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Abstract
The springback control method is usually based on surface compensation to make the shape of the springback consistent with 
the target. At present, it is mainly realized by theoretical calculation or numerical simulation, but the difference between material 
model and theoretical model leads to unstable compensation accuracy. In this paper, a compensation mechanism which based 
on the iterative principle of implicit equation is proposed from the point of view of mathematical analysis. The final shape of 
the part converges to the target shape by means of finite compensation with the iterative method. In this paper, the iterative 
compensation mechanism is applied to the free bending and stretch-bending processes under plane stress state, and the uniform 
curvature and variable curvature are compensated iteratively. The next iteration compensation profile is predicted according 
to the convergence of the iterative principle. Experimental results show that the iterative compensation method can predict the 
next compensation value, and the error is less than the target value after 2–3 iterations. The error convergence of the method 
studied in this project is directional and the convergence speed is fast. The compensation value can be quantitatively predicted, 
which has theoretical significance and application value for engineering design, mold repair and numerical simulation.

Keywords Springback control · Iterative compensation mechanism · Free bending · Stretch-bending

1 Introduction

In the process of sheet metal forming, the existence of 
elastic deformation leads to the inevitable springback, 
and the research on springback in sheet metal forming has 
never stopped. In order to realize the effective control of 
springback, two methods of process control and die surface 
compensation control are generally adopted in engineer-
ing. The process control method is to control the spring-
back by adjusting the blank holder force, punch stroke and 
other parameters [1, 2], changing the loading method [3, 4], 
increasing the forming steps [5, 6], and increasing the form-
ing temperature [7, 8], etc.

After years of research, engineers have gained a relatively 
clear theoretical understanding of bending springback. The 

unloading process of the workpiece during forming is equiv-
alent to the reverse loading process of the workpiece [9]. 
According to this theory, the springback amount of vari-
ous processes can be characterized, so that the springback 
law of metal parts can be preliminarily predicted and the 
next process parameters can be corrected and compensated. 
Lansheng Xie et al. [10] discussed two factors affecting 
springback amount for asymmetric stretch-bending form-
ing process of T-section aluminum profile. They are pre-
tension and supplementary tension. The results show that 
the springback decreases with the increase of pretension 
and decreases with the increase of supplementary tension. 
When the two influencing factors increase to a certain extent, 
the impact on the resilience is not obvious. Zhiping Qian 
[11] et al. used a special stretch-bending process to conduct 
stretch-bending rebound experiment on automotive guide 
profiles, filling the cavity of profiles with supporting mate-
rials and applying lateral pressure during stretch-bending, 
which effectively reduced the section distortion of profiles. 
Through theoretical analysis, they obtained the springback 
formula of stretch-bending profiles. Dianqi Li et al. [12, 13] 
analyzed the stress–strain relationship of metal pipe under 
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bending conditions. They studied the relationship between 
springback angle and material elastic modulus E, material 
hardening coefficient n, plasticity coefficient K and pipe wall 
thickness t, as well as the relationship between springback 
angle and bending angle and curvature radius during bend-
ing. Jinwu Liu et al. [14] derived the calculation formula 
of springback bending moment of rectangular cross section 
bar by analyzing the process of bending springback stress 
and strain. They proposed a method to improve the calcula-
tion accuracy of springback angle by analyzing the source 
of calculation error of the calculation formula of classical 
springback bending moment.

With the development of numerical simulation technol-
ogy, the shortcomings of experimental methods have been 
effectively overcome, and a series of springback compensa-
tion strategies have been gradually proposed [15–17]. The 
commonly used methods are Powerful Descriptor method 
(FDM) [18, 19] and displacement adjustment method (DA) 
[20]. Xiaohui Cui et al. [21] proposed an electromagnetic 
zonal forming method which is convenient for precise 
machining and accurate springback control of single curva-
ture parts. The deformation and stress–strain distribution of 
sheet metal were analyzed by numerical simulation. Xiao-
hui Cui et al. [22] used electromagnetic assisted stamping 
(EMAS) with magnetic force reverse loading to control 
springback.

The iterative compensation mechanism for plane bend-
ing proposed in this paper is designed to reduce the work of 
mold repair, so that the forming parts can reach the expected 
value after finite compensation of the iterative parameters, 
which is of great significance for practical engineering appli-
cations. After proving the theory of the iterative compensa-
tion mechanism for plane bending theoretically, the feasi-
bility of the iterative compensation mechanism for plane 
bending is also verified from the perspective of experimental 
analysis.

2  Theoretical and Experimental Study 
on Iterative Compensation of Uniform 
Curvature

2.1  Bending Springback Iterative Method

When discussing the factors affecting springback, Yunxi 
Wang [23] clearly pointed out that "the larger the bend-
ing angle is � , the longer the deformation zone will be, 
and the larger the springback accumulation will be, so 
the springback angle Δ� will be." Jingrong Xiao et al. 
[24] also emphasized that "the larger the bending angle 
is, the larger the proportion of elastic deformation in the 
total deformation will be, and the larger the rebound value 
will be. Therefore, for ordinary metal materials, when 

the deformation condition is not changed, the greater the 
deformation is, the greater the springback is. It is also the 
theoretical basis of this paper.

Suppose f (x) is the function relation of the control 
parameter before and after springback, then the springback 
quantity can be expressed as

According to the above theoretical basis, if Δ(x) is a 
monotone increasing function, mean Δ�(x) > 0 . Then

The purpose of springback control is to determine a 
springback pre-value a , so that its springback post-value 
ap satisfies the following relationship:

For this reason, a simple iterative method [25] was intro-
duced, and an iterative equation was constructed according 
to its idea of finding the root.

It can be seen from Eq. (2)

According to the local convergence theorem of the 
simple iterative method, the iterative Eq. (4) is conver-
gent, that is, x∗ satisfies x∗ = �(x∗) . Therefore, as shown 
in Fig. 1, the initial value is ap , and the iterative sequence 
is obtained according to the iterative equation.

(1)Δ(x) = x − f (x)

(2)f �(x) < 1

(3)f (x) − ap = 0

(4)x = x + ap − f (x) = �(x)

(5)
|||𝜑

�

(x)
||| < 1

Fig. 1  Parameters relation curve before and after springback based on 
simple iterative method



491International Journal of Precision Engineering and Manufacturing (2022) 23:489–501 

1 3

For the advance set the value error � , when ||xk − xk−1
|| ≤ � , 

it is considered that x∗ ≈ xk and f (x∗) − ap = 0 . It is the 
desired.

For the springback control problem, the parameter 
function before and after springback y = f (x) can be con-
structed. And f � (x) < 1 is a necessary condition for iterative 
convergence. The springback calculation problem can be 
transformed into the root solution of the implicit equation. 
Although the test method can give the error with the tar-
get quantity, there is no theoretical guidance to determine 
the next compensation quantity. The iterative compensation 
in this paper is based on theoretical analysis f � (x) < 1 to 
determine the iteration convergence, and then based on the 
springback amount of each test to determine the next com-
pensation amount.

2.2  Theory and Experiment of Springback 
Compensation for Uniform Curvature Free 
Bending

2.2.1  Theory and Experiment of Curvature Compensation 
for Free Bending Neutral Layer

According to the classical unloading theory, the springback 
of curvature is as follows:

where K is the curvature of the neutral layer before unload-
ing, K ′ is the sheet material the curvature of the neutral layer 
after unloading, � is radius of neutral layer before unload-
ing, �′ is radius of neutral layer after unloading, M is load 
bending moment before unloading of sheet metal. The post-
springback curvature is obtained from the loading moment 
and the springback value of the elastic plastic bending 
deformation:

where D is the plastic line cutting modulus, E is elastic mod-
ulus, �s is yield stress, t is thickness of sheet. Therefore, the 
curvature elastic complex expression of neutral layer in free 
bending of sheet metal is:

(6)

x0 = ap
x1 = x0 + ap − f

(
x0
)

x2 = x1 + ap − f
(
x1
)

⋯

xi = xi−1 + ap − f
(
xi
)

⋯

xk = xk−1 + ap − f
(
xk
)

(7)ΔK = K − K� =
1

�
−

1

��
=

M

EI

(8)

K� =
(
1 −

D

E

)
⋅

[
K +

4

K2t3
⋅

(𝜎s
E

)3
]
−

3𝜎s

Et

(
1 −

D

E

) (
K >

2𝜎s

tE

)

When K >
2𝜎s

tE
,

As can be seen from the above equation, the curvature 
of the neutral layer can be used as the iterative parameter to 
carry out compensation operation, which can make it reach 
the predetermined engineering value.

According to the iterative compensation strategy pro-
posed above, experimental verification is carried out, and 
the experimental scheme is shown in Fig. 2. In this experi-
ment, "bending die and gasket" is used to form the slab, 
which can be equivalent to another radius of bending die 
forming the slab. Now the "bending die and gasket" is called 
the equivalent upper die, to achieve the bending radius of the 
micro-segment change.

Forming force will increase sharply during the final form-
ing of the slab. In order to prevent overloading of the testing 
machine, the maximum load of the testing machine is lim-
ited to 100kN. In addition, the computer interface is used to 
set the maximum pressure of bending die.

where r1 is the chamfering radius of lower die circle,�in is 
inner diameter of billet in the coating area at the end of load-
ing, L is distance from center of chamfer of lower die. The 
actual expression of each quantity in the above equation is 
shown in Fig. 3.

(9)

K� = fk(K) =

⎧⎪⎨⎪⎩

0
�
0 ≤ K ≤ 2𝜎s

tE

�
�
1 −

D

E

��
K +

4

K2t3
⋅

�
𝜎s

E

�3

−
3𝜎s

tE

� �
K >

2𝜎s

tE

�

(10)

0 <
dK�

dK
=
(
1 −

D

E

)(
1 −

(
2𝜎S

tE

)3

∕K3

)
< 1 −

D

E
< 1

(11)

Hlim = (r1 + �in + t) ⋅

(
1 − cos

(
arcsin

(
L

r1 + �in + t

)))

Fig. 2  Curvature iteration compensation experimental die
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In order to facilitate the measurement of experimental data, 
the bending radius � is controlled and measured during the 
test process, and converted to curvature K for analysis and 
calculation. The following takes the target bending radius �d 

of 70 mm as an example to detail its compensation process.
Taking the target value as the initial iteration value, the 

radius �1 of the upper die of the first bending is 70.021mm . 
After the slab is covered with the upper die, it is unloaded 
and the bending radius after springback �′

1
 is measured. It is 

73.072mm  .  The compensation er ror |||K
�

1
− K�||| is 

59.940 × 10−5mm−1
. If the accuracy requirement is not met, 

the second compensation is made. The second bending cur-
vature K1

next
= Ki +

|||K
�

i−1
− K

� ||| is 1488.08 × 10−5mm−1 . The 
radius of the upper die �1

next
= 1∕K1

next
 of the secondary bend-

ing can be adjusted by the gasket, and repeat the above 
operation, and adjust to the third time to meet the accuracy 
requirements, and the compensation is over.

Through three compensations, the error can be controlled 
within 0.1%. As can be seen from Table 1, with the increase 
of compensation times, the compensation error decreases 
rapidly. The iterative parameters approach the target value 
rapidly. It is shown that for the free bending process, the 
bending curvature can be used as the iterative parameter, 
and the size of the upper die can be determined by finite 
iteration compensation, so that the forming parts meeting 
the precision requirements can be obtained.

2.2.2  Theory and Experiment of Sheet Metal Bending 
Angle Compensation

According to the invariant length theory of the neutral layer, 
it can be known that:�� = ���� , then the elastic complex 
angle is:

The relationship between � and �′ is shown in Fig. 4. 
The elastic complex expression of the bending angle of 
free bending of sheet metal can be obtained by the loading 
bending moment and elastic recovery angle of elastic–plastic 
bending deformation:

where �0 is the corrected constant of the bending angle of the 
sheet material before unloading. In fact, it is known that the 

(12)Δ� = � − �� =
M

EI
�� −

M

EI
����

(13)𝛼� = f𝛼(𝛼) =

{
1 −

D

E
+
(
1 −

D

E

)
⋅

𝜎S

E
⋅

𝜌

t
⋅

[
4 ⋅

(
𝜎s

E

)2

⋅

(
𝜌

t

)2

− 3

]}
⋅ (𝛼 + 𝛼0)

(
0 <

𝜌

t
≤ E

2𝜎S

)

in

1r
L

Fig. 3  Schematic diagram of the experiment

Table 1  Curvature iteration compensation calculation

Target bend-
ing radius �d
/mm

Target 
curvat-ure 
Kd∕10−5

Iterat-
ion 
number

Bending radius
�/mm

Radius after 
rebound �′/
mm

CCurvat-ure
K∕10−5

Curvature after 
rebound K ′

∕10−5

Compens-
ating errors|||K

�

i−1
− K

� |||
∕10−5

Next 
bending 
curvature
Ki
next

∕10−5

Next 
bending 
radius
�i
next

/mm

70 1428.57 1 70.021 73.066 1428.14 1368.63 59.940 1488.08 67.200
2 67.252 70.179 1486.94 1424.93 3.644 1490.59 67.088
3 67.106 70.027 1490.18 1428.02 0.546 – –

Fig. 4  Schematic diagram of free bending Angle of sheet metal
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radius of the neutral layer � is independent of the bending 
angle of the sheet material � , so to verify the convergence 
of the bending Angle, the derivative of the bending Angle 
after unloading is taken with respect to the bending Angle 
before unloading. And since this is less than 1, this is less 
than 1−D/E, and it is less than 1.

It can be known 0 <
d𝛼

�

d𝛼
< 1 −

D

E
< 1 from the above for-

mula. Then the free bending angle of sheet metal can be used 
as the iterative parameter to make compensation operation, 
so that it can reach the predetermined engineering value.

According to the iterative compensation strategy pro-
posed above, experimental verification is carried out. The 
experimental scheme is shown in Fig. 5.

In view of the above analysis, the compensation process 
is set as follows: taking the target value of the slab bending 
angle �d is 120°as an example, and the initial value of the 
coating angle is set as:�1 = 180o − �d . Then, according to 
Eq. (11), the reduction amount Hlim of the upper module 
is limited at the test control interface. After the upper die 
stops descending, the bending angle of the slab �1 before 
springback is measured. After the upper die is moved up and 

(14)0 <
d𝛼�

d𝛼
=

(
1 −

D

E

){
1 +

𝜎s

E
⋅

𝜌

t
⋅

[
4
(

𝜎s

E
⋅

𝜌

t

)2

− 3

]}
< 1 −

D

E
< 1

(
0 <

𝜌

t
≤ E

2𝜎s

)

unloaded, the bending angle of the slab �′
1
 after springback is 

measured. The next bend is �next = �i−1 + �
�

i
− �i . The sec-

ond step compensates by setting the second coating angle 
as:�2 = 180o − �next . The others are similar to the first one. 
After the third compensation, the post-rebound bend angle 
value �′

3
 is 120.591°. The compensation error is 0.591°, 

which is already within the fluctuation error range of ±1◦ . 
The compensation results are shown in Table 2. It is shown 
that the bending angle can be used as the iterative parameter 
for the free bending process, and the forming parts meeting 
the precision requirements can be obtained through finite 
iteration compensation.

2.3  Theory and Experiment of Central Layer Radius 
Compensation in Stretch‑bending

Section stress at the end of plate stretching:

where T  is the loading load at the end of stretching, A is 
rectangular cross-sectional area.

Section strain at the end of plate stretching:

Strain neutral layer radius:

k∗ is obviously the material constant, and its expression 
is k∗ = 1

2
⋅

√
D∕E−1√
D∕E+1

.

The elastic combination process of the first bending and 
then drawing process is

(15)�T =
T

A

(16)�T =
�T − �s

D
+

�s

E

(17)�� =
k∗t + �

1 + �T

Fig. 5  Bending angle iterative compensation experiment die

Table 2  Compensation test results of slabs with a target Angle of 120°

The number of 
compensati-on

Wrap angle �/(°) Limit deflec-
tion H

lim
/(mm)

The actual 
reductionH/
(mm)

Before the spring-
back corner �/(°)

After spring 
back corner �′

/(°)

Compensating 
errors ||�� − �d||/(°)

The next 
corner �

next

/(°)

1 60.000 19.084 19.103 123.406 127.408 7.408 115.998
2 64.002 19.915 19.939 119.958 124.139 4.139 115.819
3 68.322 20.799 20.822 116.335 120.591 0.591 –
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Characteristics of stretch-bending process is

For general materials, it is known that 0 <
D

E
< 0.2 and 

k∗ =
1

2
⋅

√
D∕E−1√
D∕E+1

.

So  

(18)�� = −
1

4k∗(1 + k∗)

[
� −

�T

E(1 +
�T−�s

D
+

�s

E
)
(� + k∗t)

]

(19)

d��

d�
= −

1

4k∗(1 + k∗)
⋅

[
1 −

�T ⋅ D∕E + �s∕E ⋅ (1 − D∕E)

1 + �T

]

(20)1 <
2

(1 + k∗)(2k∗ − 1)2
= −

1 −
D

E

4k∗(1 + k∗)
<

d𝜌
�

d𝜌
< −

1

4k∗(1 + k∗)
<

√
5 + 1

2
< 2

(21)

Provided that ∶, there is obviously 0 < 0.5 < 0.5 ⋅
d𝜌

�

d𝜌
< 1

From the above equation, it can be seen that the radius of 
the center layer of sheet metal stretch-bending can be used 
as the iterative parameter to carry out compensation opera-
tion, which can make it reach the predetermined engineering 
value.

According to the iterative compensation strategy pro-
posed above, experimental verification is carried out, as 
shown in Fig. 6. The stretch-bending experimental system 
consists of a stretch-bending testing machine (Fig. 6a), sig-
nal monitoring equipment (Fig. 6b) and measuring equip-
ment (Fig.  6c). The stretching process before bending 
is carried out according to the following steps. First, the 

stretching cylinders on both sides are fixed at appropriate 
equidistant positions. Adjust the stretching length L through 
the limit device of the stretching barrel. Then, the specimen 
is installed, and the tensile cylinder provides a certain ten-
sion to the specimen. After that, the bending cylinder comes 
into play and drives the bending die forward to complete 
the bending process. Finally, the loading is stopped and the 
specimen is removed. The radius of the neutral layer after 
springback �′ is measured by CMM, as shown in Fig. 6d.

The compensation test with the target radius �d of central 
layer of 231 mm is taken as an example, the compensation 
operation process of ST12 sheet material under ordinary 
stretch-bending process: First of all, the "bending die and 
gasket" (that is, "equivalent bending die") is used to calcu-
late the value of the radius of the next neutral layer to form 
the slab, so that the center layer radius of the slab before the 
first springback is the target value �d . The outer diameter of 
the slab after the springback �out is measured, and the center 
layer radius after the springback �′ is obtained. The compen-
sation error is calculated to determine whether it can meet 
the requirements of engineering application. From 
�next = �

�

i
+ 0.5

(
�d − �

�

i−1

)
 can calculate the radius of the 

next time, the second step compensates and sets the coating 
angle of the second time as �next , and the rest is similar to the 
first time.

1 2 3

4 5 6

L

H

(a) (b) (c)

(d)

(e)

Fig.6  a Stretch–bending testing machine; b Signal monitoring equip-
ment; c and d Measuring equipment; e Concrete structure of the 
actuator: 1-tension sensor, 2-jigs, 3-specimen, 4-bending cylinder, 
5-bending mould, 6-stretch cylinder

Table 3  Compensation test results for target radius of sheet material center layer of 231 mm

The number 
of compensa-
tion

Number of lami-
nated aluminum 
sheets

The radius of the center 
layer before rebound �
/mm

Fitting plate 
billet diam-
eter
�
out

/mm

The radius of the 
center layer after 
rebound
�p/mm

Compens-
ating 
errors |||�p − �d

|||/mm

The next 
center layer 
radius
�
next

/mm

Tensile load
T/N

1 125 231.00 241.46 240.46 9.46 226.23 9077.7074
2 66 226.28 235.42 234.42 3.42 223.57 9096.7515
3 33 223.64 232.47 231.47 0.47 – 9191.9627
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As can be seen from the data in Table 3, the compensation 
error gradually decreases with the increase of compensa-
tion times. For the compensation test of �d is 231 mm, the 
compensation error is 0.47 mm, which is within the error 
range of 0.5 mm. It is shown that the neutral layer radius 
can be used as the iterative parameter to obtain the forming 
parts that meet the requirements of precision through finite 
iteration compensation.

3  Theory and Experiment of Free Bending 
Compensation with Variable Curvature

3.1  Theory of Iterative Compensation Mechanism

Since the length of the neutral layer of the work piece 
remains unchanged in bending, the curvature change of the 
neutral layer can accurately represent the bending degree 
change. Elastic–plastic bending occurs in sheet metal. The 
bending radius is always larger. The curvature and bend-
ing angle are always smaller after the unloading of external 
force. The theory is mathematically verifiable.

When K >
2𝜎s

E
 , The derivative of K′ will be:

After sorting, the following can be obtained:

The convergence of iterative compensation parameter in 
numerical analysis is satisfied, which indicates that the cur-
vature can be used as the iterative compensation parameter 
in the free bending process of sheet metal. Similarly, in order 
to verify the convergence of the bending angle, the deriva-
tive of the bending angle after unloading with respect to the 
bending angle before unloading is:

After sorting, the following can be obtained:

It also meets the convergence requirement of iterative 
compensation parameter in numerical analysis. But the 
bending angle correction is introduced into the elastic com-
pound equation of bending angle. However, the modified 
values of bending angle of different models are different, 
so the curvature is often used as the iterative compensation 
parameter in bending process.

(22)
dK

�

dK
= (1 −

D

E
) ⋅

[
1 −

(�s
E

)3

∕K3

]

(23)0 <
dK

�

dK
< 1 −

D

E
< 1

(24)

d𝛼�

d𝛼
=
(
1 −

D

E

)
⋅

{
1 +

𝜎S

E
⋅

𝜌

t
⋅

[
4 ⋅ (

𝜎S

E
⋅

𝜌

t
)2 − 3

]}
0 <

𝜌

t
≤ E

2𝜎S

(25)0 <
d𝛼

�

d𝛼
< 1 −

D

E
< 1

3.2  Mathematical Basis of Iterative Compensation 
Mechanism

The length of the neutral layer remains constant when elas-
toplastic deformation occurs. Therefore, in the study of the 
springback process with variable curvature, the coordi-
nates of the springback and compensated data points can be 
obtained by the arc length restriction condition. The corre-
sponding curvature can be obtained by the elastic compound 
equation and the compensation method. The coordinates and 
curvature values of each data point are determined by the 
restriction conditions of arc length and curvature. The func-
tion equations of springback and correction compensation 
can be solved.

3.2.1  Arc length and its Limitation Conditions

When the object of study is a curve, arc length is often 
introduced as a parameter. For the same data point 
Node − i, i = 0, 1, ..., n , when the fixed point x = � is set for 
analysis. The corresponding coordinate before springback 
is written as x0−i , and the corresponding coordinate after 
springback is written as x0s−i . After the curvature is itera-
tively compensated, the coordinate corresponding to the data 
point is x1−i . At this point, on the curves before and after 
springback and after compensation, the arc length to the 
fixed point x = � to Node − i can be respectively expressed 
as:

It is known that L0 = L0s = L1 , in order to reduce the 
error, the equivalence relation in the calculation is spring-
back calculation L0 = L0s and iterative compensation calcu-
lation L0 = L1.

3.2.2  Curvature Constraint Condition

For the same data points Node − i , the corresponding X 
coordinate on the type surface is x0−i ; after springback, the 
corresponding X coordinate is x0s−i ; after iterative compen-
sation for curvature, the corresponding X coordinate of the 
data point is:x1−i . Therefore, the curvature of data points 
Node − i is expressed as:

(26)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
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∫
�

�
1 +

�
y0
��2

(x)dx

L0s =

x0s−i

∫
�

�
1 +

�
y0s

��2
(x)dx

L1 =

x1−i

∫
�

�
1 +

�
y1
��2

(x)dx
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For the elastic model of continuous curvature sheet mate-
rial in free bending, it is considered that the curvature rela-
tion of each data point of continuous curvature equation 
satisfies the curvature elastic complex equation of neutral 
layer in uniform curvature plane bending. So the relation 
is as follows:

In fact, in many engineering problems, it is often neces-
sary to determine the relationship between two variables, 
and determine the function expression between two variables 
according to their pairs of data values. Thus, the approxi-
mate expression obtained is called an empirical formula. 
After the empirical formula is obtained, the data or empiri-
cal values obtained in the production or experiment can be 
analyzed theoretically.

3.3  Experimental Verification and Results

The curve equation of the bending die is determined by the 
target shape of the sheet material. The actual shape of the 
sheet material after unloading and springback is measured. 
The least square method is used to fit the measured data, and 
the curve equation of the formed parts is obtained. The cur-
vature iterative compensation theory is used to compensate 
the curvature of the bending die during the initial loading, 
and the curve of the forming die is modified. The curvature 

(27)KNode−i = Kx0−i =
y
��

0−i

[1 + (y
�

x0−i
)2]3∕2

(28)K
�

Node−i
= Kx0s−i =

y
��

0s−i

[1 + (y
�

x0s−i
)2]3∕2

(29)K
�
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⎧
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�
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tE

�
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�
⋅
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t3
⋅
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𝜎S

E

�3

−
3𝜎S

Et

�
1 −

D

E

�� �
KNode−i >

2𝜎S

E

�

of each point approximates the target value within the allow-
able error range until the shape of the springback meets the 
target shape. At the end of each load-unloading process, the 
forming condition of sheet metal is observed to determine 
whether iteration compensation is needed.

In the bending experiment, the four models of sheet 
metal have elastoplastic deformation. The target shape is 
taken as the shape of the die surface. After the first loading 
and unloading process, the four forming parts are observed. 
After deformation, the thickness of the sheet material is 
uniform, and no extrusion thinning or fracture occurred, 
indicating that the experimental scheme is feasible. After 
checking the overall condition of the sheet material is 

intact, data analysis is carried out on the experimental 
results.

Table 4  Sheet metal curve fitting results of the four models after the 
first bending test

Model a b c Is it approach-
ing the expected 
value

Quadratic function 
-ST12

0.0004 0.002 0.0006 No

Exponential function 
-ST12

1 0.0032 – No

Quadratic function -304 0.0001 0.002 0.0009 No
Exponential function 

-304
1 0.024 – No

Table 5  Profile curve equation modified by the four models

Model a b c Degree of 
fitting  R2

Quadratic function -ST12 0.0017 0.0033 0.0006 1
Exponential function -ST12 1 0.032 – 1
Quadratic function -304 0.002 0.004 0.001 1
Exponential function -304 1 0.024 – 1

Quadratic function -ST12 Exponential function -ST12(a) (b)

(c) Quadratic function-304 (d) Exponential function-304

Fig. 7  the formed part after the second bending and springback
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Each forming part is measured separately, and the meas-
ured result is the data point in the three-dimensional space. 
Each data point is projected onto the datum plane initially 
set to obtain the plane coordinate value of each measure-
ment point.

Curve fitting is carried out for the sheet metal coordinate 
information after the springback of the four measured mod-
els. The fitting results are shown in Table 4.

After the curve equation of the first forming part is 
obtained, the curvature is modified. According to the cur-
vature restriction condition and arc length restriction con-
dition, the compensated profile curve is obtained. Seeing 
Table 5 for the curve equations of the profile after curvature 
compensation by the four models.

After determining the profile curve of the compensa-
tion die, the experimental operation is repeated. After the 
compensation experiment, the sheet metal forming part is 
obtained, as shown in Fig. 7.

Coordinate measurement is carried out on the speci-
men obtained from the compensation experiment. Fitting 
the function curve of the related type to the measured data. 
Whether the iteration process is over is judged from the 
coefficient value of the functional equation expression. The 
curve results of data fitting function are shown in Table 6. 
As can be seen from Table 6, after the compensation experi-
ment, the curve fitting results of the springback of the sheet 
metal reached the expected value on the parameter values. It 
is judged that the iterative compensation process of the four 
models is over, and the target specimen can be obtained by 
the bending loading of the compensating die.

4  Theory and Experiment 
of Stretch‑bending Compensation 
with Variable Curvature

4.1  Iterative Compensation Theory of Variable 
Curvature Stretch‑bending Process

For the sheet material whose central layer is a parabola, the 
schematic diagram is as follows Fig. 8:

On the geometrical central layer of curved sheet metal, 
where the thickness is t

2
, t
2
 is the distance along the normal 

direction, and the set of these points is the equation of the 
inner and outer curves.

Based on these conditions, setting up a system of 
equations.

The curve characteristics of inner and outer diameters 
are analyzed from the aspect of precision of engineer-
ing application by using the method of assigning tracing 
points. It is found that the error is very small.It can be 
considered that the inner and outer layers of the sheet are 
parabola in the effective measurement range studied after 
bending, and the characteristic parameters a are consistent 
with the characteristic parameters a of the quadratic func-
tion equation of the geometric center layer.

In order to simplify the calculation and proof process, 
the equation of the curve is discussed in the first and sec-
ond quadrants of the same coordinate system. As shown 
is in the figure below Fig. 9:

Let's say that some node P, is on the curve y = ax2 
before it bounces back, coordinate is (x0, y0) . Then the 
pre-elastic curvature K of the node is

(30)

⎧⎪⎪⎨⎪⎪⎩

�
t

2

�2

= (y1 − y0)
2 + (x1 − x0)

2

y0 = ax2
0

y1 − y0 = −
1

2ax0
(x1 − x0)

Table 6  Sheet metal curve fitting results of the four models after the 
compensation experiment

Model a b c Is it approach-
ing the expected 
value

Quadratic function -ST12 0.001 0.002 0 Yes
Exponential function -ST12 1 0.03 – Yes
Quadratic function -304 0.001 0.002 0 Yes
Exponential function -304 1 0.02 – Yes

Fig. 8  Diagram of parabolic 
bending of sheet metal
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One node P, is on the curve y = a
�

x2 after it bounces 
back,coordinate is (x1, y1) . The post-springback curvature 
K

′ of the node is

At the same point there is the following relationship, 
dK

′

dK
< 1 , x0 < x1 , y0 > y1 , K > K′ , ax2

0
> a

′

x2
1
.

So you can figure out the following.

It is proved that the variable curvature stretch-bending 
technology of the conic shape surface can p be used as the 
iteration parameter and has local convergence. The proof 
process of cubic curve or higher height polynomial curve 
and quadratic function are similar, which 0 <

da
′

da
< 1 can 

be judged. It is shown that the shape parameters a of the 
curve equation can also be regarded as iterative parameters 
and have local convergence.

(31)K =
2a

[1 + (2ax0)
2]

3

2

(32)K
�

=
2a

�

[
1 + (2a

�
x1)

2
] 3

2

(33)0 <
da

′

da
< 1

4.2  Experiment and Results of Stretch‑bending 
Compensation with Variable Curvature

For the bending die of second and third order functional 
shape, the iterative compensation is embodied in the dif-
ference of the shape parameters before and after spring-
back. The compensation of each die surface depends on the 
difference between the last die shape parameters and the 
springback sheet shape parameters. After finite compen-
sation operations, the final modified die shape parameters 
can be obtained and the high-precision forming parts can 
be obtained.

When the actuator is loading the quadratic function die, 
the blank is loaded on the stretch-bending test machine, as 
shown in Fig. 10.

As shown is in Fig. 10, in order to prepare for the subse-
quent processing of experimental data, marks must be made 
several time. The central axis is marked on the bending die 
in advance. At the end of stretch-bending loading, the mark-
ing point on the sheet material is consistent with the central 
axis of the bending die. A symmetric line is drawn on both 
sides of the sheet material according to the edges of both 
sides of the fixed plate, and a line is marked on the fitting 
area between the sheet material and the die.

For the variable curvature stretch-bending process of 
ST12 steel plate, the compensation of quadratic function 
shape parameters are shown in Fig. 11. The figure (a)shows 
the mold profile after the initial stretch-bending and the pro-
file after the first compensation. The figure (b) shows two 
stretch-bending forming conditions of sheet metal before 
and after compensation. The test results and parameters are 
shown in Table 7.

The compensation of cubic function shape parameter a is 
shown in Fig. 12a) is the mold profile of the initial stretch-
bending and the profile after two compensations. Figure 12b) 
is the forming reality of the sheet metal in the third stretch-
bending before and after the compensation. The test results 
and parameters are shown in Table 8.

'y a x=

x

y
2y ax=

Fig. 9  Curve equations before and after springback

Central axis of die

Central axis of 

sheet metal

Stick a die 

Line of symmetry of 

sheet metal

Fig. 10  Variable curvature stretch-bending loading of slablet under 
quadratic function surface bending die

(a)Mold profile compensation reality (b) Compensating actual stretch-
bending of sheet metal

Fig. 11  Experimental reality of stretch-bending compensation of 
ST12 slab with quadratic function shape variable curvature
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Taking the stretching and bending compensation experi-
ment of quadratic function profile when a = 0.0035 as an 
example, the compensation operation process is detailed as 
follows.

The first step is to load the clamping quadratic function 
surface when a = 0.0035 on the stretch-bending experimen-
tal machine. The stretch-bending loading method of first 
stretch-bending is carried out and then bending on the ST12 
steel plate slab. The forming parts and various marks can be 
obtained. The CMM is used to measure the forming parts. 
After data processing, the shape parameters a�

= 0.003443 
of the springback forming parts are obtained. The compensa-
tion error of the shape parameter before and after the spring-
back is calculated. The value is 0.000057 . Then compensate 
t o  t h e  va l u e  b e fo re  t h e  n ex t  s p r i n g b a ck 
anext = a +

|||a − a
� ||| = 0.003557.

The second step is to install the modified quadratic 
function profile a = 0.003557 on the stretch-bending test 
machine. The forming parts and various marks are obtained 
after the stretch-bending unloading and springback of the 
slab. The CMM is used to measure the forming parts.After 
data processing, the shape parameters a�

= 0.003500 of the 
springback forming parts are obtained. The compensation 
error of the shape parameters before and after springback 
are calculated. The theoretical calculation results show that 
the error is zero within the accuracy range of  10–6, then the 
compensation operation is over.

According to the data in and Table 7, as the number of 
compensation increases, the compensation error gradually 
decreases. The iteration parameter gradually approaches the 
target value. It is shown that under the iterative compensa-
tion mechanism, for the variable curvature stretch-bending 
compensation process of the second and third function shape 
die, the shape parameters of the die surface equation can be 
compensated for a finite number of times, so that the size of 
the forming part can reach the target precision.

5  Conclusion

 (1). A new method of parametric iterative compensation 
mechanism is proposed to solve the bending spring-
back problem. The convergence criterion of iterative 
compensation is established.That is, the derivative of 
parameter relation equation before and after spring-
back is less than 1. On this basis, the springback com-
pensation problem is transformed into iterative solu-
tion of implicit equation.

 (2). The proposed iterative compensation strategy is 
applied to free bending and stretch-bending compen-

Table 7  Experimental results of iterative compensation of parameter a of quadratic function shape variable curvature stretch-bending process

Target value
a
0
∕10−6

Frequency 
compensat-ion

Before springback 
value a∕10−6

After springback 
value a�∕10−6

Compensated 
error value|||a − a

� |||∕10−6
End of com-
pensa-tion

The value before 
the next rebound
anext∕10

−6

3500 1 3500 3443 57 No 3557
2 3557 3500 0 Yes –

Mold profile compensation reality Compensating actual stretch-
bending of sheet metal

(a) (b)

Fig. 12  Experimental reality of stretch-bending compensation for 
ST12 slab with cubic function shape variable curvature

Table 8  Iterative compensation test results of parameter A of cubic function shape variable curvature stretch-bending process

Target value a
0
∕10−7 Frequency 

compensat-ion
Before springback 
value a∕10−7

After springback 
value a�∕10−7

Compensated 
error value
|a − a�|∕10−7

End of com-
pensation

The value before 
the next rebound
a
next

∕10−7

400 1 400 382 18 No 418
2 418 397 3 No 421
3 421 400 0 Yes –
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sation of different models respectively. Experimental 
results show that after 2–3 iterations, the target value 
with small error can be obtained, which avoids the 
repeated operation of mold processing. It improves 
experimental efficiency, and saves manpower and 
material resources.

 (3). Compared with the difference iteration method, the 
slope compensation iteration method has faster con-
vergence speed and higher accuracy. In addition, the 
iterative compensation method is independent of 
material properties and mechanical model, and has 
good applicability to springback compensation in 
forming process.
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