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Abstract
It is essential to identify spindle axis parallelism errors because such errors trigger volumetric errors when tools of differ-
ent lengths are used. However, only a few works have addressed this issue. Thus, we identified the inherent spindle axis 
parallelism errors of machine tools relative to the end-point reference straight line of the Z-axis (according to ISO 230-1) 
using a dual difference method. Here, “inherent” refers to parallelism errors of the spindle axis that are not affected by the 
geometric errors of other axes controlled during the measurements, and “dual difference” refers to the difference in the dif-
ferences of measuring data. The dual difference method uses two pairs of circular tests performed with the aid of a double 
ball-bar (DBB); the tool lengths differ during each test and the DBB set-up is shared by the pairs. Parallelism errors are then 
identified based on the dual differences within and between the two pairs. Experimentally, the maximum peak-to-valley 
(PV) values were 54.5 and 48.7 μm for differences in radial deviations within the two pairs when the parallelism errors were 
not compensated. After tool-center-point compensation by the identified errors, the PV values improved to 8.0 and 9.2 μm, 
respectively, showing that compensation was successful. In addition, the concentricity of two holes machined using tools of 
different lengths improved from 31.2 μm without compensation to 15.9 μm with compensation, further demonstrating the 
effectiveness of the method.
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List of Symbols
li	� Offset (i = 1, …, 3), mm.
ni	� Number of samples during the i-th 

circular test (i = 1, …, 4).
sij	� Squareness error of the j axis around 

the i direction (i, j = x, y, z), rad.
pxs, pys	� Parallelism errors of the spindle axis 

around the x and y directions, respec-
tively, rad.

δij	� Positional error of the j axis in the i 
direction (i, j = x, y, z), mm.

εij	� Angular error of the j axis around the i 
direction (i, j = x, y, z), rad.

θj	� Rotation angle during the circular test 
(j = 1, …, ni), rad.

R	� Nominal length of the double ball-bar, 
mm.

ΔRij	� j- th measured radial deviation during 
the i-th circular test (i = 1, …, 4; j = 1, 
…, ni), mm.

(wxi, wyi, wzi)	� Set-up errors of a ball on a workpiece 
table in the x, y, and z directions, 
respectively, during the i-th circular 
test, (i = 1, …, 4), mm.

(0, 0, ti)	� Nominal coordinate of a ball at the 
tool nose in the spindle coordinate 
system {S} during the i-th circular test, 
(i = 1, …, 4), mm.

(0, 0, hi)	� Nominal coordinate of a ball on a 
workpiece table in the workpiece 
coordinate system {W} during the i-th 
circular test, (i = 1, …, 4), mm.
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(x, y, z)	� Nominal commands of the X, Y, and Z 
axes, respectively, mm.

{i}	� Coordinate system of axis i, (i = X, Y, 
Z).

{R}, {W}, {S}, {t}	� Coordinate systems of the refer-
ence, workpiece, spindle, and tool, 
respectively.

�
j

i
 	� 4 × 4 Homogeneous transformation 

matrix from the j coordinate system to 
the i coordinate system.

1  Introduction

To improve machine tool volumetric accuracy, it is impor-
tant to measure and compensate for geometric errors caused 
by structural elements, which in turn cause kinematic errors, 
and for directly measured stiffness, gravity, and thermal 
errors [1]. Geometric errors can be divided into position-
independent geometric errors (PIGEs) and position-depend-
ent geometric errors (PDGEs) under no-load or quasi-static 
conditions [2]. The volumetric errors of three-axis machine 
tools are modeled using 23 geometric errors, including 6 
PDGEs for each linear axis, 3 PIGEs between the linear 
axes, and 2 parallelism errors of the spindle axis [3, 4].

Both direct and indirect methods can be used to measure 
geometric errors [5, 6]. The direct methods involve single-
axis control during measurement, while the indirect methods 
involve the control of more than one axis. Laser interfer-
ometry is widely used to measure the PDGEs of linear axes 
[7] by determining measurement points to compensate for 
the geometric errors [8] and using invariant approaches to 
replace the Abbe and Bryan principles [9]. A double ball-
bar (DBB) can also be applied to identify kinematic errors 
using circular tests [10] and geometric errors by develop-
ing a reconfigurable mechanism model [11]. Additionally, 
PIGEs are identified by diagonal displacement tests using 
a laser interferometer [12] and a DBB with an extension 
fixture [13]. In summary [14], the PDGEs and PIGEs of 
machine tools are measurable in various ways and can be 
compensated via computerized numerical control to improve 
volumetric accuracy. However, only a few methods are avail-
able for identification of parallelism errors in a spindle axis. 
A mandrel method identifies parallelism errors by sequen-
tially measuring deviations of the test mandrel in the X- and 
Y-directions, using a dial gauge with a moving Z-axis as 
depicted in G12 of ISO 10791-1:2015 [15]. However, the 
identified errors are affected by Z-axis PDGEs, and it is dif-
ficult to apply the method to the full travel of the Z-axis in 
machines with a vertical spindle, due to collisions between 
the mandrel and workpiece table [16]. A linear displace-
ment sensor is used to measure a test sphere at different 
positions in 10.1.4.4 of ISO 230-1:2012 [3], and a DBB 

method featuring circular tests that employ tools of different 
lengths [17, 18] has been used to identify parallelism errors 
by enlarging the differences between tool lengths; however, 
such measurements are also affected by Z-axis PDGEs. In 
the case of five-axis machine tools, squareness errors, inter-
changeable with parallelism errors, are used to describe the 
spindle axis relative to a rotary axis; squareness errors can 
be identified using PIGEs of other axes with DBB measure-
ments by simultaneous control of the linear and rotary axes 
[1, 19]. Thus, identified squareness errors are affected by 
the PDGEs of linear and rotary axes. The limitations arise 
because parallelism errors are representative angular devia-
tions of the spindle axis relative to the Z-axis. Thus, it is 
essential to define the reference straight line of the Z-axis 
prior to parallelism error identification. However, the need 
to establish the reference line increases the cost of the test; 
a simpler and cheaper method is required.
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Spindle

Spindle 
tip
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Fig. 1   Experimental machine tool and end-point reference straight 
line of the Z-axis. a Kinematic structure of the machine tool. b Paral-
lelism error in the YZ and ZX planes
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In general, geometric errors are calculated as the sum 
of sensitivity coefficients multiplied by measured data [20]. 
Various factors contribute to the uncertainties of measured 
data [21]; the uncertainties of measured geometric errors 
are estimated by error budgeting [22]. On the contrary, the 
sensitivity coefficients are affected mainly by the measur-
ing paths [23]. Thus, the root-sum-squared (RSS) values of 
sensitivity coefficients are used to determine measurement 
conditions under the assumption that the uncertainties of 
measured data are equal.

Here, we identified inherent parallelism errors of the 
machine tool spindle axis relative to the end-point refer-
ence straight line of the Z-axis (the line of ISO 230-1) using 
a dual difference method. This requires only two pairs of 
sequential circular tests, using a DBB with extension bars; 
thus, the method is simple and cost-effective. Section 2 
introduces the dual difference method, including the meas-
uring paths and the algorithm that identifies the parallelism 
errors. In Sect. 3, these errors are experimentally identified 
by the dual difference method, with analysis of the RSSs 
of the sensitivity coefficients. The identified errors are also 
validated by evaluating the positional deviations and concen-
tricity of two holes machined using tools of different lengths, 
without and with error compensation. Section 4 provides the 
conclusion and summarizes the principal findings.

2 � Dual Difference Method

2.1 � Geometric Errors and Error Synthesis Model

The kinematic structure of the machine tool with a vertical 
spindle used in this study is shown in Fig. 1a, together with 
the reference coordinate system, as well as the linear axes 
and the spindle axis at the initial position of the spindle tip. 
Geometrically, spindle axis parallelism errors are representa-
tive angular deviations relative to the reference straight line 
of the Z-axis in the YZ and ZX planes, as shown in Fig. 1b. 
Three methods are commonly used to define the reference 
straight line for the Z-axis: the minimum zone, least-squares, 

and end-point methods [3]. We used the end-point method 
to identify inherent parallelism errors.

Volumetric errors �t
W

 , as functions of the nominal coor-
dinates (x, y, z), and geometric errors are derived using 
the homogeneous transformation matrix method [24] of 
Eq. (1). Here, (0, 0, ti) and (0, 0, hi) refer to the nominal 
position of a ball at the tool nose in coordinate system 
{S} and the nominal position of a ball on the workpiece 
table in coordinate system {X}, respectively, during DBB 
measurements. The set-up errors (wxi, wyi, wzi), which are 
caused by geometric errors and thus do not change during 
measurements, are used to describe the actual position of 
the ball on the workpiece table in the coordinate system 
{X}. It is not necessary to model the position of a ball at 
the tool nose using set-up errors, because it assumed that 
the ball is positioned on the spindle axis using adjustment 
fixtures [25].
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2.2 � Measuring Paths and Identification Algorithm

The dual difference method features two pairs of circular tests; 
the results identify spindle axis parallelism errors relative to the 
end-point reference straight line of the Z-axis (Fig. 2). The first 
and third circular tests (Fig. 2a, c) are performed at the first point 
(z = 0) of the Z-axis, and the second and fourth tests (Fig. 2b, d) 
are performed at the last point (z = zmin = l2). The tool length ti 
and workpiece height hi are summarized in Table 1. Note that 
the offset l2 is equal to zmin; the DBB measurements are thus 
performed at the first and last points of the Z-axis when estab-
lishing the end-point reference straight line. Note that the set-up 
ball on the workpiece table is shared by each pair; this cancels 
set-up errors by the difference. Thus, the set-up errors of a ball 

on the workpiece table are the same within each pair; (wx1, wy1, 
wz1) = (wx2, wy2, wz2), (wx3, wy3, wz3) = (wx4, wy4, wz4).

The linearized relationships between the radial devia-
tions ΔRij, and the geometric and set-up errors are shown in 
Eq. (2), which uses Eq. (1):

Equation (2) reveals that the radial deviations (ΔRij values) 
of a circular test are affected by geometric and set-up errors 
with sensitivity coefficients of cosθj, sinθj, and sin2θj, respec-
tively. The mandrel method [15] measures radial deviations at 
θj = 0 and π/2 when R = 0. Thus, it is difficult to identify inher-
ent parallelism errors using a circular test and/or a mandrel 
method, because both approaches require pre-measures of the 
geometric errors of the linear axes, as well as pre-measures of 
the set-up errors. Importantly, the effects of set-up errors on 
identified parallelism errors can be eliminated by comparing 
measured deviations at different Z-axis positions [16] and by 
sharing the circular test set-up among different tool lengths 
[17]. Nevertheless, these approaches are affected by Z-axis 
PDGEs and thus do not reliably identify inherent parallelism 
errors.

When identifying inherent parallelism errors using the dual 
difference method, all PDGEs at the first point of the Z-axis 
are assumed to be zero; the straightness errors δxz, δyz are also 
zero at the last point, given the definition of the end-point ref-
erence straight line of the Z-axis. The differences within pairs 
are affected by the angular errors εxz and εyz at the last point of 
the Z-axis, and the parallelism errors pxs and pys [Eq. (3)]. Note 
that the set-up errors (wxi, wyi, wzi) do not affect the differences 
because these errors are cancelled when the pairs are set-up 
(i = 1 and 2, i = 3 and 4). Finally, as shown in Eq. (4), the paral-
lelism errors are derived using the dual difference, i.e., the 
difference of the differences of Eq. (3), and then identified 
analytically when the circular tests use full circles 
( 
∑ni

j=1
sin �j = 

∑ni
j=1

cos �j = 0) with equal numbers of samples 
(n1 = n2 = n3 = n4).
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Fig. 2   Circular test paths of the dual difference method for identifica-
tion of parallelism errors. a 1st path. b 2nd path. c 3rd path. d 4th 
path

Table 1   Signed tool length ti and workpiece height hi of measuring 
paths

Signed tool length Value Workpiece height Value

t1 l1 + l2 h1 l1 + l2
t2 l1 h2 l1 + l2
t3 l1 + l2 + l3 h3 l1 + l2 + l3
t4 l1 + l3 h4 l1 + l2 + l3
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It is essential to explore the effects of measurement con-
ditions on the measurement uncertainties of the parallelism 
errors identified in Eq. (4). Thus, the measurement uncertain-
ties U(pxs) and U(pys) of the parallelism errors in Eq. (4) are 
derived in Eq. (5), under the assumption that the measurement 
uncertainties U(ΔRij) are equal. Here, the RSS values of the 
sensitivity coefficient consist of offset li (i = 1, 2, 3) and sam-
pling number ni. It is necessary to identify the measurement 
conditions that maximally reduce the RSSs of the sensitivity 
coefficients associated with the reduced measurement uncer-
tainties U(pxs) and U(pys), even if the measurement uncertain-
ties U(ΔRij) do not change. The effects of offset li on the RSSs 
of the sensitivity coefficients are investigated in Sect. 3.

(3)

(
−l1 �yz

|||z=zmin

+ l2pys

)
cos �j +

(
l1 �xz

||z=zmin
− l2pxs

)
sin �j = ΔR2j − ΔR1j

{
−
(
l1 + l3

)
�yz

|||z=zmin

+ l2pys

}
cos �j +

{(
l1 + l3

)
�xz

||z=zmin
− l2pxs

}
sin �j = ΔR4j − ΔR3j

(4)
�
pxs
pys

�
=

2

ni

⎡
⎢⎢⎣
−
∑ni

j=1
sin �j

�
l1+l3

l2l3

�
ΔR2j − ΔR1j

�
−

l1

l2l3

�
ΔR4j − ΔR3j

��
∑ni

j=1
cos �j

�
l1+l3

l2l3

�
ΔR2j − ΔR1j

�
−

l1

l2l3

�
ΔR4j − ΔR3j

��
⎤
⎥⎥⎦

(5)

�
U
�
pxs

�
U
�
pys

�
�
= RSS values of sensitivity coeff. ×

�
U
�
ΔRij

�
U
�
ΔRij

�
�

=

2

��
2l2

1
+ 2l1l3 + l2

3

�

l2l3
√
ni

×

�
U
�
ΔRij

�
U
�
ΔRij

�
�

3 � Experimental

3.1 � Parallelism Error Identification

The method in Sect. 2 was applied to the machine tool (SPT-
T30; Komatec Co. Ltd, Republic of Korea). A DBB (QC20-
W; Renishaw Co. Ltd., UK) was used to identify parallel-
ism errors. The distance between the spindle tip and the 
workpiece table of the machine tool was 500 mm; the travel 
range of the Z-axis was [− 300, 0] mm. Thus, the mandrel 
method cannot be applied to this machine tool to identify 
parallelism errors to the full travel of the Z-axis, due to col-
lisions. It is essential to determine the offset li with respect 
to the distance between the spindle tip and workpiece table, 
and to define the minimum installable height of a ball on the 
workpiece table; this is about 70 mm when using the “centre 
pivot assembly” supplied by the DBB manufacturer. This 
restricts the offset term l1 + l2 + l3 to − 430 mm. Here, offset 
l2 is − 300 mm (the minimum travel value of the Z-axis); the 
effects of offsets l1, l3 on the RSSs of the sensitivity coef-
ficients are shown in Fig. 3. The RSSs are small for large l1 
and small l3; l1 and l3 were thus set to − 30 and − 100 mm, 
respectively.

To identify parallelism errors using the dual difference 
method, two pairs of sequential circular tests are performed 
using a DBB with nominal length R = 100 mm, and nomi-
nal offsets l1 =  − 30 mm, l2 =  − 300 mm and l3 =  − 100 mm, 
as determined above (Fig. 4). The deviations in the offsets 
during the experiments were not affected by the identified 
errors, because the deviations cause positional aberration in 
the Z direction of the ball at the tool nose, and do not affect 
the radial deviations in the XY plane significantly. Thus, it 
is not required to measure the tool lengths or offsets during 
experiments. The overshoot angle is 180° for the DBB meas-
urements; the radial deviations ΔRij are acquired using DBB 
software (ver. 5.09.05.03) with ni = 1,504 samples.

It requires approximately 20 min to complete the circular 
test measurements with different tool lengths and set-ups. 
Thus, the proposed dual difference method is easier and 
cheaper than the existing methods that require a test mandrel, 
a dial gauge, and pre-measurements of linear axis geometric Fig. 3   Root-sum-squared (RSS) values according to offsets l1 and l3
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errors, for example. The measured ΔRij show large peak-
to-valley (PV) values (Fig. 5a) attributable to parallelism 
errors, geometric errors of the linear axes, and set-up errors. 
The parallelism errors are obviously significant because the 
deviation increases with longer tool lengths (i = 1 and 3). 
The calculated differences within each pair indicate large 
PVs (Fig. 5b); however, the trends are similar, because the 
PDGEs of the X and Y axes, as well as the set-up errors, are 
canceled by the differences. Using the algorithm of Eq. (4), 

the parallelism errors pxs, pys were 202.4 and − 74.8 μrad, 
respectively. The measurements were repeated with compen-
sation for these parallelism errors, both to check the errors 
and investigate the effects of compensation on the measur-
ing paths. The radial deviations improved significantly after 
compensation, but they were still affected by the geomet-
ric errors of the linear axes and the set-up errors (Fig. 5c). 
The calculated differences in radial deviations within each 
pair are shown in Fig. 5d; these reflect only the effects of 
parallelism errors and Z-axis PDGEs. The PVs improved 

Fig. 4   Experimental set-up for 
application of the dual differ-
ence method. a For 1st path. b 
For 2nd path. c For 3rd path. d 
For 4th path

X

Z Y
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R+R1j

l1+l2

Centre pivot 
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R+R2j

l1

(a) (b)

R+R3j

l1+l2+l3
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significantly after compensation for the parallelism errors 
which were identified successfully by our method.

3.2 � Verification of the Identified Parallelism Errors

It is essential to check the validity of identified parallelism 
errors to improve machining accuracy. Thus, we sequen-
tially machined the concentric holes and holel using a short 
and long tool, respectively (Fig. 6a, b), because parallelism 
errors affect tools of different lengths differently, in turn 
influencing hole positional deviations and concentricity. The 
experimental conditions are summarized in Table 2.

The holes were machined without and with tool-center-
point compensation for the identified parallelism errors of 
three samples. The machined holes were measured using a 
coordinate measuring machine (Fig. 6c). Without compensa-
tion, large positional deviations and poor concentricity were 
evident, attributable largely to parallelism errors (Fig. 6d). The 
average positional deviations of holel relative to the center of 
holes were (− 5.8, − 30.7) and (− 1.4, − 15.9) μm without and 
with compensation, respectively. In terms of concentricity, the 
distances between the centers of holes and holel were 31.2 and 

15.9 μm, respectively. Note that both positional deviations and 
concentricity improved considerably, although they remain 
affected by the Z-axis PDGEs. Our method was effective.

4 � Conclusions

We derived the inherent spindle axis parallelism errors 
of machine tools. Our dual difference method features 
two pairs of circular tests using a DBB; we optimized the 
test using the RSS values of the sensitivity coefficients. 
These accurately identify errors imparted by the kinematic 
structure of experimental machine tools. Identification and 
compensation of parallelism errors using the dual differ-
ence method will improve the volumetric accuracies of 
machine tools. Our principal findings are as follows.

(1)	 The linearized relationships among radial deviations, 
geometric errors, and set-up errors yield critical infor-
mation when identifying inherent parallelism errors. 
Such errors affect the radial deviations coupled with 
other errors. Parallelism errors can be identified by pre-

Fig. 5   Measured radial devia-
tions and differences used for 
identification of parallelism 
errors. a Without compensation. 
b Differences without compen-
sation. c With compensation. d 
Differences with compensation
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measuring the other errors and incorporating them into 
the relationships. However, it is difficult to quantify 
set-up errors attributable to (largely unknown) geomet-
ric errors. Therefore, it is essential to use differences 
between circular tests to cancel the effects of set-up 
errors on parallelism errors.

(2)	 A dual difference method appropriately identifies inher-
ent spindle axis parallelism errors (unaffected by geo-
metric errors of linear axes or by set-up errors), based 
on DBB measurements. Within each pair, circular tests 
using different tool lengths were performed at the first 
and last points of the Z-axis, using a shared set-up that 

canceled the X- and Y-axis PDGEs and set-up errors. 
Data from the two pairs showed inherent parallelism 
errors relative to the end-point reference straight line 
of the Z-axis, by canceling the Z-axis PDGEs using the 
difference of the differences (the dual difference).

(3)	 Three offsets are required when performing the two 
pairs of circular tests that identify parallelism errors 
using a dual difference method. The distance between 
the spindle tip and workpiece table of a machine tool 
affects the DBB offsets. One offset should equal the 
minimum Z-axis value of the end-point reference 
straight line; the other offsets are determined by mini-

Fig. 6   Machining tests on 
concentric holes and concen-
tricity measurements. a Holes 
was drilled using a short tool. b 
Holel drilled using a long tool. 
c Measurements of machined 
holes derived using a CMM. 
d Measured centers of holes 
and holel, with concentricity 
improvement after compensa-
tion
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mizing the RSSs of the sensitivity coefficients, reduc-
ing measurement uncertainties even if the contributors 
thereto are imperfect.

(4)	 The dual difference method is not only limited to use 
of a DBB but also the use of a linear displacement sen-
sor and test spheres (not a sphere in ISO 230–1:2012), 
or a dial gauge and test mandrels (not a mandrel in 
ISO 10791–1:2015). However, use of a DBB is advan-
tageous because of the simple measuring processes, 
using commercial products supporting automated data 
acquisition, averaging effects and improved measure-
ment uncertainties by large sampling numbers at each 
circular test.

The dual difference method is not limited to three-axis 
machine tools; it is also applicable to five-axis machine 
tools featuring two workpiece rotary axes, two spindle 
head rotary axes, and a swivel head and/or a rotary table. 
In the last two cases, squareness errors (not parallelism 
errors) are used to describe the spindle axis relative to 
the rotary axis head. Squareness errors can be identified 
using a dual difference method because the method con-
siders the spindle axis relative to the Z-axis.
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