems in surface 
quality [11–13]. Therefore, surface integrity of magnesium 
oxide particle reinforced wood fiber-matrix composite is still 
desired to investigate for expanding its application [14].

A series of surface integrity of particle-reinforced 
metal matrix composites was in focus by many research-
ers. Surface integrity of Silicon nitride particle-reinforced 
aluminium alloy using PCD tools was investigated through 
scanning electron microscope, it is concluded that the defect 
of machined surface made form particle-reinforced were 
mainly voids, scales, and scratches. In addition, an affected 
surface layer with a thickness of about 20–35 μm was also 
observed [15]. Cutting mechanism and damage behavior 
of particle-reinforced composites was studied by Yu, they 
found the failure mode and mechanism of machined sur-
face [16]. Above studies, surface formation mechanism of 
particle-reinforced metal matrix composites is quite clearly. 
However, the surface formation about particle-reinforced 
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wood-based composites was not clear, because the anisot-
ropy of wood is compared to the isotropy of metal.

The effect of cutting parameters on surface quality still 
need to be addressed [17–19]. Silicon nitride particle-rein-
forced aluminium alloy machined by PCD tools in high-
speed milling was investigated. Their results show that an 
increased cutting speed as well as feed rate can lead to a 
severe surface defect. It is also concluded that different 
superimposed effects, comprising particle pull-out as well 
as the subsurface voids within the surface layer results in 
the formation of deep voids [20]. The influence of cutting 
speed, feed per tooth and cutting depth on surface roughness 
of machined surface has been investigated. They founded 
that an increased feed per tooth and a decreased cutting 
speed led to an increasing surface roughness [21]. The opti-
mal cutting parameters of cutting speed, feed and cutting 
depth when machining aluminium silicon carbide particu-
late metal matrix composite were investigated, they found 
cutting speed and cutting depth have the most contribution 
to cutting [22]. Although above studies concluded cutting 
speed and cutting depth have significant influence on surface 
integrity, the surface formation mechanism of under these 
cutting parameters still need to be revealed.

As mentioned above, surface quality of particle-rein-
forced composites has been investigated a lot, and applied in 
many engineering fields. But until now, as a new kind com-
posite, MgO-particle-reinforced wood fiber-matrix compos-
ite, there is still no research about the machinability of this 
composite. In order to expand its application in engineering 
materials, it is desirable to investigate its surface integrity 
under different cutting conditions.

In this experimental study, particle-reinforced wood-
based composite was selected as objective. Spiral up-milling 
tests were carried out to investigate surface formation mech-
anism using PCD tool. Surface defects were determined by 
images of scanning electronic microscope.

2  Material and Methods

2.1  Materials

MgO-particle-reinforced wood fiber-matrix compos-
ite, was used as milling object in this study. The raw 
material was supplied by HOMAG China Golden Field 
Ltd., China. The workpieces were rectangular blocks of 
140 mm × 80 mm × 7 mm (length × width × thickness). which 
contained 55.0 wt.% wood fiber, 36.8 wt.% MgO, and 2.3 
wt.% SiO2, as well as 5.9 wt.% some additives such as pig-
ments. A representative microstructure of MgO-particle-
reinforced wood fiber-matrix composite is shown in Fig. 1. 
Physical and mechanical properties of the workpieces are 
listed in Table 1.

In this experiment, the helix milling cutter with helix 
angle of 70°. The diameter of the tool with six cutting teeth 
was 140 mm. The blades were fabricated by injection mould-
ing at high temperature (Kyocera Group Co. Ltd. Japan). 
Table 2 provide the tool parameters and mechanical proper-
ties of the cutting tools used in this study.

2.2  Experimental Set‑up

Experimental set-up of machinability studies of MgO-parti-
cle-reinforced wood fiber-matrix composite was presented in 

Fig. 1  SEM image of MgO-particle-reinforced wood fiber-matrix 
composite

Table 1  Workpiece properties of MgO-particle-reinforced wood 
fiber-matrix composite

Density
(g/cm3)

Modulus of 
rupture
(MPa)

Modulus of 
elasticity
(MPa)

Impact 
strength
(KJ/m2)

Thickness 
swelling
(%)

1.25 18.5 4.79 ×  103 22 1.5

Table 2  Tool geometry and mechanical properties of PCD

Helix angle (°) 70
Rake angle (°) 10
Clearance angle (°) 8
Diameter (mm) 140
Number of teeth 6
Modulus of elasticity (Gpa) 800
Thermal conductivity (W·m-1·K-1) 560
Hardness (HV) 8000
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Fig. 1. Spiral up-milling tests were performed on a MGK01 
four-axis CNC machining center in Fig.  2a. As shown 
in Fig. 2b, dynamic cutting forces were monitored by a 
dynamometer (Kistler 9257B, Switzerland) with a charge 
amplifier (5070A, Switzerland) during the milling process. 
The sampling frequency of the recorder was less than the 
natural frequency of 3.5 kHz. Cutting force components in 
three orthogonal directions were measured. (Fig. 2b). The 
average resultant cutting force Fr was calculated from cut-
ting force components in X, Y, and Z directions using the 
formula (1). A surface profiler was used to measure the sur-
face roughness Ra, and the ACCTee software was used to 
calculate the surface roughness in Fig. 2c. The cut-off and 
sampling length were determined as 0.8 mm and 10 mm 
in this work. A scanning electronic microscope (SEM) was 
used to observe the machined surface topography.

2.3  Calculation of Material Removal Rate 
and Experimental Design

In spiral up-milling, the cutting width b is periodically vary-
ing compared with a fixed cutting width in cylindrical mill-
ing. When the tooth of cutter just cut into the workpiece, b 
is very small, then gradually increases to the maximum, and 
finally decreases as tooth cut out. Figure 3 shows a schematic 
of chip section in spiral up-milling.

For one tooth, the unit width of chip is:

(1)Fr =

√

(Fx)2 + (Fy)2 + (Fz)2

where b is cutting width (mm), φ is the contact angle 
between the cutter and workpiece (°), λ is the spiral angle 
(°), D is the diameter of tool (mm).

(2)db =

D

2
d�

sin �
=

D

2 sin �
d�

Fig. 2  Experimental set-up: a 
machine center; b amplifier con-
nected to PC; c surface profiler

Fig. 3  Schematic of chip volume in spiral cutting
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Integral of db, the width of chip is:

For infinitesimal elements, the unit cross–section area 
(dA) of the chips cut by the length of cutter teeth can be 
expressed as:

where a is chip thickness (mm), Uz is feed per tooth (mm/Z).
The cross-sectional area of chips cut by one tooth is:

The volume of chip cut per tooth is:

The relation between contact angle, cutting depth and 
diameter of the tool is as follows:

where the h is the cutting depth (mm).
Bring formula (7) into formula (6), the material removal 

rate is:

where MRR is the material removal rate (mm3/s), U is the 
feed rate (mm/s).

In this work, different cutting speed and cutting depth with a 
constant feed rate were set as cutting parameters. The detailed 
experimental design for the research into the effect of cutting 
speed and cutting depth on cutting force and surface roughness 
is summarized in Table 3. It is clearly to be found that MRR 
has nothing to do with cutting speed according to formula (8).

3  Results and Discussion

3.1  Analysis of Cutting Force

3.1.1  Effect of Cutting Parameters on Resultant Cutting 
Force

Figure 4 shows the trend of cutting force components as 
time increased. The first 0.25 s corresponded to a transient 

(3)b = ∫
�

0

D

2 sin �
d� =

D ⋅ �

2 sin �

(4)dA = a ⋅ db = Uz ⋅ sin� ⋅

D ⋅ d�

2 sin �
=

D ⋅ Uz

2 sin �
⋅ sin� ⋅ d�

(5)A = ∫
�

0

D ⋅ Uz

2 sin �
⋅ sin� ⋅ d� =

D ⋅ Uz

2 sin �
(1 − cos�)

(6)V = A ⋅ ∫
�

0

D

2
⋅ d� =

D2
⋅ Uz

4 sin �
⋅ �(1 − cos�)

(7)cos� = 1 −
2h

D

(8)
MRR =

V ⋅ U

Uz
=

D2
⋅ U

4 sin �
⋅ �(1 − cos�)

=
D ⋅ U ⋅ h

2 sin �
⋅ arccos

(

1 −
2h

D

)

process before reaching the steady state cutting process. 
Following the approximately 1.5 s was the stable cutting 
process. After this, the tool was disengaged. An average of 
resultant cutting force during stable cutting process was cal-
culated after filtered, and it was used for further analysis.

Figure 5 shows the influences of cutting speed and cut-
ting depth on resultant cutting force. Resultant cutting force 
decreased with the increase of cutting speed and increased 
with the increase of cutting depth. At the same cutting 
depth, when the cutting speed increased from 35 to 45 m/s, 
the resultant cutting force decreased about 10 N, 17 N and 
45 N, respectively. However, at the same cutting speed, 
when the cutting depth increased from 0.5 to 1.5 mm, the 
resultant cutting force correspondingly increased by about 
187 N, 152 N and 151 N. It can be easily concluded that the 
response of cutting depth to cutting force is higher than that 
of cutting speed in this experiment (at least in the inves-
tigated range of parameters). The growth of the resultant 
cutting force as cutting depth increases is likely related to 
the increase of MRR. The increase of cutting speed indicates 
the increase of spindle speed which leads to a lower feed per 
tooth, resulting in a lower resultant cutting force. In addition, 
Fig. 5 also shows the standard deviation of the resultant cut-
ting force during each test (see the error bars). The increase 
of the standard deviation at large cutting depth (h = 1.5 mm) 
clearly indicates the occurrence of cutting force fluctuation.

3.1.2  Effect of Cutting Parameters on MRR

According to the Eq. (8), it is found that the MRR is a 
function of U, λ and h. But only cutting depth and cutting 
speed were investigated in this work. Therefore, the MRR 
is dependent of the cutting depth in this study. The char-
acteristic of the MRR as a function of the cutting depth is 
shown in Fig. 6. The MRR firstly showed a slight upward 
trend as the cutting depth increased. When the continues 
increase in cutting depth, the MRR characteristic can be 
approximated by a linear function in the range of cutting 

Table 3  Parameters and levels of spiral up-milling test

Exp. no Cutting speed
(m/s)

Cutting depth
(mm)

Feed rate
(mm/s)

MRR
(mm3/s)

1 35 0.5 66.67 297.0
2 35 1.0 66.67 840.4
3 35 1.5 66.67 1545.0
4 40 0.5 66.67 297.0
5 40 1.0 66.67 840.4
6 40 1.5 66.67 1545.0
7 45 0.5 66.67 297.0
8 45 1.0 66.67 840.4
9 45 1.5 66.67 1545.0
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Fig. 4  Typical cutting forced 
components in spiral up-milling
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depth (0.5 mm < h < 1.5 mm). This linear tendency of 
MRR confirmed the increasing resultant cutting force as 
the cutting depth increased.

3.2  Analysis of Surface Quality

3.2.1  Effect of Cutting Parameters on Surface Roughness

The influence of cutting speed and cutting depth on sur-
face roughness can be seen in Fig. 7. It is remarkable that 
there is a similar tendency of the resultant cutting force as 
the cutting depth increases. Also, machined surface rough-
ness decreased with the increase of cutting speed at the 
same cutting depth. The difference “L” in Fig. 7 illustrates 

that the machining efficiency can be improved by increas-
ing both cutting depth and cutting speed, while a better 
surface roughness is obtained. It is of practical signifi-
cance to improve the machining efficiency of materials for 
machining industry. Furthermore, if energy consumption 
is considered, the slight loss of surface roughness can be 
accepted by reducing the cutting speed. Because the sur-
face roughness of V2 was close to V3.

According to Figs. 5 and 7, the cutting speed had mod-
erate effect on the resultant cutting force and surface 
roughness (at least in the investigated range of param-
eters), while the effect of cutting depth was more signifi-
cant. And it is likely the different behaviors of materials 
deformation in cutting area in front of the tool tip under 
different cutting depths. Therefore, the cutting speed 
V2 = 40 m/s was selected for further analysis of surface 
topography. For this cutting speed, the machined surface 
topography at the cutting depth of 0.5 mm and 1.5 mm 
were observed to conjecture the behavior of materials 
deformation.

3.2.2  Binary Image Analysis of Surface Defects

In order to test the defect rate of machined surface, a via-
ble method of particles size determination using binary 
image analysis was reported [23]. Specifically, this analysis 
mainly went through three stages in Fig. 8, including sample 
image loading, image binarization, and image morphologi-
cal operation. At stage of images binarization, the thresh-
old value was determined by the “graythresh” function to 
access the best possible threshold value for each image using 
MATLAB software. At the stage of morphological opera-
tion, image erosion was used to filter the binary image. By 

Fig. 5  Comparison of the resultant cutting force for various machin-
ing conditions

Fig. 6  Material removal rate as a function of the cutting depth
Fig. 7  Comparison of surface roughness for various machining condi-
tions



507International Journal of Precision Engineering and Manufacturing (2023) 24:501–510 

1 3

creating structural elements similar to the shape of defects 
on the machined surface, the defects are represented by black 
pixels and others are represented by white pixels.

Figure 9a, b show the binarized image of machined sur-
face under 0.5 mm cutting depth and 1.5 mm cutting depth, 
respectively. The defect rate of the machined surface was 
obtained by calculating the proportion of black pixels in 
the image. According to the calculation results, the defect 
rates of 0.5 mm cutting depth and 1.5 mm cutting depth are 
1.09% and 11.34%, respectively. It can be clearly seen that 
the proportion of black pixels in image 9(a) was much more 
than that of image 9(b). It is also confirmed that the surface 
damage degree of machined surface under 1.5 mm cutting 
depth is far greater than that under 0.5 mm cutting depth. 
In other words, when the tool is at the same speed and time 

conditions, a depth of cut condition of 1.5 mm can result in 
far more material breakage in front of the tool tip than at a 
depth of cut of 0.5 mm. This is because the greater the depth 
of cut, the more material needs to be removed under the 
same conditions. Therefore, the degree of material deforma-
tion in front of the tool tip goes from mild to severe as the 
cutting depth increases.

3.2.3  Surface Defects

Camera photos were taken account to evaluate the machined 
surface integrity in Fig. 10a, d. Some visible defects were 
observed in Fig. 10d, while Fig. 10a was not. It is no doubt 
that there is a quite different morphology of machined sur-
face. To further explore this difference, a scanning electronic 

Fig. 8  An example of image analysis. a Original image; b Inverted binary image (threshold value calculated by the “graythresh” function); c 
Erosion of inverted binary image (disk radius R = 2)

Fig. 9  Binary image after mor-
phological operations of erosion 
(disk radius R = 2). a 1.09% 
defect rate at 0.5 mm cutting 
depth; b 11.34% defect rate at 
1.5 mm cutting depth
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microscope (SEM) was utilized to assess the topography 
of machined surface (Fig. 10b, c, e, f). Defects, i.e., crack, 
pile-up and pits were observed on the machined surface at 
the cutting depth of 0.5 mm in Fig. 10b, c. In comparison 
to wood fiber composites without the addition of MgO 
particles, it has been noted that at small depths of cut, the 
damage to the machined surface is mainly due to debond-
ing of the wood fibers from the matrix [24]. The formation 
mechanism of machined surface can be explained as follows. 
When MgO particles are added, a certain degree of cutting 
force pushes the hard MgO particles partially into the rela-
tively soft wood matrix, causing cracks and pile-up on the 
machined surface, as well as pushing the MgO particles par-
tially out of the wood matrix, causing the MgO particles to 
deboned, resulting in pits of the machined surface. This kind 
of material deformation, however, is implicitly characterized 
by plastic deformation, such as good re-formability, leading 
to a lower surface roughness and a higher surface quality.

By contrast, fracture of fibers and extensive flaking of 
wood fiber layers were observed on the machined surface 
at the cutting depth of 1.5 mm in Fig. 10e, f. When the 
cutting depth increased from 0.5 to 1.5 mm, the MRR 
increased from 297 to 1545  mm3/s. Namely, the volume of 
material removed in unit time under 1.5 mm cutting depth 
is about five times of that under 0.5 mm cutting depth. 
This sharp increase of material removal volume caused a 
higher resultant cutting force, which enough to tear wood 
fibers. Besides, wood fibers are not oriented, therefore, 
flaking of wood fibers was often observed when the wood 
fibers orientation is similar to the cutting direction. Oth-
erwise, wood fibers fracture was often observed Fig. 10d. 
At large cutting depth, the addition of MgO has little effect 
on machined surface damage, as the larger cutting forces 
cause direct damage to the wood fiber matrix. This also 
indicates that at large cutting depths, the deformation 

behavior of the material tends towards brittle fracture, 
leading to severe surface damage.

4  Conclusion

In this paper, the surface integrity of MgO-particle-rein-
forced wood fiber-matrix composite during spiral up-milling 
was investigated. There are some results can be concluded 
as follows.

Surface integrity is significantly to be affected by cut-
ting depth than by cutting speed. This is mainly because the 
MMR increases dramatically when the depth of cut is varied.

At different cutting depths, the deformation of the mate-
rial in the cutting zone in front of tool tip is closely related 
to the surface integrity of the machined surface. At small 
cutting depths, the deformation is characterized by plastic 
deformation, which results in minor surface defects and 
better surface quality due to better re-formability. At large 
depths of cut, on the other hand, the deformation of the 
material tends to fracture, leading to severe surface damage 
and poorer machining quality.
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