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Abstract
Fundamental technology of Computer Aided Design, free-form surface flattening is important for both practical and scientific 
point of view in mechanical engineering. This paper proposed a flattening algorithm by using a local rigid registration and a 
global energy optimization. Firstly, each 3D element is aligned to the plane by minimizing the distance between the original 
3D element and its corresponding planar element. Then, a global optimization operator is used to stitch and optimize these 
best-aligned local elements by iteratively minimizing a quadratic energy function composed of linear elastic energy, which 
makes the internal force of the nodes reach the equilibrium state. The experimental results show that this method is stable 
and reliable, and can obtain good surface flattening effect under free boundary conditions.

Keywords Surface flattening · Rigid transform · Linear elastic energy · Triangular mesh · Quadrilateral mesh

1 Introduction

Flattening of free-form surfaces has been widely used in the 
field of mechanical engineering, such as blank estimation in 
sheet metal forming, computer-aided design for mechanical 
product and surface reconstruction in reverse engineering. 
It involves computing a mapping between surface in three-
dimensional space and a planar parameter domain. Because 
of its simplicity and flexibility, surface mesh composed of 
triangular elements, quadrilateral elements and their combi- 
nation has become the main expression of three-dimensional 
models. Both triangular and quadrilateral surface meshes are 
considered in this surface flattening algorithm.

In recent years, a variety of methods on surface flatten-
ing has been developed [1], and the related methods can  
be divided into linear solution-based method [2–6] and 
iterative solution-based method by their solving strategies. 

The most common used method based on linear solution is 
shape-preserving method [2, 3], which determines the posi-
tion of each vertex in the flattened mesh by solving a linear 
system based on convex combination. The main disadvan-
tage of this method is that it requires predefined and con-
vex two-dimensional boundaries. Levy et al. [5] presented 
a Least- Squares Conformal Mapping (LSCM) method by a 
least-squares approximation of the discrete Cauchy-Riemann 
equations to minimize angle deformation. Yavuz [6] uses the 
dynamic virtual boundary method to reduce the deformation 
of triangles near the boundary caused by convex combina-
tion. While linear solution-based method is easy to use and 
has high efficiency, it may produce flattening results with  
local or global overlaps. Iterative solution-based method 
methods perform the surface flattening by iteratively solving 
the minimum energy or equilibrium state, which are defined 
by different mesh properties. Sheffer et al [7] proposed a 
method based on angle optimization to calculate the param-
eterization of mesh surface. This method aims to optimize  
the angular deformation of triangular mesh by solving a non-
linear system, which usually requires many calculations. The 
mass-spring model is often used to construct energy function  
for surface flattening [8–11]. Zhong et al. [8] divided the  
three-dimensional surface into several almost developable 
patches, and then flatten them by solving the energy func-
tion via mass-spring model. With the similar mass-spring 
model based stretching energy, Bing et al. [9] project the 

Online ISSN 2005-4602
Print ISSN 2234-7593

 * Peng Wei 
 weipeng@jiangnan.edu.cn

1 School of Mechanical Engineering, Jiangnan University, 
Wuxi 214122, China

2 Jiangsu Key Laboratory of Advanced Food Manufacturing 
Equipment and Technology, Wuxi 214122, China

3 School of Mechanical and Electrical Engineering, Nanjing 
University of Aeronautics and Astronautics, Nanjing 210016, 
China

http://orcid.org/0000-0002-6605-1519
http://crossmark.crossref.org/dialog/?doi=10.1007/s12541-022-00683-6&domain=pdf


922 International Journal of Precision Engineering and Manufacturing (2022) 23:921–927

1 3

element locally to planar, and then combines the results of  
a single projection by solving a simplified global matrix.  
Wang et al. [11] also use a mass-spring model-based energy 
function to flatten 3D mesh surfaces into 2D patterns, which 
can obtain result with flexible surface boundaries. A local to 
global operation [12, 13] is proposed to ensure the minimum 
distortion between input meshes and flattened meshes by  
iteratively solving a global energy function, which is super-
position of local energy. One-step Inverse Forming Theory  
in sheet metal forming is introduced to solve the surface  
flattening problem [14, 15]. However, the one-step inverse 
forming theory is complex, which leads to the complex  
parameters and time-consuming of the mesh surface flatten-
ing algorithm. Zhuang et al. [16] defined the energy model 
based on the change of edge length by using Young's modu-
lus. By minimizing this energy model, the flattening results 
for computer aided garment design are obtained. Zhang et al. 
[17] proposed a strain constraint method to flatten the trian - 
gular surface mesh by morphing the original element to an 
approximate equidistant triangular mesh, which is a good 
approximation of the input surface model. Bouaziz et  al.  
[18] adopt shape proximity function and shape projection  
operator to optimize the geometry processing, which can  
be used for shape preserving deformation and conformal 
parameterization of geometric models. While iterative solu-
tion-based methods yield better results with natural flattened 
boundaries, they have high computational cost and will lead  
to non-convergence results in some cases.

Most of the surface flattening algorithms are only  
for triangular meshes, in order to obtain the flattening  
results for surfaces composed of triangular elements or 
quadrilateral elements, a free-form surface flattening 
method is proposed based on local rigid registration and 
global energy optimization, mainly consist of two steps:  
(1) Local rigid registration for single element: each surface 
element is best align to its correspondence planar element 
by minimizing their distance; (2) Global stitching operation 
for all elements: linear elastic finite element energy is used 
to stitching the transformed element to ensure the validity 
of the mesh connectivity. The proposed method is mainly 
based on rigid registration and elastic energy optimization, 
can be abbreviated as RR/EO method. The rest of this paper 
is organizing as follows. Section 2 gives the detailed steps 
of surface flattening, including local alignment of single 
element and global "stitch" operation. Several experimental 
results of surface flattening are given in Sect. 3, and the 
conclusions are finally discussed in Sect. 4.

2  Free‑Form Surface Flattening

The purpose of surface flattening is to minimize the  
parametric deformation between the original surface and  
the flattened surface as much as possible. To this end, a  
local to global surface flattening strategy is adopted in this 
paper. Each surface element (Triangular or Quadrilateral) is  
transformed to its corresponding planar parametric element 
by finding the best rotation and translation transform. In 
order to stich the transformed elements together, the linear 
elastic finite element energy is used to find an equilibrium 
state of internal force. The steps of the proposed RR/EO  
flattening algorithm are summarized in Algorithm 1.

Input: A surface mesh M with vertices V, elements E.
Obtain an initial planar mesh P0 with vertices V0, elements E0 by
linear flattening method. 
t = 0, repeat 
Step1: Local transformation of surface element 

for every element E in mesh M do
Align the element E to its corresponding element Et by 
minimizing the distance between them, obtaining a planar 

transformed element E′′.
end for 

Step2: Global optimization of surface mesh 
for every element E′′ do

Calculate the internal force of element Et by using the 
displacement between element Et and E′′.
The internal force of node is obtained by superimposing the 
internal force of its adjacent elements at the node.

end for 
Establish global energy by using the linear elastic energy of 
mesh and the internal force of node. 
Calculate the node displacement by minimizing the global 
energy function. 
Update Pt with calculated displacements qt to give Pt+1:
Pt+1= Pt + qt

t = t +1
until ||qt|| < σ or t > tmax

Output: The flattened surface mesh Pt

____________________________________________________________________________________

Algorithm 1. Surface flattening

2.1  Local Alignment of Single Element

Most surfaces are composed of triangular elements,  
quadrilateral elements and their combination, while  
most surface flattening algorithms are only for surfaces 
composed of triangular meshes. This leads to the need 
for additional split operation for quadrilateral elements, 
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and different element splitting strategies will affect the 
flattening results. Therefore, the proposed method in this 
paper needs to be applied to triangular and quadrilateral 
elements. At the same time, the given element needs  
to be transformed to make it as close as possible to its  
corresponding planar parameterization element.

G i v e n  a  s u r f a c e  e l e m e n t 
E =

(
v1,… , vne

)
, vi =

(
xi, yi, zi

)
∈ R

3  is  the nodes 
of the given element, ne is the number of node in  
element E, and its corresponding planar element is 
Et =

(
p1,… , pne

)
, pi =

(
xi, yi

)
∈ R

2 . The goal is to find 
a transformation that best superposes the given element E  
with elements Et. The first step is to transform the three-
dimensional element E to the OXY plane and obtain a  
planar element E� =

(
v�
1
,… , v�

ne

)
 . Then, the planar element  

E′ is aligned to its corresponding planar element Et by  
minimizing the Euclidean distance between planar element  
E′ and Et. The mean square objective function to be  
minimized is:

where R is the 2 × 2 rotation matrix and T is the 2 × 1  
translation matrix. This minimizing problem can be solved 
by many non-iterative optimization methods [19, 20], such 
as singular value decomposition (SVD) method, quaternion  
method, etc. Here, the singular value decomposition  
method is used to get the rigid transformation matrix R and 
T. The solution of Eq. (1) can be converted into the SVD 
decomposition of the following matrix:

where v and p are the center of element E′ and Et respectively, 
calculated by: v = 1∕ne

∑ne

i=1
v�
i
 , p = 1∕ne

∑ne

i=1
pi . In 

particular, using SVD, H can be written as

The best fit rotation matrix R and translation matrix T 
can be obtained by

Figure 1 shows the result of local alignment of triangle 
element. The original triangle v1v2v3 and its corresponding 
triangle p1p2p3 are plotted in Fig. 1a, b marked by blue solid 
lines, while the transformed triangle v′′1 v′′2 v′′3 obtained 
by alignment operation is shown in Fig. 1b with red dotted 
lines. Figure 2 is a local alignment example of quadrilateral 
element. In this example, the original quadrilateral v1v2v3v4 
is transformed to v′′1 v′′2 v′′3 v′′4 marked by red dotted lines, 
shown in Fig. 2b.

(1)f (R,T) = 1∕ne

∑ne

i=1
||pi − Rv�

i
− T||

2

(2)H =
∑ne

i=1
(v�

i
− v)(pi − p)T

(3)H = USVT

(4)

{
R = VUT

T = p − Rv

2.2  Global Stitching of Planar Mesh

Due to the shape difference between the 3D element and  
its corresponding 2D element, the locally transformed 2D 
mesh is disconnected. Then, a global optimization is used to 
“stitching” the transformed elements together to a 2D mesh, 
which is derived by minimizing a quadric energy function. The  
energy function consists of two terms, including the energy 
caused by nodal loads and the linear elastic strain energy. The  
global stitching can be seen as an elastic deformation process  
from the planar element Et to its corresponding transformed  
element E′′, and the internal force of the nodes will inevitably 
be generated during the deformation process.

S u p p o s e  a  2 D  s u r f a c e  e l e m e n t 
Et =

(
p1,… , pne

)
, pi =

(
xi, yi

)
∈ R

2  a n d  i t s 
co r respond ing  t rans for med  sur face  e lement 
E�� =

(
v��
1
,… , v��

ne

)
, v��

i
=

(
x��
i
, y��

i

)
∈ R

2 . The displacement 
vectors of the surface mesh in the global coordinate system 
are qe = {Δx1,Δy1,… ,Δxne,Δyne} . The elements of 
displacement vector qe can be calculated as follows: 
Δxi = x��

i
− xi, Δyi = y��

i
− yi, i = 1,… , ne . Considering that 

the transformed element E′′ is obtained by the linear elastic 
deformation of its corresponding planar surface element Et, 
the stress of the element is

where B is strain matrix and D is linear elastic matrix. 
Therefore, the internal force of the nodes in the global  
coordinate system of the surface mesh is defined as follows

(5)� = DBqe
T

Fig. 1  Local alignment of triangular element: a Original Triangle; b 
Best fit result

Fig. 2  Local alignment of quadrilateral element: a Original quadrilat-
eral; b Best fit result



924 International Journal of Precision Engineering and Manufacturing (2022) 23:921–927

1 3

The matrix ke is the element stiffness matrix of the  
quadrilateral element and triangular element which can be 
calculate by the three-node triangular element and planar 
four-node isoparametric element [21]. After calculating 
the node internal forces of each element by formula (6),  
suppose that L(i) =

{
l1,… , lm(i)

}
  denotes m(i) surface  

elements adjacent to the node vi. The internal force of node 
vi is obtained by superposition of its adjacent elements

F
eL(i)

in
 represents the internal force of element eL(i) at 

node vi. The internal force Fin of the global surface mesh is 
obtained by the integration of Fi

in
 of each node.

According to the linear elastic finite element theory, the 
linear elastic strain energy is defined as follows:

The energy caused by the external load of the node is:

Among them, K is a 2n × 2n global stiffness 
matrix composed of element stiffness matrix ke; 
q = {Δx1,Δy1,… ,Δxn,Δyn}  is a 1 × 2n vector of the node 
displacements, and n is the number of nodes in the surface 
mesh. The displacements of all nodes are obtained by 
minimizing the following sum of all energy terms:

where θ is the weight of nodal load, generally set it to 
0.6–08. The above energy function is quadratic, which can 
be solved by a sparse linear system:

In each iteration of the proposed surface flattening 
algorithm, the position of all nodes is updated as: 
Pt+1 = Pt + qt, and new node positions are used as the initial 
planar mesh of the next iteration. In order to make the 
iteration converge, the terminal condition for the iterative 
procedure is determined as:

where σ is a given precision and tmax is a given maximal 
number of iterations.

The surface flattening method proposed in this paper 
requires an initial parameterization to start the iterative 
solution. The basic requirement of initial parameterization 

(6)Fe

in
= ∫

e

BT
�dv = keqeT

(7)Fi
in
=
∑

i∈L(i)
F
eL(i)

in

(8)EB(q) = qKqT

(9)EF(q) = qFin

(10)E(q) = 1∕2qKq
T + �qFin

(11)KqT = �Fin

‖‖qt‖‖ = 1∕2n

∑2n

i=1
(qi

t
)2 ≤ � or t ≥ tmax

is that it has a valid mesh connectivity without too much 
parameterization distortion, and be fast to generate.  
Therefore, the shape-preserving surface parameterization 
method proposed by Floater [2] can be used to quickly obtain 
the plane mesh with fixed convex boundary. An appropriate 
pre-defined outer boundary can be obtained mainly by the  
following steps: (1) Calculate the average normal of the  
surface, and then project the boundary of the surface onto  
the plane according to the normal direction; (2) Remove  
unnecessary points in the boundary by the Douglas-Peucker  
method; (3) Remove all concave points in the boundary  
iteratively until the boundary is convex.

3  Experimental Results

The proposed surface flattening algorithm have applied to 
flatten a variety of mechanical models, running on a machine 
with Core i7 2.6 GHz CPU and 8 GB memory, and here are 
some of them. Figure 3 shows the main steps of RR/EO 
surface flattening method. Figure 3a is the original surface 
mesh. With the automatically created outer boundary, the 
initial parameterization mesh shown in Fig. 3b is obtained  
by using Floater's shape-preserving method [2]. The trans-
formed elements with local alignment operation are shown 
in Fig. 3c. Figure 3d is the final surface flattening result after 
three iterations. From the example shown in Fig. 3, it can 
be seen that the initial flattened mesh by shape-preserving 
method meets the requirements of the proposed iterative sur-
face flattening algorithm, so the shape-preserving method is 
used to generate the initial solution in the follow-up.

To demonstrate the effectiveness of the proposed method, 
the RR/EO method is compared with Local/Global method 
proposed in [12]. Figure 4 shows the flattening results of a 
sheet metal part. The original surface mesh of a sheet metal 
part is shown in Fig. 4a and b is the initial parameterization 
mesh. The flattened results using RR/EO method and Local/
Global method are shown in Fig. 4c and d.

Figure 5 is a surface flattening example of rock arm. It is 
necessary to fill the internal holes of rock arm surface when 
using shape-preserving surface parameterization method. 
Figure 5a displays the original rock arm model with 9312 
triangular elements and 4952 nodes. Figure 5b shows the 
flattened result using RR/EO method after four iterations, 
while the flattened result by Local/Global method is plotted 
in Fig. 5c. As can be seen from Fig. 5b, the mesh distortion 
between the flattening result and the original model is small.

Different with most other surface flattening algorithms, the 
proposed method can directly flatten surfaces consisting of 
triangular and quadrilateral meshes. In sheet metal forming 
simulation, it is usually necessary to flatten the model to pre-
dict the size of blank. Then, two flattening examples of auto-
mobile body parts composed of triangular and quadrilateral 
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meshes are given in the following. Figure 6a–c are the original 
surface, initial guess mesh and flattened result of auto-body 
panel respectively. Figure 7a shows the original surface of a 
fender model, and the flattened meshes generated by RR/EO 
method is displayed in Fig. 7b. Since the surfaces are hybrid 

Fig. 3  Surface flattening of an oil drain: a Original surface; b Initial 
flattened mesh; c Local alignment; d Flattened result

Fig. 4  Surface flattening of a sheet metal part: a Original surface; b 
Initial flattened mesh; c RR/EO method; d Local/Global method

Fig. 5  Surface flattening of a rock arm: a Original surface; b RR/EO 
method; c Local/Global method

Fig. 6  Surface flattening of an auto-body panel: a Original surface; b 
Initial flattened mesh; c Flattened result
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meshes consisting of triangles and quadrilaterals, it is neces-
sary to subdivide a single quadrilateral into two triangles for 
operating by Local/Global method.

In order to measure the flattening distortion, the angle and 
area distortions are calculated as follows:

(12)Dangle = 1∕3nElem

∑nElem

k=1

ne∑

i=1

1
/
(�k

i
)2(�

k
i
− �k

i
)

2

where αi
k and βi

k denote the angle of elements of flat-
tened surface and original surface respectively; nElem 
is the number of elements; A(Ek′′) is the area of element 
in flattened surface and the area of its corresponding ele-
ment in original surface is A(Ek); ω is a weight defined by 
�k = A(Ek)

�∑
A(Ek) . Table 1 shows the statistics of flat-

tening distortion and computational time between the pro-
posed method and Local/Global method proposed in [12]. 
As can be seen from Table 1, the proposed RR/EO method 
can achieve better results with lower area distortion and is 
relatively stable for irregular meshes because of its physical 
background.

4  Conclusions

Surface flattening has been widely used in sheet metal form-
ing simulation and computer aided design. In this paper, 
a surface flattening algorithm based on local rigid regis-
tration and global elastic energy optimization is proposed. 
The method uses a local-to-global strategy to transform a 
single element to a parametric space, and the final flattened 
surface is obtained by using a linear elastic energy optimiza-
tion model to stitch the elements after local transformation. 
Experiments show that this method is suitable for surface 
flattening with arbitrary shape, and the flattening results 
have the advantages of free boundary and less distortion. 
Unlike other methods based on geometric feature optimiza-
tion, this method has definite physical meaning and achieves 
a good balance in solving time and flattening results. At the 
same time, unlike most methods only for triangular meshes, 
the proposed method is suitable for surfaces composed of 
triangular and quadrilateral meshes. For models with large 
number nodes, the time consumption of the proposed RR/
EO algorithm is not fast enough. In the future, it will be con-
sidered to flatten the surface in patches, which can improve 
the efficiency and speed of flattening.

(13)Darea =

nElem∑

k=1

�k
1
/
A(Ek)

2(A(E��
k
) − A(Ek))

2

Fig. 7  Surface flattening of a fender: a Original surface; b Flattened 
result

Table 1  Comparisons of 
flattening distortion and running 
time

Model No. of nodes No. of elements Local/Global RR/EO method

Angle Area Run time (s) Angle Area Run time (s)

Figure 3 1985 2010 0.0032 3.5671 1.52 0.0022 1.9303 1.04
Figure 4 7567 14,802 0.0054 1.6564 19.23 0.0067 1.2263 15.34
Figure 5 4952 9312 0.0690 1.9835 5.87 0.0586 1.4787 3.55
Figure 6 18,571 19,511 0.0061 8.0141 18.36 0.0011 5.5903 25.94
Figure 7 12,247 11,177 0.0254 4.7733 26.28 0.0360 2.7754 20.35
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