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Abstract
Grinding process modeling represents a great challenge due to its stochastic nature. The uncertainty factor of grinding tech-
nology is mainly attributable to the undefined grain morphology, with the influence of this aspect becoming more pronounced 
in a dry configuration. Even though grinding has always used lubricants, nowadays the reduction or complete elimination 
of this element could mean a significant reduction in environmental pollution. Many modeling approaches have been used 
in literature to investigate phenomena related to grinding but each exhibits some disadvantages. In this paper a hybrid 
FEM—ML approach is proposed to forecast forces generated by the action of a single grain in dry conditions, overcoming 
the main modeling limitations observed to date. Experiments and force measurements were performed on a CNC surface 
grinding machine using sintered aluminum oxide grains of size 60. FEM simulations were developed in DEFORM 3D to 
predict grinding forces and increase the data set. ML algorithms were proposed to increase model prediction productivity 
and optimize the control of process parameters.

Keywords  Grinding forces · Single-grit FEM simulation · Machine learning

1  Introduction

Amongst the various finishing technologies, grinding is 
one of the most widely used processes, usually chosen to 
achieve high surface quality characteristics on hard materi-
als. Obtaining such finishing levels requires grinding pro-
cesses that are characterized by a very low removal rate. For 
this reason, grinding provides the highest specific energy 
of all cutting processes. Grinding is not only characterized 
by very low cutting depths, but also by the prevalence of 
negative rake angles, which amplifies this phenomenon. 
Heat generated by grinding often leads to thermal burns 
and product rejection, especially in a dry configuration. Dry 

processes, however, could lead to a cleaner manufacturing 
route with substantial reductions in environmental pollution 
and production costs. Therefore, more in-depth investigation 
is needed to predict material behavior under dry abrasive 
process configurations. Grinding forces and temperatures 
are generally considered to exhibit a threshold value below 
which the process can be performed with nominal operating 
values without generating thermal defects [1]. Heat-related 
problems require the ability to predict the process energy 
while varying materials and process parameters. Many 
researchers have dealt with this challenge using different 
modeling approaches. To date, models can be grouped into 
two different categories:

•	 Physical models (fundamental analytical, finite element, 
kinematic, molecular dynamics, and regression models)

•	 Empirical and heuristic models (regression, artificial neu-
ral net, and rule-based models)

At the simplest level, physical models focus on micro-
scopic grinding phenomena and are generally implemented 
to design the process and avoid manufacturing defects. 
Empirical and heuristic models instead analyze the macro-
scopic behavior of the grinding system and are much more 
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likely to be used to control the process [2]. Empirical and 
semi-empirical models have seen widespread uptake, pro-
viding a lot of information in relation to a given application; 
however, they generally only work for a specific parameter 
and material set. Experiments are therefore usually required 
to determine calibration coefficients, which are often difficult 
to obtain [3–5]. Meanwhile, physical models require previ-
ous knowledge for analysis of results, as well as long com-
putational times, but allow microscopic phenomena behind 
the process to be identified. Amongst the various physical 
approaches, grinding FEM models have been implemented 
following two different approaches, which can be classified 
as micro- and macro-scale models [6]. Macro-scale models 
consider the interaction between the whole grinding wheel 
and the material from a thermal point of view [7–9]. They 
are focused on forecasting thermal burns by considering a 
threshold value of temperature starting from process power 
measurements and assuming a certain value of energy 
partition, which represents the heat absorbed by the work-
piece. Micro-scale approaches instead focus on the action 
of a single grain on the workpiece, analyzing mechanical 
behavior during ploughing and cutting mechanism to pro-
vide information about the forces generated during the pro-
cess due to the material and kinematics [10–12]. To deal 
with the stochastic nature of abrasive grains in micro-scale 
approaches, grinding force and power prediction modeling 
are often based on the probabilistic distribution of the unde-
formed chip thickness as a function of the kinematic condi-
tions, material properties and wheel microstructure [13, 14]. 
Force modeling at each grain is then developed, deducing 
the dynamic grain density from the static grain density, and 
considering kinematic effects such as shadows generated by 
active grains and dynamic effects due to local grain deflec-
tion. In the kinematic modeling approach, statistical analysis 
of the grain shape is generally performed considering the 
apex, rake, wedge and opening angles, followed by the crea-
tion of a database of abrasive grains that is mathematically 
designed by considering the grains, bond and pore volumet-
ric fraction [15, 16].

Apart from the nondeterministic nature of the grinding 
wheel geometry, other aspects such as machine tool vibra-
tion, abrasive tool wear, chip formation and undefined con-
tacts make theoretical modeling of abrasive processes dif-
ficult [17]. Hence, finishing processes often involve a large 
gap between process conditions and human understanding, 
for which it is worth investigating grinding through machine 
learning (ML) and deep learning (DL), together with FEM 
analysis. In this case, modeling is assisted by real-time mon-
itoring of the process through specific and accurate sensors 
capable of consistently revealing the physical phenomena 
taking place. There are, however, some key technologies 
to be improved. Restricted data volume and difficulties in 
data unification and collection in grinding, with a lack of 

advanced integrated multi-sensor online monitoring equip-
ment, still limit ML application to grinding [18]. In order 
to overcome the limits of each approach and thus combine 
the reliability of FEM analysis with the productivity of ML 
techniques, a hybrid model was developed in which the 
advantages of FEM and ML were combined within cutting 
[19, 20] and grinding [21] force prediction models. In some 
cases, the ML database made up of experimental data can 
be enlarged by introducing data calculated through FEM 
simulations, with the possibility of forecasting process out-
comes that are difficult to measure experimentally [22]. The 
hybrid method can overcome the limits of single approaches 
adopted for modeling grinding, handling problems relating 
to lack of experimental data by introducing FEM model 
outcomes into the data set, making the strategy faster by 
avoiding time-consuming simulations and taking advantage 
of validation based on experimental data. Once the manu-
facturing process is optimized, it is also possible to develop 
digital twin models for grinding that include the machine 
tool and cutting process [23].

In this paper, a FEM simulation was developed in 
DEFORM 3D to forecast grinding forces generated by the 
interaction between a single grain and workpiece material 
in dry conditions. FEM simulations were carried out while 
varying the cut depth, feed rate and cutting speed, with sta-
tistical analysis performed based on the geometry of real 
sintered aluminum oxide grains to improve model precision. 
A combined database deriving from experimental outcomes 
and FEM simulations was processed with Artificial Neural 
Networks (ANN) and Decision Trees (a Random Forest in 
this specific case) to increase prediction productivity and 
verify the accuracy and applicability of different algorithms 
to the cutting operation. Moreover, the present work applied 
the Synthetic Minority Over-sampling Techniques (SMOTE) 
function, which can repopulate database balancing data with 
inhomogeneous entities and fill in gaps due to missing val-
ues. Observed data were compared with predicted data and 
the accuracy of grinding force forecasting was evaluated 
through performance index calculation. A concise explana-
tion of the concept and the procedure is shown schematically 
in Fig. 1.

2 � Materials and Methods

2.1 � Experimental and Numerical Data Sources

Experiments were performed in dry conditions on a CNC 
tangential grinding machine, applying the grain on a support 
as shown in Fig. 2. Cutting force components were measured 
using a Kistler 9255C dynamometer. Sintered aluminum 
oxide abrasive grains with a FEPA size of 60 were used for 
experiments. Case-hardened 27MnCr5 steel was employed 
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as the workpiece material, characterized by a hardness of 
62 HRC to a depth of at least 1 mm after heat treatment. 
Single grain grinding tests were performed using the process 
parameters reported in Table 1. Force signals acquired by the 
dynamometer were then processed in MATLAB® to extract 
the maximum cutting load during the interaction between 
grain and material.

Real grain geometries were acquired through computed 
tomography, with a group of reference grains imported into 
STL editor software Magics Materialize to measure and sta-
tistically analyze their geometric characteristics (Fig. 3a, b). 
A defined equivalent geometry, representative of the class 
of grain material and size, was designed with a rake angle 
of 68°, tip radius of 0.1 mm and total length and width of 

0.55 mm and 0.6 mm, respectively. The defined equivalent 
grain geometry was then imported as a tool into a thermo-
mechanical FEM simulation implemented in DEFORM 
3D, adopting a Lagrangian incremental formulation. The 
grain was modeled as a rigid body, while the workpiece was 
instead represented as a deformable body due to the very 
high difference in hardness between the grain and work-
piece. The workpiece was discretized with tetrahedral ele-
ments distributed with smallest dimensions in the interaction 
zone to model the depth of cut with at least three elements. 
The workpiece mesh was set as an absolute mesh, while the 
grain mesh was set as a relative mesh with a size ratio of 
20. Dry contact conditions were considered with a constant 
Coulomb friction coefficient of 0.2. Movement was assigned 

Fig. 1   Combined FEM and ML approach concept
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to the grain. Zero velocity boundary conditions were applied 
to the lower workpiece surface to maintain its position fixed 
in space.

The Johnson–Cook (J&C) model was employed to 
describe material flow according to Eq. (1).

A hardened steel based on split Hopkinson pressure bar 
(SHPB) technology [24], with the same hardness as case-
hardened 27MnCr5 (62 HRC), was employed as the refer-
ence material. The Cockroft-Latham model was used to 

(1)σ = (A + B ⋅ 𝜀
n)

(

1 + C ⋅ ln
𝜀̇

⋅

𝜀
o

)

[

1 −

(

T − T
r

T
m
− T

r

)m]

predict the fracture criterion for chip formation with the 
material critical value set to 0.22.

Simulations were implemented using the process param-
eters shown in Table 2.

2.2 � ML Structure for Prediction of Grinding Forces

2.2.1 � Theoretical Background of ML Algorithms

Artificial neural networks (ANNs) are popular statistical 
methods that can explore the relationships between vari-
ables with high accuracy. ANNs are one of the most famous 
groups of ML algorithms and are the basis of the main Deep 
Learning architectures. Essentially, the structure of an ANN 
is computer-based and consists of several simple processing 
elements operating in parallel. ANNs are formed by layer 
nodes, each node connecting an initial layer called the input 
layer, one or more hidden layers and a final layer called the 
output layer (see Fig. 4).

Fig. 2   Experimental test set up

Table 1   Experimental parameters

Depth of cut p [µm] 5–10–15

Cutting speed w [m/s] 45–60
Feed rate f [mm/s] 25–35.8–50



19International Journal of Precision Engineering and Manufacturing (2022) 23:15–29	

1 3

The fundamental component of ANNs is the node or 
neuron. Many neurons, arranged in an interconnected struc-
ture, form a neural network; each neuron is connected to the 
inputs and outputs of the others. The connections are repre-
sented by a matrix of weights w. Neurons receive weighted 
values as input, add them together and use an activation 
function to process the result. The data summed up in this 
way, to which a bias b has also been added, exceeds a certain 

Fig. 3   Geometric analysis of 
sintered aluminum oxide grain 
of size 60: a grains geometry 
acquisition; b grains geometry 
statistical analysis

Table 2   Simulation process parameters

Depth of cut p [µm] 10 – 25 – 50

Cutting speed w [m/s] 10 – 15 – 20
Feed rate f [mm/s] 10 – 20 – 40
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threshold and, as a result, the activation function transforms 
by increasing the values stored in the node; otherwise, it 
extinguishes the signal by reducing it or even cancelling it. 
The temporary result is ready to be sent to the next connec-
tion, until each level is completed, and a result called out-
put is obtained. This process is called feedforward network. 
Equations (2) and (3) define the mathematical model for the 
regression formula in each node:

In the equation below, Eq. 4 defines the error function J 
(cost or loss function, or more commonly, mean square error 
MSE function), where:

•	 i represents the index of the sample
•	 θ0, θ1 are the parameters
•	 hθ(x) is the hypothesis or predicted output, with 

h
�
(x) = �

0
+ �

1(x)

•	 y(x) is the actual value
•	 m is the number of the sample

Using this equation, the accuracy of the neural network's 
prediction process can be determined. The aim of the com-
putational architecture of the feedforward neural network 
is to minimise the MSE by ensuring that the function J, 
through gradient descent, reaches the convergence point or 
a local minimum. In this paper, the application of a feed-
forward neural network with backpropagation algorithm 
was considered. Hence, the neural network will be applied 
here to forecast the grinding process. In this study, the 
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experimental and simulation data will be utilized to train the 
neural network. Then, the implemented neural network algo-
rithm of the force model will be adopted to predict tangential 
and normal components of the grinding force [20, 25, 26].

Decision Trees are a very common set of supervised ML 
algorithms. They are very famous because they can: han-
dle mixed types of features and predictors, with very little 
pre-processing of the former; ignore redundant features and 
select only the relevant ones; operate without having to make 
complex changes to hyper-parameters; visualise the predic-
tive process as a set of recursive rules arranged in a tree 
with branches and leaves (see Fig. 5a), thus offering ease of 
interpretation. Using a sample of observations as a starting 
point, the algorithm goes back to the rules that generated the 
output classes (or numerical values, in the case of a regres-
sion problem) by dividing the input matrix into smaller and 
smaller partitions, until the process triggers a stopping rule. 
To determine how to perform the splits in a decision tree, 
various statistical measurements are used: Gini heterogene-
ity index, information gain and variance reduction.

Along with Decision Trees, one has to consider their 
extended evolution: the Random Forest RF (see Fig. 5b). 
These ML algorithms are an ensemble of decision trees 
and allow numerous calculations to be replicated between 
the various decision trees. The availability of this ensem-
ble of decision trees, trained individually and then merged 
together, allows for more stable, accurate and robust predic-
tions than the single decision tree.

Random Forests have been applied to experimental and 
simulation data to forecast grinding forces [25]. One of the 
most significant advantages of ANN and RF models is that 
they can capture the non-linear interaction between the fea-
tures and target in the forecasting of grinding processes. The 
results obtained by the two models have been assessed and 
compared.

The ML model architecture considered in this paper 
involves the following steps:

Fig. 4   Artificial neural network
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1.	 Data pre-processing.
2.	 Data oversampling using the Synthetic Minority Over-

sampling Technique (SMOTE).
3.	 Train-test splitting of dataset.

Application of ML models for prediction of grinding forces 
was performed with

4.	 The Neural Network and Bayesian – Regularization 
algorithm to find the best and most robust solution.

5.	 The Random Forest and Least Squares Boosting meth-
ods to fit the regression ensemble.

In data science, the performance of an algorithm 
is affected by data pre-processing and handling. The 

performance of an algorithm can be increased and made 
more robust through the use of feature engineering. This 
process provides global analysis of a dataset, feature selec-
tion, handling missing values, handling outliers and feature 
scaling. Table 3 summarizes the main statistical values for 
the considered dataset:

Analysis of the main statistical values is useful to cor-
rectly select the features for training of the ML algorithms 
and to ensure that oversampling of the data through SMOTE 
does not lead to the presence of values outside the range of 
application of process parameters, considering both parts 
relating to experiments and FEM simulation. Amongst the 
various methods for feature selection, use of the correla-
tion matrix was considered with Heatmap in the present 
work. This gives the relationship between dependent and 

Fig. 5   a Decision Tree, b Ran-
dom Forest

Table 3   Dataset analysis

Mean value Mini-
mum 
value

Maxi-
mum 
value

Range value Perch25th value Perch50th value Perch75th value Standard deviation

Wheel speed [rpm] 29.526 10 63 53 15 20 45 21.192
Feed rate [mm/s] 27.45 10 50 40 20 25 40 13.816
Depth of cut [mm] 19.868 5 50 45 10 10 25 14.727
Tangential force [N] 9.0956 2 40 38 4 6.36 10.73 7.7863
Normal force [N] 37.744 6 90 84 21.81 37.875 51.13 20.704
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independent features by Spearman's rank correlation coef-
ficient, as shown in Eq. 5:

where rs denotes the usual Pearson correlation coefficient, 
but applied to the rank variables, cov

(

rgX , rgY
)

 is the covari-
ance of the rank variables, �rgX�rgY are the standard devia-
tions of the rank variables.

The heatmap of the correlation matrix is shown in the 
Fig. 6. Amongst the various process parameters, the depth 
of cut was the variable most closely related to the cutting 
forces (Spearman index in both cases greater than 0.5) and, 
consequently, the one with the greatest influence on the 
development of forces.

Within the considered dataset, outliers were considered as 
points more than three standard deviations from the mean. 
Within the samples considered in the dataset, it was possi-
ble to identify only one outlier amongst the given values of 
tangential force, as highlighted in Fig. 7.

Feature scaling is a technique used to resize and stand-
ardise the field of features of data. This method through 
standardization or mean-normalization can be an important 

(5)rs = �rgX ,rgY
=

cov
(

rgX , rgY
)

�rgX
�rgY

pre-processing step for many machine learning algorithms. 
This can be useful to ensure that the MSE function is able 
to reduce prediction errors more effectively and that the 
algorithm converges correctly and quickly. In this work the 
mean – normalization method was proposed for data features 
(depth of cut, cutting speed, and feed rate) scaling because 
the distribution of data does not follow a Gaussian distribu-
tion and the reference Eq. 6 was reported below, where x is 
an original value, x’ is the normalized value:

2.2.2 � Novel Approach Using the Synthetic Minority 
Over‑Sampling Technique

The Synthetic Minority Over-Sampling Technique 
(SMOTE) and its function developed in MATLAB® are 
based on [27, 28]. This function provides new samples based 
on input data and a k-nearest neighbor (KNN) approach. If 
multiple classes are given as input, only neighbours within 
the same class are considered. This function can be used to 
over-sample minority classes in a dataset to create a more 

(6)x
�

=
x − average(x)

max(x) − min(x)

Fig. 6   Heatmap of correlation 
matrix

Fig. 7   Search for possible outli-
ers in the considered dataset
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balanced dataset, as was done for the dataset considered in 
this paper. SMOTE is an oversampling method where the 
synthetic observations are created for the minority class. The 
below-given diagram represents the SMOTE procedure (see 
Fig. 8):

For this paper, the implementation of the SMOTE tech-
nique for all the dataset was carried out, after an optimi-
sation process, considering an amount of oversampling N 
equal to 3 and a number of nearest neighbours k to consider 
equal to 8. An example of the application of the SMOTE 
technique to oversample tangential force values is shown 
in the Fig. 9. The possibility of locating outliers was also 
considered for the oversampled dataset.

The train-test dataset separation is a method for assess the 
goodness of a ML algorithm. The technique initially consid-
ers a dataset and splitting it into two subsets. The first set 
is used to train the model and is referred to as the training 
dataset. The second set is used to validate the training ML 
model. The objective is to estimate the performance of the 
machine learning model on new data, which was not used 
to train the model. To avoid a result with an over-fitting 
prediction, we can perform something called cross-vali-
dation. In this paper, a K-Fold Cross Validation was used. 
In K-Folds Cross Validation data were divide into k folds. 
K−1 folds were applied to fit the data and leave the last fold 
as a partition only for test data. Finally, the operations are 

concluded by averaging the model over the various subsets 
(see Fig. 10).

The Test Dataset part is necessary to validate the accu-
racy and robustness of the ML algorithms considered.

2.3 � Application of ML Models

The following section introduces the Neural Network with 
Bayesian – Regularization algorithm and Random Forest 
by the application of Least Square Boosting method, which 
were used as a technique to perform machine learning 
experiments.

2.3.1 � Neural Network and Bayesian: Regularization 
Algorithm

In general, a backpropagation algorithm trains a feedforward 
network. In ANNs, in order to optimise the MSE function 
and, consequently, achieve a low error and avoid also to 
overfit the forecasting, some regularisation procedures are 
used with the backpropagation training algorithm. In this 
article, among the various regularisation methods, Bayesian 
Regularisation BR has been chosen. [29]. The BR frame-
work for neural networks is based on the probabilistic inter-
pretation of network parameters. The network with trainbr 
function was trained in MATLAB®. In addition, an auto-
mated procedure was implemented which, by proceeding 
iteratively and evaluating the root-mean-square error in the 
training set and the test set, was able to identify the optimal 
number of neurons and hidden layers for the chosen neural 
network configuration. Using the proposed ML architec-
ture, an ANN with five hidden layers and forwards neurons 
23/23/21/21/19 for each layer learned with the hybrid data 
sources inclusive of train—test splitting with five k-folds 
was built. Instead of using the original data, the data was 
pre-processed with a mean-normalization feature scaling in 
the input layer. The ML model was trained with 1500 itera-
tions for each fold (Table 4).Fig. 8   Diagram of SMOTE procedure

Fig. 9   Tangential force over-
sampled values by SMOTE 
application with N = 3 and k = 8
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2.3.2 � Random Forest and Least Square Boosting

Random Forest (RF) regression uses an ensemble of 
unpruned decision trees, each grown using a bootstrap 
sample of the training data, and randomly selected subsets 
of predictor variables as candidates for splitting tree nodes. 
The motivation is to combine several weak models to pro-
duce a powerful ensemble to optimise accuracy over a sin-
gle tree. In MATLAB®, Least-squares boosting (LSBoost) 
fits regression ensembles to minimize mean-squared error. 
The development of the relationship between the grind-
ing process parameters and cutting forces RF model was 
carried out using MATLAB®. Some parameters such as 
method, maximal number of decision splits and minimum 
number of leaf node observations were optimised in the 
random forest model upon the minimisation of the mean 
square error (MSE). In this paper, after optimisation, the 
tuning parameters used for developing the RF regression 
model is listed in Table 5:

3 � Results and Discussion

The configuration parameters presented in Table 4 were 
used to determine the best network structure of the ANN 
prediction model. The ANN algorithm used all input data 
for model training and validation via the k-fold technique 
using Bayesian regularization backpropagation. The per-
formance of an ANN model depends on the number of 
hidden layers in the ANN network structure. An increase 
in the number of hidden layers has a direct impact on 
modeling time requirements. Determining the number of 
hidden layers and nodes during training was based on a 
trial-and-error approach using the minimum number of 
iterations required to achieve the necessary performance 
goal, which in the present case was set to the minimum 
mean square error. Training was stopped once the error 
was reduced to below the performance goal. Upon com-
pletion of the training stage, the network was tested with 
the validation set.

Figure  11 shows a comparison between the actual 
grinding force values y and the predicted results yhat 
based on neural network analysis of the entire dataset. 
The black line represents perfect prediction, while the red 

Fig. 10   Visual representation of K-Folds

Table 4   ANN training algorithm configuration parameters

Parameter Value

Maximum number of epochs to train 1500
Backpropagation method Bayesian 

Regulari-
zation

Hidden layers 5
Performance goal 0
Initial µ 0.005

Table 5   Random forest training 
parameters

Parameter Value

Method LSBoost
Max number of splits 1
Min leaf size 1
Number of ensembles 

learning cycles
5000



25International Journal of Precision Engineering and Manufacturing (2022) 23:15–29	

1 3

dots indicate the observed error between the predicted 
and actual values. The smaller the error, the smaller the 
observations deviated from the black line. For both tan-
gential and normal forces, predicted values tended to be 
very close to the actual values. The low deviation between 
actual and predicted values obtained with the ANN archi-
tecture is highlighted in Fig. 11 a, where the residuals 
are plotted (y − yhat). Most observations were close to 
the perfect prediction line (i.e., the black dotted line with 
a residual value of zero) or were within an acceptable 
prediction range (bounds with at least 95% accuracy). 
The predicted values calculated with the neural network 
regression model were found to be close to the measured 
values. The calculated value of R, the correlation between 
the predicted and observed values, was 0.97064, suggested 
a satisfactory fit of the model, as shown Fig. 12.b where 
the black dotted line represents perfect prediction, the blue 
line indicates the regression equation fitting the predicted 

values to the true values and the black dots represent the 
considered observations.

The RF model could rank the predictors (wheel speed, 
feed rate, and cut depth in the present case) based on their 
importance. Figure 13 shows the importance of each predic-
tor, where it can be seen that the cut depth had a higher cor-
relation with material removal than the others, in line with 
the correlation matrix heatmap in Fig. 6.

The robustness of the developed random forest model was 
evaluated by identifying the deviation of observed values in 
the validation dataset from those predicted by the model. 
Figure 14 shows a comparison of the actual grinding force 
values y and the predicted results yhat from RF analysis 
of the entire dataset. The low deviation between actual and 
predicted values obtained with the RF architecture is high-
lighted in Fig. 15a, where the residuals are plotted. Most 
observations were again close to the perfect prediction line 
(i.e., the black dotted line with a residual value of zero) or 
were within an acceptable prediction range (bounds with 
at least 95% accuracy). The calculated value of R based on 
the fitted regression line was 0.9671, as shown in Fig. 15b, 
which also showed that the fit of the RF model was good.

Further improvements will focus on limiting overfit-
ting and improving the performance and robustness of ML 
regression models for abrasive processes. A larger reference 
dataset, including different process parameters and config-
urations, will be developed. The possibility of evaluating 
other features available through FEM simulations, such as 
heat generation, will also be further pursued. Both the neu-
ral network and random forest algorithm can predict a new 
dataset with updated values of grinding forces. This would 
require a new input dataset, which would then be applied to 
the previously trained forecasting procedures. Only in this 
way can new performance values be achieved.

4 � Conclusions

This paper illustrates a comprehensive procedure that merges 
data from experiments and simulations by applying two ML 
regression techniques to verify the applicability of different 
ML algorithms in predicting grinding forces. The achieved 
outcomes demonstrate the practicality of this approach in 
developing a model for the prediction of grinding forces in 
dry conditions. Based on the developed regression models, 
the following generalized conclusions can be drawn:

•	 The predictions of the two ML models were in agreement 
with the data collected in experimental and FEM simula-
tion phases with an accuracy of about 0.97.

•	 Compared to experiments and FEM simulation, the two 
models proved to be significantly less costly and time-
consuming.

Fig. 11   Comparison of observed and predicted grinding forces using 
ANN regression (y = actual grinding force, yhat = predicted grinding 
force)
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•	 A novel global approach for forecasting grinding forces 
was implemented by combining experimental and simu-
lation data, a SMOTE function for resampling the origi-
nal dataset and a comparative procedure with two ML 
techniques.

•	 In order to reduce overfitting, it was important to take 
care during data pre-processing and oversampling 
phases, focusing attention on finding the optimal initial 
conditions for modeling the algorithm.

•	 The two models achieved similar accuracies. In particu-
lar, the model using ANNs was easy to interpret and pro-
vided the possibility of automatically obtaining a wide 

variety of results, which were easy to manipulate. On the 
other hand, this model involved a very elaborate phase 
to find the optimal conditions in order to implement a 
robust and accurate model. The RF model proved to be 
faster than the neural networks and involved a less elabo-
rate optimization phase. The programming interface did 
not, however, allow as wide and immediate access to the 
results as that of ANNs.

•	 Both models proved to be accurate and robust, and there-
fore suitable for optimizing process parameters to predict 
cutting forces in a highly non-linear process such as grind-
ing. They were flexible to variations in process and grind-

Fig. 12   Statistical analysis fit of the neural network regression model: a residuals, b regression

Fig. 13   Importance of variables in predicting grinding forces using RF: a tangential force, b normal force
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Fig. 14   Comparison of 
observed and predicted grind-
ing forces using RF regression 
(y = actual grinding force, 
yhat = predicted grinding force)
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ing wheel parameters and allowed excellent generalization 
and extension to a wide range of processes involving cut-
ting and material removal.
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