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Abstract
Volumetric and geometric errors should be periodically checked to ensure that the accuracy of machine tools remains within 
the tolerable range. However, existing methods require complex devices, and are thus unsuitable for cost-effective interim 
error checks. We present a simple, rapid and cost-effective method for interim error checks. The measurement paths are 
constructed using a virtual polyhedron; volumetric errors are checked by calculating the coordinates of the vertices using 
the measured side lengths. The tool is sequentially moved to each vertex, and the side lengths are measured using a double 
ball-bar. As the virtual polyhedron is composed of virtual regular tetrahedrons, the relationships between the coordinates 
of the vertices and side lengths are unique. Linear scale and squareness errors are measured using an error synthesis model 
with a least-squares approach. The method was applied to a real machine tool, and performance was verified by confirming 
that the maximum L2 norm of volumetric error is improved from 57.6 to 32.8 μm after compensating for the measured geo-
metric errors. Thus, the validity of the proposed method was confirmed by an improvement of 43% in volumetric error. The 
measurement results were confirmed by the circular tests of ISO 230-4; the peak-to-valley radial deviation improved from 
16.0 to 11.2 μm after compensation, and the proposed method contributed to a 30% improvement in the radial deviation.
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List of Symbols
m	� Number of vertices of the virtual 

polyhedron
ci	� Linear scale error of the linear axis 

i (i = X, Y, Z) (μm/mm)

sij	� Squareness error of linear axis j 
around axis i (i, j = X, Y, Z) (rad)

L	� Nominal side length of the virtual 
polyhedron (mm)

δLi,j	� Measured deviations of the side 
lengths between the i-th and j-th 
vertices of the virtual polyhedron 
(i, j = 1, …, m) (mm)

Pi,n (xi,n, yi,n, zi,n)	� Nominal coordinates of the i-th 
vertex of the virtual polyhedron 
(i = 1, …, m) (mm)

Pi,c (xi,c, yi,c, zi,c)	� Coordinates of the i-th vertex 
of the virtual polyhedron in {P} 
(i = 1, …, m) (mm)

Pi,a (xi,a, yi,a, zi,a)	� Coordinates of the i-th vertex 
of the virtual polyhedron in {R} 
(i = 1, …, m) (mm)

δPi,c (δxi,c, δyi,c, δzi,c)	� Positional errors between Pi,c and 
Pi,n (i = 1, …, m) (mm)

δPi,a (δxi,a, δyi,a, δzi,a)	� Volumetric errors at the i-th vertex 
(i = 1, …, m) (mm)

{i}	� Coordinate system of axis i, (i = X, 
Y, Z)
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{P}, {R}	� Virtual polyhedron and reference 
coordinate systems, respectively

�
j

i
	� 4 × 4 homogeneous transformation 

matrix from the j to i coordinate 
system

1  Introduction

The volumetric errors of machine tools are positional devia-
tions between the nominal and actual positions of the tool 
in the workpiece coordinate system [1]; they are caused by 
geometric, thermally induced, and dynamic errors [2]. It is 
essential to measure geometric errors; together with ther-
mally induced errors, they constitute 60–70% of all volu-
metric errors and are direct measurements of other errors 
[3]. The volumetric errors of three-axis machine tools are 
modeled using 23 geometric errors, including 6 position-
dependent geometric errors (PDGEs) for each axis, 3 posi-
tion-independent geometric errors (PIGEs) between linear 
axes, and 2 PIGEs of the spindle axis [4–6].

Geometric errors are measured using both direct and 
indirect methods [7, 8]. Each single axis is controlled when 
measuring its errors. More than one axis is controlled when 
inferring geometric errors from measured data. For linear 
axes, a laser interferometer is widely used to measure geo-
metric errors either separately [9] or simultaneously [10]. 
For five-axis machine tools, geometric errors of the linear 
axes are measured by regulating the illumination direction 
of a laser interferometer through rotary axis control [11]. In 
addition, a hybrid method featuring a laser interferometer 
and double ball-bar (DBB) has been developed to measure 
squareness errors between linear axes over the entire motion 
of the axes [12]. Using a theory based on a global position-
ing system, multilateration methods have been developed 
to measure all geometric errors [13, 14]. DBB methods are 
also widely used to measure geometric errors via simple 
circular tests [15, 16]. The DBB test can be generalized by 
reference to the kinematic structure of the machine tool [17]. 
In the artefact methods, a straight edge and five capacitive 
sensors optimally measure geometric errors simultaneously 
[18]. A ball plate with a three-dimensional probe is used to 
directly measure volumetric errors; the geometric errors are 
then inferred via error modeling [19]. Geometric errors can 
also be measured using an uncalibrated master balls artefact 
enriched with a ball bar artefact [20]. For the spindle axis, 
a test mandrel and dial gauge are used to detect parallel-
ism errors by measuring radial deviations in two directions 
[21]. In addition, DBB circular tests using tools of different 
lengths can reveal parallelism errors of the spindle axis [22].

However, these approaches require expensive devices, 
complex measuring processes, long measuring times, and 
skillful operators; it is expensive to measure all 23 geometric 

errors. It is thus reasonable to measure only the principal 
geometric errors when aiming to improve volumetric errors. 
Circular tests using a DBB are widely applied to measure 
the principal geometric errors [23]. However, circular tests 
require simultaneous control of two or more axes; thus, 
because the measurement results are affected by the dynamic 
errors of the axes, they do not accurately measure the prin-
cipal geometric errors of the workspace. A method based 
on a virtual regular tetrahedron and DBB has been used to 
measure the principal geometric errors [24, 25]. However, 
the results are valid only within the volume of the tested 
regular tetrahedron. Therefore, we devised a method to peri-
odically check the volumetric errors (and thus measure the 
principal geometric errors) in the workspace of a machine 
tool, to ensure machining accuracy.

Our method allows cost-effective interim checking of 
the volumetric and principal geometric errors of machine 
tools. Section 2 introduces the method, which uses a virtual 
polyhedron and DBB, and the algorithm for volumetric and 
geometric error analysis. We verified the method using a 
machine tool without and with compensation of the meas-
ured geometric errors, and also by performing the circular 
tests of ISO 230-4 (Sect. 3). The main findings and conclu-
sions are summarized in Sect. 4.

2 � Measurement of Volumetric 
and Geometric Errors

The principal geometric errors are linear scale errors for 
each linear axis, and squareness errors between linear axes, 
as shown in Fig. 1.

The virtual polyhedron consists of multiple regular tetra-
hedrons covering the workspace of the machine tool; there 
are m vertices and the nominal side length is L (Fig. 2). This 
ensures that the relationships between the coordinates of 
the vertices and side lengths are unique due to the regular 
tetrahedrons [26]. Thus, volumetric errors at the vertices 
can be quantified using the coordinates of the vertices cal-
culated using the measured side lengths. In addition, the 
nominal side length of the polyhedron is given as L; thus, 
a DBB accurately measures the side length L + δLi,j as the 
tool is sequentially moved to neighboring vertices. For the 
experiments in Sect. 3, we used a virtual polyhedron with 
24 vertices, 69 sides, and a nominal side length L = 150 mm. 
The measurement procedure is summarized in Fig. 3.

We define a coordinate system {P} used to calculate the 
coordinates Pi,c (i = 1, …, m) of the vertices using the meas-
ured side lengths L + δLi,j. Thus, vertices Pi,c (i = 1, 2, 3) 
are used to define the origin, Y-axis, and YZ-plane, respec-
tively, of the coordinate system {P}. The positional errors 
δPi,c (i = 1, 2, 3) are then given by Eq. (1):
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The relationships between the measured side lengths 
L + δLi,j and two neighboring vertices Pi,c, Pj,c are given 
by Eq. (2) and linearized using Eq. (3) under small value 
assumptions:

The relationship between vertex coordinate Pi,c and meas-
ured side length L + δLi,j is unique because the virtual polyhe-
dron consists of multiple regular polyhedrons (as mentioned 
above). However, several vertices are over-constrained, as 
shown in Fig. 2 (in blue). Thus, the virtual polyhedron used 
in Sect. 3 has 66 unknown components of positional errors 
δPi,c; however, the number of measured side lengths is 69 
(attributable to the over-constraint). Therefore, the unknown 
components of the positional errors δPi,c are calculated using 
a least-squares method, and the general relationships between 
these components and the measured side lengths L + δLi,j are 
as given by Eq. (4).

where,

(1)

�P1,c = (0, 0, 0),

�P2,c =
(
0, �y2, 0

)
,

�P3,c =
(
0, �y3, �z3

)

(2)‖‖‖�i,c − �j,c
‖‖‖
2

=
(
L + �Li,j

)2

(3)

(

xi − xj
)(

δxi − δxj
)

+
(

yi − yj
)(

δyi − δyj
)

+
(

zi − zj
)(

δzi − δzj
)

= L ⋅ δLi,j

(4)�� = �

(a)

(b)

Fig. 1   Principal geometric errors of three-axis machine tools

Fig. 2   Virtual polyhedron on the machine tool worktable
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Note that coordinate system {P}, established using only ver-
tices Pi,c (i = 1, 2, 3) of the virtual polyhedron, is not the same 
as coordinate system {R} of the experimental machine tool. 
However, the origins of coordinate systems {P} and {R} are 
the same: P1,c = P1,a. Thus, vertices Pi,c (i = 1, 2, 4) are used to 
define the least-squares reference straight line of the Y-axis [4]. 
The YZ-plane for coordinate system {R} is the least-squares 
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plane derived using vertices Pi,c with nominal coordinates 
zi,n = 0 (the red points with yellow centers in Fig. 2). Verti-
ces Pi,a are calculated by transforming vertices Pi,c into the 
coordinate system {R}. Finally, the volumetric errors δPi,a are 
calculated as the actual coordinates Pi,a minus the nominal 
coordinates Pi,n. To derive the principal geometric errors from 
the calculated volumetric errors δPi,a, we constructed an error 
synthesis model for the experimental machine tool described 
in Sect. 3. This model is given by Eq. (5); it is based on the 
homogeneous transformation matrix method [27].

where,

(5)�
t
W
=
[
xi,a yi,a zi,a 1

]T
= (�Y

R
�
X
Y
�
W
X
)−1�Z

R
�
t
Z

�
Y
R
=

⎡
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1 0 0 0

0 1 0 −yi,n + cy yi,n
0 0 1 0

0 0 0 1

⎤
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,

�
X
Y
=
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1 −szx 0 −xi,n + cx xi,n
szx 1 0 −szx xi,n
0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦
,

Fig. 3   Measurement procedures of the volumetric and principal geo-
metric errors
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Therefore, the relationships between the volumetric errors 
δPi,a and principal geometric errors are determined as shown 
in Eq. (6), and the errors are calculated by applying a least-
squares method.

�
t
Z
=

⎡⎢⎢⎢⎣

0

0

0

1

⎤⎥⎥⎥⎦

(6)

⎡
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⋮
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�z24,a

⎤
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=

⎡
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⎡
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sxz
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⎤
⎥⎥⎥⎥⎥⎥⎦

3 � Experimental

3.1 � Interim Checks of Volumetric and Principal 
Geometric Errors

The method described in Sect. 2 was applied to a machine 
tool (SPT-T30; Komatec Co. Ltd., Republic of Korea) as 
shown in Fig. 4a, and the side lengths were sequentially 
measured using a DBB (QC20-W; Renishaw Co. Ltd., UK) 
as shown in Fig. 4b. It takes 40 min to measure all side 
lengths shown in Fig. 2.

As mentioned in Sect.  2, the virtual polyhedron has 
24 vertices and 69 sides of nominal length L = 150 mm. 
The polyhedron length deviation δLi,j is large (maxi-
mum = 25.0 μm), attributable mainly to geometric errors 
(Fig. 5a).

By inserting the measured side length L + δLi,j into 
Eq. (4), the vertices Pi,a are calculated as shown in Fig. 6a. 
They also exhibit large positional deviations (volumetric 
errors) relative to the nominal vertices Pi,n. These must be 
improved by deriving and compensating for the principal 

(a)

(b)

Fig. 4   Experimental machine tool and DBB set-up

(a)

(b)

Fig. 5   Measured side lengths of the virtual polyhedron
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geometric errors. The latter errors are derived by inserting 
the volumetric errors into Eq. (6) (Fig. 7).

For verification, the virtual polyhedron was re-measured 
after compensating for the principal measured geometric 
errors. Here, G-code-based compensation was conducted by 
additional movement of the linear axes as volumetric errors 
in Eq. (5). Both the measured side lengths and volumetric 
errors improved (Figs. 5b and 6b, respectively), as did the 
principal geometric errors (Fig. 7). The maximum L2 norms 
of the volumetric errors were 57.6 and 32.8 μm without and 
with compensation of the principal geometric errors, respec-
tively (Fig. 8), showing an improvement of approximately 
43% for the volumetric error using the proposed method. 
Here, the maximum L2 norm is used as a criterion to evalu-
ate volumetric error because it coincides with the worst-case 
scenario.

Thus, the volumetric errors of the machine tool were 
improved significantly after compensating for the principal 
measured geometric errors. However, residual side length, 

(a)

(b)

Fig. 6   Vertices calculated using the measured side lengths

Fig. 7   Principal geometric errors measured without and with com-
pensation

Fig. 8   L2 norms of volumetric errors without and with compensation

Fig. 9   Static circular paths that cover the workspace of the machine 
tool
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volumetric and principal geometric errors remain; these 
may be attributable to other geometric errors. We aimed 
to improve volumetric errors by measuring and compensat-
ing for the principal geometric errors only, instead of all 23 
geometric errors.

3.2 � Verification Using Static Circular Tests

The principal measured geometric errors shown in Fig. 7 
were additionally verified using the static circular tests of 
ISO 230-4 and the DBB employed above (Fig. 9). These 
tests check the effects of principal geometric errors only 

within defined test volumes. The circular paths in the XY, 
YZ, and ZX planes of the single set-ups established in 
Areas A–C to cover the workspace of the machine tool. 
The measuring ranges of the circular paths in the XY, YZ, 
and ZX planes are [0°, 360°], [− 20°, 200°], and [− 110°, 
110°] respectively; the nominal path radius is 100 mm. 
The measured radial deviations of the circular paths are 
shown in Fig. 10. The maximum peak-to-valley (PV) val-
ues are 16.0 and 11.2 μm without and with compensation, 
respectively, proving the validity of the measured geomet-
ric errors by an improvement of 30% in the radial devia-
tion. Note that the PV values are increased in Area A, but 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10   Measured radial deviations without and with compensation
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considerably decreased in Areas B and C, perhaps because 
the volumetric errors were regulated over the workpiece 
(by compensating for the principal geometric errors), thus 
improving the maximum volumetric error.

4 � Conclusion

We developed a method for interim checking and improve-
ment of the volumetric errors of machine tools, with the 
aim of enhancing volumetric accuracy. We used the side 
lengths of a virtual polyhedron to derive the volumetric 
and principal geometric errors. Our cost-effective method 
can be used to rapidly improve volumetric errors for only 
the principal geometric errors. However, because it com-
pensates only for the principal geometric errors, periodic 
interim checks are required. Our main findings are as 
follows.

First, three-dimensional volumetric errors are measur-
able using the one-dimensional side lengths of a virtual 
polyhedron consisting of multiple regular tetrahedrons. The 
volume of the virtual polyhedron is controlled by changing 
the nominal side length, and via attachment of additional 
regular tetrahedron over the workspace of a machine tool. 
Thus, the cost of volumetric error measurement is reduced; 
only a DBB is required.

Second, it is important to maintain volumetric accuracy 
by regularly checking for volumetric and principal geometric 
errors over the machine tool workspace. We measured and 
compensated for principal geometric errors using a virtual 
polyhedron containing the workspace volume. This does not 
yield local improvements. However, it is a practical method 
to maintain overall volumetric accuracy.

Third, the principal geometric errors can be measured 
by performing circular tests in the XY, YZ, and ZX planes. 
However, the measured errors are valid only within the vol-
umes of the circular tests, and not over the workspace as a 
whole. This is true even if circular tests are performed at 
different positions within the workspace, because the test 
results are not interrelated. Thus, circular tests performed at 
different positions improve volumetric errors only indirectly, 
by compensating for the principal geometric errors.
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